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Abstract: Despite significant advancements in remote sensing object tracking (RSOT) in recent years,
achieving accurate and continuous tracking of tiny-sized targets remains a challenging task due to
similar object interference and other related issues. In this paper, from the perspective of feature
enhancement and a better feature matching strategy, we present a tracker SiamTM specifically
designed for RSOT, which is mainly based on a new target information enhancement (TIE) module
and a multi-level matching strategy. First, we propose a TIE module to address the challenge of tiny
object sizes in satellite videos. The proposed TIE module goes along two spatial directions to capture
orientation and position-aware information, respectively, while capturing inter-channel information
at the global 2D image level. The TIE module enables the network to extract discriminative features of
the targets more effectively from satellite images. Furthermore, we introduce a multi-level matching
(MM) module that is better suited for satellite video targets. The MM module firstly embeds the
target feature map after ROI Align into each position of the search region feature map to obtain a
preliminary response map. Subsequently, the preliminary response map and the template region
feature map are subjected to the Depth-wise Cross Correlation operation to get a more refined
response map. Through this coarse-to-fine approach, the tracker obtains a response map with a
more accurate position, which lays a good foundation for the prediction operation of the subsequent
sub-networks. We conducted extensive experiments on two large satellite video single-object tracking
datasets: SatSOT and SV248S. Without bells and whistles, the proposed tracker SiamTM achieved
competitive results on both datasets while running at real-time speed.

Keywords: satellite video; object tracking; siamese network; feature enhancement; matching strategy

1. Introduction

Single object tracking (SOT) refers to the task of predicting the position and size of a
given target in the subsequent frames of a video, given its initial information in the first
frame [1]. It is an important research area in computer vision and has been utilized in
various applications, such as motion object analysis [2], automatic driving [3], and human–
computer interactions [4]. As deep learning demonstrates outstanding performance in
various visual fields, more and more researchers have introduced deep learning into the
field of single object tracking, achieving many astonishing results. Tao et al. [5] proposed
the SINT network, the first to apply the Siamese network to single-object tracking fields.
SINT learns a matching function through a Siamese network using the first frame of target
information as a template, and calculates the matching score between the template and
all subsequent frames sampled. The highest score represents the position of the target
in the current frame. SiamFC [6] abstracts the tracking process into a similarity learning
problem. By learning a function f (Z, X) to compare the similarity between the template
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image Z and the search image X, the target’s location can be predicted based on the po-
sition with the highest score on the response map. Building upon SiamFC, SiamRPN [7]
introduces the RPN module from Faster R-CNN [8], which eliminates the time-consuming
multi-scale testing process, further improving performance and speeding up the system.
Li et al. [9] proposed the SiamRPN++ network, which introduces the ResNet-50 [10] net-
work to improve feature extraction capability. Additionally, they proposed Depth-wise
Cross Correlation to replace the previous Up-Channel Cross Correlation, drastically re-
ducing the number of parameters and enhancing the overall stability of the training. Xu
et al. [11] proposed an anchor-free tracking algorithm called SiamFC++. The algorithm
enhances the original SiamFC tracker with added position regression, quality score, and
multiple joint training losses, resulting in a significantly improved tracking performance.
SiamCAR [12] is also a novel anchor-free fully convolutional Siamese tracking network,
which decomposes visual tracking tasks into two sub-problems: pixel-wise classification
and target bounding box regression, and solves end-to-end visual tracking problems in
a pixel-wise manner. Guo et al. [13] proposed a simple and perceptible Siamese graph
network, SiamGAT, for generic object tracking. The tracker establishes part-to-part corre-
spondences between the target and search regions using a full bipartite graph and applies
a graph attention mechanism to propagate target information from template features to
search features. Yang et al. [14] proposed a dedicated Siamese network, SiamMDM, de-
signed for single object tracking in satellite videos. This network addresses the challenge of
weak features exhibited by typical targets in satellite videos by incorporating feature map
fusion and introducing a dynamic template branch. Additionally, the network suggests
an adaptive fusion of both motion model predictions and Siamese network predictions to
alleviate issues commonly encountered in satellite videos, such as partial or full occlusions.

As Transformer [15] has shown great potential in the field of object detection, more
and more researchers are trying to introduce Transformer into the field of object tracking.
Due to the utilization of only spatial features in Siamese algorithms, they may not be
particularly suitable for scenarios involving target disappearance or significant object varia-
tions. To address this limitation, Yan et al. [16] proposed the incorporation of a transformer
architecture, which combines spatial and temporal characteristics, effectively resolving
the issue of long-range interactions in sequence modeling. Chen et al. [17] pointed out
that correlation operation is a simple way of fusion, and they proposed a Transformer
tracking method based on the attention fusion mechanism called TransT. SparseTT [18] has
designed a sparse attention mechanism that allows the network to focus on target informa-
tion in the search area, and proposed a Double-Head approach to improve classification
and regression accuracy. The ToMP [19] tracker also replaces traditional optimization-
based model predictors with transformers. This tracker incorporates two novel encoding
methods that include both target position information and range information. In addi-
tion, a parallel two-stage tracking method is proposed to decouple target localization and
bounding box regression, achieving a balance between accuracy and efficiency. In order to
fully leverage the capabilities of self-attention, Gui et al. [20] introduced a novel tracking
framework known as MixFormer, which deviates from traditional tracking paradigms.
Additionally, they proposed the MAM module, which employs attention mechanisms to
perform feature extractions and feature interactions simultaneously. This renders Mix-
Former remarkably concise without the need for additional fusion modules. Ye et al. [21]
introduced OSTrack, a concise and efficient one-stream one-stage tracking framework. This
tracker leverages the prior knowledge of similarity scores obtained in the early stages and
proposes an in-network early candidate elimination module, thereby reducing inference
time. To address the issue of inhibited performance improvements due to independent
correlation calculations in attention mechanisms, AiATrack [22] introduces an Attention in
Attention (AiA) module. This module enhances appropriate correlations and suppresses
erroneous correlations by seeking consensus among all relevant vectors. SwinTrack [23]
employs Transformer for feature extraction and fusion, enabling full interaction between
the template region and the search region for tracking. Moreover, SwinTrack extensively
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investigates various strategies for feature fusion, position encoding, and training loss to
enhance performance.

In recent years, with the advancement of remote sensing and image processing tech-
nology [24–26], the resolution of satellite video has been continuously improving, enabling
the tracking of trains, ships, airplanes, and even ordinary cars from a remote sensing
perspective. Compared with general optical object tracking, remote sensing single ob-
ject tracking (RSOT) [27–30] faces several challenges that lead to significant performance
degradation when directly applying deep learning-based single-object tracking methods
to RSOT. Taking the common vehicle target in the tracking dataset as an example, we
conducted a comparative analysis involving vehicle targets captured in natural image
scenes, aerial views from unmanned aerial vehicles (UAV), and satellite perspectives. The
results are depicted in Figure 1. The vehicle depicted in Figure 1a is selected from the
Car24 video sequence in the OTB [31] dataset. In the displayed image frame, the vehicle
target occupies 1848 pixels, accounting for 2.41% of the entire image. Despite the limited
resolution of this image, the rich feature information at the rear of the vehicle provides
sufficient discriminative cues for the tracker’s decision-making process. The car depicted
in Figure 1b is extracted from the car4 video sequence in the UAV123 [32] dataset. The car
target occupies a total of 1560 pixels, which accounts for approximately 0.17% of the entire
image. Despite the diminished proportion of the vehicle target within the entire image
when viewed from the aerial perspective of a UAV, the contour of the vehicle target remains
distinctly discernible. The car in Figure 1c is selected from the car_04 video sequence in the
SatSOT [33] dataset. In complete contrast to the previous two images, the car target in this
image occupies only 90 pixels, taking up only 0.01% of the whole image.

(a) Car in OTB100 dataset (b) Car in UAV123 dataset (c) Car in SatSOT dataset

Figure 1. Vehicle targets from different shooting angles. From left to right: car in natural image scene;
car in drone aerial perspective; car in satellite capture perspective. Compared to the previous two,
the proportion of the cars in the satellite images is very low, and the cars themselves are tiny in size,
lacking distinct and identifiable features.

The comparison of the three images in Figure 1 reveals that the minuscule size of
the vehicle targets in satellite videos results in a reduced amount of feature information.
Therefore, it is essential to employ corresponding feature enhancement techniques to
bolster the features of small objects in satellite videos. Additionally, it is unreasonable
to rely solely on the Depth-wise Cross Correlation matching approach from the general
object tracking domain, given the aforementioned scarcity of features in small objects. In
summary, applying methods from the natural tracking field to the RSOT field primarily
confronts two critical issues, as follows.
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(1) Weak target feature: Due to the altitude of the satellite and the spatial resolution
of satellite videos, the target in the satellite video usually occupies only a tiny per-
centage of the entire image [34]. Compared to generic optical targets, targets to be
tracked in satellite video are generally too small in size, resulting in insufficient feature
information for trackers to exploit [35].

(2) Inappropriate matching strategy: The common Depth-wise Cross Correlation finds
the best match within the search map based on the target appearance and texture
information provided by the template map. However, due to the tiny size of objects in
satellite videos, which usually exist in clusters or lines in images and lack noticeable
contour features, the Depth-wise Cross Correlation matching strategy is not fully
applicable to RSOT.

In summary, how to effectively suppress the background information around the
target and enhance the intensity of the target’s own features has become an unavoidable
problem in the study of target tracking in the RSOT field. At the same time, it is essential
to design a matching method suitable for target tracking in satellite videos. Based on the
above thinking, we have designed a tracker SiamTM specifically for satellite video target
tracking based on feature enhancement and coarse-to-fine matching strategies.

The main contributions of this paper can be summarized as follows.

• Firstly, we propose a novel target information enhancement module that can capture
the direction and position-aware information from both the horizontal and vertical
dimensions, as well as inherent channel information from a global perspective of the
image. The target information enhancement module embeds position information
into channel attention to enhance the feature expression of our proposed SiamTM
algorithm for small targets in satellite videos.

• Secondly, we have designed a multi-level matching module that is better suited for
satellite video targets’ characteristics. It combines coarse-grained semantic abstraction
information with fine-grained location detail information, effectively utilizing template
information to accurately locate the target in the search area, thereby improving the
network’s continuous tracking performance of the target in various complex scenarios.

• Finally, extensive experiments have been conducted on two large-scale satellite video
single-object tracking datasets, SatSOT and SV248S. The experimental results show
that the proposed SiamTM algorithm achieved state-of-the-art performance in both
success and precision metrics, while having a tracking speed of 89.76 FPS, exceeding
the standard of real-time tracking.

2. Related Work

In this chapter, we will introduce relevant works from two aspects. Firstly, we will
introduce some typical feature enhancement methods in single-object tracking. Secondly,
we will discuss the contributions of previous research in changing the matching methods
between the template feature map and the search feature map.

2.1. Feature Enhancement Methods in Single Object Tracking

As one of the most crucial steps in a Siamese-based tracker, the quality of the feature
maps extracted from the backbone directly influences the tracking performance and robust-
ness. Therefore, numerous researchers have been exploring methods to obtain feature maps
with richer feature information and emphasize focus on key regions. In early Siamese-based
trackers (e.g., SINT [5] and SiamFC [6]), they employed a modified version of AlexNet [36]
as the feature extraction network. Due to the shallow architecture of AlexNet, it lacked
strong feature representation capabilities, leading to limited performance in early trackers.
To further enhance network performance, subsequent works such as SiamRPN++ [9] and
SiamDW [37] introduced a deeper backbone such as ResNet [10] to replace the original
shallow AlexNet network. As a result of ResNet’s simplicity and powerful feature extrac-
tion capabilities, it has become the default backbone extraction network in Siamese-based
trackers [38]. Given a fixed backbone, exploring methods to further enhance the network’s
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feature representation capabilities has naturally become a topic of great interest among
researchers.

Fan et al. [39] proposed a multi-stage tracking framework called Siamese Cascaded
Region Proposal Network (C-RPN), which consists of a series of cascaded RPNs in the
Siamese network from deep high-level to shallow low-level layers. By introducing a novel
Feature Transfer Block (FTB), C-RPN effectively utilizes multi-level features for each RPN,
thereby enhancing its ability to leverage both high-level semantic information and low-level
spatial information. Yu et al. [40] introduced a novel Siamese attention mechanism that
computes deformable self-attention features and cross-attention features. The deformable
self-attention features capture rich contextual information in the spatial domain and se-
lectively enhance the interdependencies between channel features. On the other hand,
the cross-attention features aggregate and communicate abundant information between
the template and search regions, thereby improving the discriminative power of the fea-
tures. Cao et al. [41] proposed an Attentional Aggregation Network (AAN) that leverages
attention mechanisms to enhance the expressive power of features. The AAN utilizes
both a Self-Attention Aggregation Network (Self-AAN) and a Cross-Attention Aggrega-
tion Network (Cross-AAN) to aggregate attention. By incorporating self-attention and
cross-attention mechanisms, the AAN effectively captures the dependencies and relation-
ships between different regions of the input, leading to improved feature representation.
Similarly, Xie et al. [42] introduced a target-dependent feature network. By incorporating
deep cross-image feature correlations into multiple layers of the feature network, this novel
approach effectively suppresses non-target features and possesses the ability to extract
instance-variant features. Chan et al. [1] first proposed a fine feature aggregation module
to integrate low-level and high-level features for a more robust feature representation.
They then utilized a Compound Attention Module to independently encode the local key
information of template features and the global contextual information of search features.

In addition to the aforementioned methods for enhancing the feature extraction capa-
bilities of trackers in the general object tracking domain, researchers have also proposed
targeted approaches to address the inherent challenges posed by weak target features,
susceptibility to background interference, and occlusion in satellite videos.

Cao et al. [43] proposed the utilization of a three-branch Siamese network structure. In
addition to using the first frame as the template branch, they also incorporated a template
branch based on the previous frame. Furthermore, in order to fully leverage deep and
shallow features, multiple attention mechanisms were introduced after various stages of the
backbone network to achieve significant representation of object features. Song et al. [29]
proposed an attention-based tracker using a Siamese network architecture. By jointly
optimizing multiple attention modules, they achieved information filtering and focused on
key regions, thereby enhancing robustness to weak features and background noise. Zhang
et al. [44] proposed an architectural framework designed specifically for satellite video
object tracking, known as ThickSiam. ThickSiam replaces the original residual modules in
the backbone network with Thickened Residual Blocks, aiming to extract robust semantic
features. Nie et al. [45] proposed the information compensation module called Dim-Aware
to enhance the representation of object features. This module utilizes high-frequency and
crucial information to enhance the localization of small objects.

2.2. Matching Methods between Template Region and Search Region

Since the target tracking model structure based on the Siamese network was deter-
mined as the basic framework, the matching method between the target region and search
region has undergone multiple iterations and improvements. In the early tracker SiamFC,
the Siamese network used the naive correlation matching method. SiamFC considered
the feature map corresponding to the search region as a convolutional kernel and per-
formed a correlation operation on the feature map corresponding to the template region,
obtaining a single-channel response map. The target position was determined based on
the location of the maximum value in the response map. Subsequently, in the SiamRPN
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network, the authors proposed an Up-Channel Cross Correlation matching method to
facilitate the subsequent operation of the classification and regression headers. However,
Up-Channel Cross Correlation can lead to excessive parameterization. Therefore, in the
SiamPRN++ network, the authors proposed the Depth-wise Cross Correlation matching
method to address the abovementioned issue. It dramatically simplifies parameterization,
balances the training of both branches, and stabilizes the training process, resulting in
better network convergence. Alpha-Refine [46] believes that the key to improving the
fine-tuning performance is to extract and maintain detailed spatial information as much as
possible. Therefore, the network proposed uses a pixel-wise correlation instead of tradi-
tional correlation operations and deep correlation for high-quality feature representation,
ensuring that each correlation map encodes local information of the target and avoids
an extremely large correlation window. PG-Net [47] proposed that traditional similarity
measurement methods introduce a lot of background noise during the tracking prediction
process. Therefore, a pixel-to-global matching method is proposed to reduce the impact
of noise. Zhou et al. [48] proposed a fine-grained saliency mining module to capture local
saliency and a saliency-association modeling module to associate the captured salient
regions and learn the global correlation between the target template and search image for
state estimation. Zhang et al. [49] believe that a single matching operator is difficult to
ensure stable tracking in challenging environments. Therefore, the authors proposed six
different matching operators to replace the traditional cross-correlation operation. These
operators are combined to explore complementary features, and a structural search method
is used to select the most suitable combination of operators.

3. Proposed Approach

In this section, we introduce the proposed tracker SiamTM network in detail. Firstly, in
Section 3.1, we expound the proposed SiamTM single-object tracking network from a holistic
perspective. In order to extract more valuable and discriminative features from the template
feature map and the search feature map, we creatively introduce a target information
enhancement (TIE) module, and a detailed explanation of this module is presented in
Section 3.2. Furthermore, we propose a multi-level matching (MM) module that integrates
target information into the search feature map to improve tracking performance in Section 3.3.

3.1. Overall Architecture

The overall framework of the proposed SiamTM network is shown in Figure 2. The
SiamTM network consists of three subnetworks: the feature extraction subnetwork, the
feature enhancement and matching subnetwork, and the target prediction subnetwork.
Similar to SiamCAR [12], the feature extraction network of SiamTM comprises two parts,
the template branch and the search branch. The size of the template image is 3× 127× 127,
while that of the search image is 3× 255× 255. Among them, the first dimension represents
the number of channels in the image, and the last two dimensions represent the height and
width of the image. The template region image and the search region image are fed into
the modified ResNet50 [9] network with weight parameter sharing at the same time. After
feature extraction, we obtain a 256× 15× 15 template feature map and a 256× 31× 31
search feature map. To enhance localization and discern foreground from background
more effectively, we leverage the features extracted from the final three residual blocks of
the backbone in reference to SiamCAR. Extensive literature [9,12,50] has substantiated that
the joint utilization of low-level and high-level feature maps significantly contributes to
improved accuracy in tracking. This is because low-level features encompass a multitude of
informative cues facilitating precise positioning, such as the target’s edge details and color
attributes. On the other hand, high-level features encompass a greater wealth of semantic
information that aids in effectively differentiating between foreground and background.
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Figure 2. Architecture of the proposed SiamTM network. The SiamTM network consists of three
subnetworks: the feature extraction subnetwork, the feature enhancement and matching subnetwork,
and the target prediction subnetwork.

In order to extract more beneficial and distinguishable features from the original
feature maps, and thereby facilitate the subsequent processing of the network, the template
region feature map and the search region feature map are separately fed into the TIE module.
The above operations outputs new feature maps that focus more on the information of the
target itself, while maintaining the same size as the original feature maps. Compared to
targets in natural images, targets in satellite videos are smaller in size and are more easily
interfered by other objects in the background. In response to these characteristics of satellite
video targets, a multi-level matching (MM) module was designed. The new template
feature map and the search feature map are fed into the MM matching module. First, the
template feature is embedded into each position of the search feature map to obtain a more
accurate center position of the target, resulting in a preliminary rough response map. Then,
through coarse-grained semantic abstraction information matching, the target outline is
determined, resulting in a more refined final response map after matching.

Finally, the response map is fed into the target prediction subnetwork. In this subnet-
work, the classification branch is used to distinguish the foreground and background in the
current frame and to perform center-ness calculation, while the regression branch is used
to determine the predicted bounding box. For the classification branch, it first performs a
feature transformation on the response map Fresponse output from the Feature Enhancement
and Matching Subnetwork through a four-layer CNN structure to get the feature map Fcls.
Each layer in the CNN structure consists of a Convolution layer, a GroupNorm layer, and a
ReLU layer successively. The feature map Fcls is subsequently channel transformed by two
independent single-layer Convolution layers to get the output feature maps Rcls ∈ R2×25×25

and Rcen ∈ R1×25×25. Rcls is used to differentiate the foreground from the background of
the input image, whereas Rcen denotes the center-ness score of each position. Similar to
the classification branch, the regression branch first performs a feature transformation on
Fresponse through an identical but independent CNN structure to obtain the feature map
Freg ∈ Rn×25×25. Subsequently, a channel transformation is performed on Freg through a
Convolution layer to obtain the output of the regression branch Rreg ∈ R4×25×25. Each
point in the feature map Rreg respectively represents the distance from the corresponding
position to the four sides of the bounding box in the search region.

3.2. Target Information Enhancement Module

Compared to objects in natural scenarios, objects in remote sensing images are smaller
and contain less feature information [51,52]. Therefore, how to effectively extract distinctive
features from objects in remote sensing images has become one of the critical issues affecting
subsequent tracking performance. Studies [53] on lightweight networks have shown
that channel attention can significantly improve model performance. However, channel
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attention often ignores the crucial positional information in visual tasks that capture target
structures [54]. Therefore, it is necessary to consider how to embed positional information
into channel attention. Based on the above problems and corresponding considerations, we
designed a feature enhancement module to capture inter-channel information at the global
2D image level, while also capturing direction and position-aware information along the
two spatial directions. The TIE module is shown in Figure 3.

C

C

𝐶×𝐻×𝑊

𝐶×𝐻×1

𝐶×𝑊×1 𝐶×(𝐻 +𝑊)×1

𝐶×𝐻×1

𝐶×1×𝑊

𝐶×𝐻×𝑊

𝐶×𝐻×𝑊

𝐶×𝐻×𝑊𝐶×𝐻×𝑊

C × 1 × 1

Element-Wise Multiply C Concatenate Transposition ConvolutionElement-Wise Sum

Batch Normalization Sigmoid X Avg Pool Y Avg Pool Global Avg Pool

Figure 3. Architecture of the Target Information Enhancement Module. The meanings of each symbol
are shown below the image.

Given a feature map X ∈ RC×H×W , first, a one-dimensional feature-encoding opera-
tion is performed on each channel using pooling kernels of size (H, 1) and (1, W) along the
horizontal and vertical directions, respectively. The output expression of the c-th channel
with a height of h is shown below:

eh
c =

1
W ∑

0≤i≤W
xc(h, i), (1)

where c and h represent the channel and height of the current operation respectively, while
W represents the width of the image.

Similarly, the output expression of the c-th channel with a width of w is shown as
follows:

ew
c =

1
H ∑

0≤j≤H
xc(j, w), (2)

where H represents the height of the image.
Then, concatenate the feature map Xhorizontal ∈ RC×H×1 obtained through vertical

average pooling with the feature map Xvertical ∈ RC×W×1 obtained through horizon-
tal average pooling and transpose and transform it into an intermediate feature map
Xinter ∈ RC×(H+W)×1 through a 1× 1 convolution kernel. The intermediate feature map
retains spatial information from the original feature map in both vertical and horizontal
directions and also captures relationships between channels.

After that, the intermediate feature map Xinter is divided into two separate tensors,
X′horizontal ∈ RC×H×1 and X′vertical ∈ RC×1×W , along the spatial dimension. After undergo-
ing a 1× 1 convolution operation, attention weights Wh and Ww are obtained. The final
output expression for the 1D part is

Y1 = X× C1(X′horizontal)× C1(X′vertical), (3)
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where C1(·) denotes the 1× 1 convolution layer, C1(X′horizontal) and C1(X′vertical) denote
the attention weights along the horizontal direction and the attention weights along the
vertical direction, respectively.

In addition, in order to capture more distinctive target information from a global
perspective and highlight more effective target features, we started from the 2D level of
the image and performed global average pooling on the original feature map to obtain the
feature map Xglobal ∈ RC×1×1. We also generated another intermediate feature map, whose
output expression is:

Y2 = σ(Xglobal ⊕ X)⊗ X, (4)

where ⊕means the broadcasting addition, ⊗means the element-wise multiplication, and
σ denotes the Sigmoid operation.

Finally, we concatenate and reduce the one-dimensional feature map Y1 and the two-
dimensional feature map Y2 obtained from feature encoding operations, and obtain the
final output feature map.

3.3. Multi-Level Matching Module

Feature matching in Siamese networks refers to integrating feature maps obtained from
the template branch and the search branch, calculating the similarity between each region
of the template feature map and the search feature map, and finally, outputting a response
map. The output response map is then sent to subsequent target prediction subnetworks
for classification, regression, and other operations. As one of the most essential steps in
the single-object tracking network, the quality of the feature matching directly determines
the tracking performance. In existing works, since SiamRPN++ introduced Depth-wise
Cross Correlation to the Siamese tracking network, most tracking networks have used this
correlation operation as their feature matching subnetwork. Few networks modify the
feature matching module for the characteristics of remote sensing targets. However, the
Depth-wise Cross Correlation uses the target template as a spatial filter to convolve over
the search area, emphasizing coarse-grained semantic abstractions such as target contours
and appearance, while ignoring position information. Therefore, we propose a multi-level
matching (MM) module, and the architecture of the MM module is shown in Figure 4.

ROI Align Depth-wise Cross Correlation

𝐶 × 𝐻𝑧 ×𝑊𝑧

𝐶 × 𝐻𝑡 ×𝑊𝑡

𝐶 × 𝐻𝑥 ×𝑊𝑥 2𝐶 × 𝐻𝑥 ×𝑊𝑥
𝐶 × 𝐻𝑥 ×𝑊𝑥

𝐶 × 𝐻𝑜 ×𝑊𝑜

Figure 4. Architecture of the Multi-level Matching Module.
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In order to achieve a more precise localization and tracking of tiny-sized objects in
remote sensing videos, the proposed MM Module employs a coarse-to-fine feature matching
fashion. Initially, the template feature map, denoted as Xz, is utilized to extract the segment
containing solely the features of the target, followed by the application of the ROI Align
operation. The resultant feature map Xp

t is then embedded into the feature map of the
search region, denoted as Xs, yielding an initial response map. Subsequently, a Depth-wise
Cross Correlation operation is conducted between the template feature map Xz and the
preliminary response map X∗s , yielding the ultimate response map. Within this multi-level
matching mechanism, each position within the preliminary response map X∗s assimilates
information from the template features, thus rendering higher response values for pixels
corresponding to the object’s location within the response map. Moreover, the Depth-wise
Cross Correlation operation imparts further constraints upon the object’s contours. The
MM Module aims to enhance the performance of the tracker by employing a two-step
approach: initially coarsely localizing the target’s position and subsequently refining the
determination of the target’s bounding box. This methodology leads to the acquisition
of a more refined response map, consequently improving the tracking performance. The
specific steps of the MM Module are delineated as follows.

Firstly, the feature map of the template region and the feature map of the search re-
gion, both of which have undergone feature extraction and enhancement, are, respectively,
represented as Xz ∈ RC×Hz×Wz and Xs ∈ RC×Hx×Wx . Then, according to the label informa-
tion, extract the feature map that only contains the information of the target itself from
the template area feature map, represented by Xt ∈ RC×Ht×Wt , ignoring the interfering
background information in the template area feature map. Next, we use ROI Align to
transform feature map Xt ∈ RC×Ht×Wt containing only target information into feature map
Xp

t ∈ RC×1×1. Feature map Xp
t will be embedded into the corresponding position of each

pixel in the search area feature map, resulting in a 2C feature map X∗s ∈ R2C×Hx×Wx . This
ensures that every position in the feature map contains target features for later processing.
To efficiently control the channel dimension of the feature map and avoid complex matrix
operations, we use a 1× 1 convolution to reduce the dimensionality of the feature map and
obtain a response map with only C channels. After these operations, the network obtains a
preliminary matching result, which is more focused on the localization of the target center
rather than confirming the outline of the target rectangle.

Subsequently, a Depth-wise Cross Correlation operation is performed between the
template area feature map and the preliminarily matched response map, which emphasizes
more on locating the target bounding box, and the final response map obtained is fed into
the target prediction subnetwork. Through this multi-level matching method, more precise
positioning of the center point location and target rectangle box prediction can be achieved.
The entire formula expression for the MM module is shown as follows.

Fresponse = Xz ? Concat(ROIAlign1(Xt), Xs), (5)

where Fresponse denotes the final output response map, ? denotes the Depth-wise Cross
Correlation, Concat denotes the Concatenation operation described above to embed Xp

t
into Xs, and ROIAlign1 denotes the process of converting the feature map Xt to the feature
map Xp

t of size 1× 1.

4. Evaluation

To test the performance of the proposed SiamTM tracker, a series of comparative and
ablation experiments were carried out. The following section consists of three parts around
the experimental content. Section 4.1 introduces the details of the experimental setup,
including the dataset used in the experiment and evaluation methods. Section 4.2 analyzes
in detail the role of each module in the proposed method through ablation experiments. In
addition, in Section 4.3, we compare the proposed method with 12 other state-of-the-art
object tracking algorithms to demonstrate the superiority of our algorithm.
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4.1. Experimental Setup
4.1.1. Introduction to Experimental Datasets

In this paper, we conducted experiments using two large-scale satellite video single-
object tracking datasets named SatSOT [33] and SV248S [55]. We performed an ablation
study on the SatSOT dataset to analyze the effectiveness of each module. Furthermore, we
compared the proposed SiamTM tracker with 12 other single-object tracking methods on
both SatSOT and SV248S tracking datasets to validate the effectiveness and superiority of
the proposed method.

SatSOT is a dedicated dataset focused on satellite video single-object tracking. The
dataset consists of 105 satellite video sequences comprising a total of 27,664 frames and
covering four typical moving targets in satellite videos, namely vehicles, trains, airplanes,
and ships. The vehicle targets appear in 65 video sequences, train targets appear in 26 video
sequences, while airplane and ship targets appear in 9 and 5 video sequences, respectively.
The average length of the videos in the SatSOT dataset is 263 frames, with over 70% of
the bounding box sizes in the sequence being less than 1000 pixels. The average number
of pixels occupied by cars is the least, at only 112.4 pixels, while trains occupy the most,
a whopping 39,566.3 pixels. To indicate the characteristics and challenges faced by each
satellite video sequence and help better analyze the strengths and weaknesses of trackers,
the dataset lists 11 challenge attributes in the satellite videos, and the corresponding
abbreviations and definitions for each attribute are shown in Table 1.

Table 1. The 11 challenge attributes in the SatSOT dataset with their abbreviations and definitions.

Attribute Abbreviation Definition

Background Clutter BC The background has similar appearance as the target.

Illumination Variation IV The illumination of the target region
changes significantly.

Low Quality LQ The image is low quality and the target is difficult
to be distinguished.

Rotation ROT The target rotates in the video.
Partial Occlusion POC The target is partially occluded in the video.

Full Occlusion FOC The Target is fully occluded in the video.

Tiny Object TO At least one ground truth bounding box has less than
25 pixels.

Similar Object SOB There are objects of similar shape or same type around
the target.

Background Jitter BJT Background jitter brings by the shaking of
satellite camera.

Aspect Ratio Change ARC The ratio of the bounding-box aspect ratio of the first
and the current frame is outside the range [0.5, 2].

Deformation DEF Non-rigid object deformation.

SV248S is a satellite video single-object tracking dataset composed of 248 video se-
quences. The dataset focuses on tiny objects in satellite videos. It includes four categories
of objects: ships, vehicles, large vehicles, and airplanes, but no trains, which is slightly
different from the SatSOT dataset. In SV248S, 202 video sequences track vehicles, 37 video
sequences track large vehicles, 6 video sequences track airplanes, and the remaining 3 video
sequences track ships. Compared to the SatSOT dataset, the video sequences in SV248S
have a longer average length, with all sequences ranging from 500 frames to 753 frames.
Additionally, the targets in the SV248S dataset are smaller, with an average of less than
65.6 pixels occupying the frames in over 81.45% of all video sequences. The largest target
type airplane only occupies an average of approximately 2284.8 pixels. With sufficient
video sequence numbers and a focus on tiny targets in satellite videos, the SV248S dataset
is suitable for the comprehensive evaluation of a tracker’s performance on satellite video
targets, especially tiny and weak targets.
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4.1.2. Evaluation Criteria

To quantitatively analyze the results of satellite video single-object tracking, we have
adopted two standard evaluation methods: success score and precision score. In addition,
we have introduced the FPS indicator to evaluate the inference speed of each tracker.

The success score represents the Intersection over Union (IoU) between the predicted
bounding boxes and the ground truth bounding boxes, and is represented by the following
formula.

S =
|Bp ∩ Bgt|
|Bp ∪ Bgt|

, (6)

where Bp and Bgt represent the predicted bounding box and the ground truth bounding
box, respectively, while ∩ and ∪ represent intersection and union. | · | represents the total
number of pixels in the corresponding area. For a specific frame in the tracking task, if the
IoU between the predicted box and the actual bounding box in the current frame exceeds
a certain threshold ts ∈ (0, 1], it is considered that the target is successfully tracked in the
current frame. Otherwise, the tracker is considered to have failed in tracking the target in
the current frame.

The precision score represents the center location error (CLE) between the center point
of the predicted bounding box and the center point of the ground truth bounding box,
expressed as follows:

CLE =
√
(x1 − x2)2 + (y1 − y2)2, (7)

where (x1, y1) represents the center coordinate of the predicted bounding box, and (x2, y2)
represents the center coordinate of the ground truth bounding box. For a specific frame, if
the CLE between the predicted bounding box and the ground truth bounding box is less
than a certain threshold tCLE ∈ [0,+∞), it is considered that the tracker has successfully
tracked the object in the current frame. Otherwise, it is considered that the tracker has failed
to follow the target in the current frame accurately. In natural image single-object tracking
datasets such as OTB [31] and GOT10k [56], the threshold is usually set to tCLE = 20 pixels.
However, typical targets in remote sensing images, such as vehicles, ships, and airplanes,
are smaller in size. In order to accurately measure the true tracking performance of trackers,
we set the threshold to tCLE = 5 pixels in this paper.

Frames per second (FPS) measures how many frames the tracker can complete its
tracking task per second. The higher the number, the more capable the tracker is of
processing tasks per second, and the better the real-time performance of the tracker. We
use this metric to reflect and compare the inference speeds of different trackers.

4.1.3. Implementation Details

We implemented the proposed tracking network SiamTM on the open-source deep
learning library PyTorch 2.0.0, and implemented it on a 64-bit Ubuntu 20.04 workstation
with 24 GB memory GeForce RTX4090 GPU. We used a modified ResNet-50 as the same
in [9] as the backbone for the Siamese network feature extraction subnetwork, which
was pre-trained on the ImageNet [57] dataset. The size of the initial frame template was
set to 127 × 127 pixels, and the search region was set to 255 × 255 pixels. During the
training phase, the batch size was set to 48, and the network was trained end-to-end for
20 epochs using the SGD method. The starting learning rate, momentum, and weight decay
for SGD were set to 0.005, 0.9, and 0.0001, respectively. Consistent with SiamCAR [12],
during the first 10 epochs, the parameters of the feature extraction subnetwork of the
Siamese network were completely frozen, and only the following part was trained. In
the subsequent 10 epochs, the last three blocks of the ResNet-50 were unfrozen for joint
training. We trained our SiamTM network using data from VISO [58].
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4.2. Ablation Study

The proposed SiamTM method consists of two novel components: (1) the TIE module,
and (2) the MM module. To validate the effectiveness of each module in the SiamTM
method and clarify the roles each module plays in improving tracking performance, we
conducted a series of ablation experiments on the SatSOT dataset.

The performance of four trackers with different combinations of proposed modules is
presented in Table 2. In this context, “T” abbreviates the TIE module, while “M” stands for
the MM module.

Table 2. Ablation experiments of the proposed tracker on the SatSOT dataset.

Trackers TIE Module MM Module Prec. (%) Succ. (%) Speed (FPS)

Baseline - - 56.4 44.6 158.41
SiamCAR+T X - 60.2 46.6 113.65
SiamCAR+M - X 59.5 46.7 109.17
SiamCAR+T+M X X 60.8 47.5 89.76

The performance comparison of SiamCAR, SiamCAR+T, SiamCAR+M, and the pro-
posed SiamTM tracker can be readily observed in Table 2. Notably, the Precision and
Success scores of the SiamTM tracker surpass those of SiamCAR, SiamCAR+T, and Siam-
CAR+M in a pronounced manner. In the case of the SiamCAR+T tracker, the utilization of
the TIE module enables the tracker to effectively filter out pertinent feature information
on top of the original feature extraction. Consequently, compared to the Baseline track-
ing network, there has been an improvement of 3.8 percentage points in precision score
and 2.0 percentage points in success score. Furthermore, for the SiamCAR+M tracker, a
more suitable MM module specifically designed for satellite video target tracking has been
employed. The MM module allows for improved matching between the template region
feature map and the search region feature map, resulting in a more accurate response map.
In terms of the obtained results, compared to the baseline SiamCAR tracking network,
the tracker SiamCAR+M exhibits an increase of 3.1 percentage points in precision score
and 2.1 percentage points in success score. The SiamTM tracker proposed in this study
introduces a TIE module to enhance the features of both the template region and the search
region from both a 1D directional aspect and a 2D global aspect. Additionally, a MM
module specifically tailored for satellite video targets is utilized. Effectively combining
the proposed two modules can enhance the tracker’s tracking performance in terms of
feature extraction and feature matching dimensions. Ultimately, this approach achieves
competitive results on the SatSOT dataset, with a precision score of 60.8 and a success score
of 47.5. However, there is no such thing as a free lunch, and as a consequence, the inference
speed of the tracker decreased by 68.64 FPS compared to the baseline, reaching 89.76 FPS.
Considering that this speed is still significantly higher than the standard threshold of
real-time tracking at 24 FPS, it is acceptable to trade off some inference speed in exchange
for improved tracking performance.

In order to qualitatively analyze the results before and after the addition of the mod-
ules, the classification (Cls) maps of the baseline SiamCAR tracker and the proposed
SiamTM tracker are visualized, and the visualization results are shown in Figure 5.

Comparing the last two columns of Figure 5, it is easy to see that the proposed SiamTM
tracker is more capable of suppressing similar distractors in the search area map when
distinguishing between foreground and background than the baseline SiamCAR tracker,
while SiamTM is more focusing on the information of the object itself. In summary, thanks
to the TIE module and MM module, the SiamTM tracker shows excellent robustness and
tracking performance in the face of Tiny Object and Similar Object challenge attributes.
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Figure 5. Comparison of classification (Cls) map between baseline and our proposed method. The
first column is the original image, the second and third columns are the template region image and
the search region image, respectively. The fourth and fifth columns are the Cls maps corresponding
to the baseline method and the proposed method, respectively.

4.2.1. Target Information Enhancement Module

The TIE module integrates 1D information along the spatial direction dimension as
well as 2D information across the image global dimension. To validate the effectiveness
of fusing the 1D and 2D information, we conducted an ablation study on SatSOT dataset.
We compared four different scenarios: solely employing the baseline model SiamCAR,
employing solely 1D information on top of the baseline, employing solely 2D information
on top of the baseline, and employing the proposed TIE module that integrates 1D and 2D
information on top of the baseline. We evaluated the precision score and success score, and
the experimental results are presented in Table 3.

Table 3. Performance comparison of TIE module with different structures.

Baseline 1D 1D† 2D Prec. (%) Succ. (%) Speed (FPS)

X - - - 56.4 44.6 158.41
X X - - 58.1 45.5 131.48
X - X - 57.7 45.0 142.94
X - - X 57.4 44.4 151.93
X X - X 60.2 46.6 113.65

In Table 3, “X” indicates that the module is used in the tracker, while “-” indicates
that the module is not used. From Table 3, it can be observed that the baseline SiamCAR
exhibits the highest inference speed, reaching 158.41 FPS. However, it achieves the lowest
levels of precision score (56.4%) and success rate score (44.6%) among the four comparisons.
After incorporating only 1D or 2D information on top of the baseline, the precision score of
the tracking network has shown improvements compared to the baseline. Specifically, the
inclusion of 1D information improves the tracker’s precision score by 1.7 percentage points
compared to the baseline, while the inclusion of 2D information improves the tracker’s
precision score by 1.0 percentage points compared to the baseline. As for the Success metric,
after adding 1D information, the tracker improves by 0.9 percentage points compared
to the baseline, while the tracker with 2D information declines by 0.2 percentage points
compared to the baseline, remaining almost equal to the baseline. When only adding



Remote Sens. 2023, 15, 4351 15 of 25

2D information, the network emphasizes discriminative features and the center of the
target, so the tracker rises in the Precision metric. However, the Success metric places
emphasis on the degree of overlap between the predicted bounding box and ground truth
bounding box, which is more dependent on the shape and size of the box, and the 2D
information contributes less to this. Hence, the tracker remains essentially unchanged in
the Success metrics. To provide a more comprehensive demonstration of the effectiveness
of our proposed module in exploiting 1D information, we conducted a comparison between
two methodologies: one involves encoding spatial information along the horizontal and
vertical directions using an intermediate feature map Xinter, followed by attention map
generation (represented as “1D” in Table 3), while the other directly perform two groups
of 1 × 1 convolution operations on Xhorizonal and Xvertical to generate the attention weight
(represented as “1D†” in Table 3). As can be seen from Table 3, compared to the baseline,
directly performing two groups of 1× 1 convolution operations on Xhorizonal and Xvertical to
generate the attention weight is still effective in improving the overall tracking performance
of the tracker. The use of the “1D†” attention generation method resulted in a 1.3 percentage
point improvement in precision score and a 0.4 percentage point improvement in success
score. However, better results can be achieved by first encoding the spatial information
along both the horizontal and vertical directions through an intermediate feature map
Xinter. The use of “1D” attention generation method resulted in a 1.7 percentage point
improvement in precision score and a 0.9 percentage point improvement in success score.
This demonstrates that the approach of first encoding spatial information together and
then generating attention maps is superior in terms of effectiveness to the approach of
directly generating attention maps. However, this enhancement comes at the expense
of varying degrees of reduction in inference speed. When applying the TIE module on
the baseline, this module concatenates and reduces the obtained 1D and 2D information
along the channel dimension, resulting in a feature map enriched with enhanced features.
With the integration of the target information enhancement module, the tracking network
exhibits a significant improvement of 3.8 percentage points in precision metric and 2.0
percentage points in success metric, demonstrating the effectiveness of the proposed target
information enhancement module.

4.2.2. Multi-Level Matching Module

As previously mentioned, the MM Module is composed of a cascaded Concatenation
matching operation and a Depth-wise Cross Correlation operation. To compare the per-
formance difference between using the MM Module and a single matching operation, we
conducted ablation experiments on the matching operation component of the network. The
experimental results are presented in Table 4.

Table 4. Performance comparison of different matching methods.

Concatenation
Depth-Wise

Cross
Correlation

Multi-Level
Matching
Module

Prec. (%) Succ. (%) Speed (FPS)

X - - 57.9 42.0 111.13
- X - 56.4 44.6 158.41
- - X 59.5 46.7 109.17

In Table 4, “X” indicates the matching method used in the tracker. As indicated in
Table 4, employing a MM module results in a precision score of 59.5% and success score of
46.7% for the tracking network, which stand as the highest values among the compared
methods. Both the Concatenation matching operation and the Depth-wise Cross Correla-
tion matching operation possess distinct advantages. The accuracy score attained by the
Concatenation matching operation amounts to 57.9%, demonstrating a superiority of 1.5%
over the Depth-wise Cross Correlation approach in this evaluation metric. This advantage
primarily arises from the fact that the Concatenation matching operation embeds the infor-
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mation solely contained within the target itself into each position of the search feature map.
As a result, the tracking network exhibits an enhanced ability to determine the target’s loca-
tion. From another perspective, Depth-wise Cross Correlation employs the template feature
map as a convolution kernel, conducting correlation operation on the search feature map.
This process effectively constrains the target range by utilizing information such as the
target’s contour and texture, enabling the tracking network to predict the target’s bounding
box with higher success, which is not achievable by concatenation matching operation.
As a result, the Depth-wise Cross Correlation operation outperforms the Concatenation
matching operation by a margin of 2.6 percentage points in terms of success score. The
MM module combines the Concatenation matching operation with the Depth-wise Cross
Correlation operation. Firstly, it embeds the target’s own information into each position
of the search feature map using concatenation, resulting in an intermediate response map.
Subsequently, the Depth-wise Cross Correlation operation is performed on the template
feature map and the search feature map to better delineate the target’s range, yielding
the final feature map. The results of ablation experiments validate the effectiveness of the
proposed MM Module.

4.3. Comparison with State-of-the-Art
4.3.1. Evaluated Trackers

To validate the competitiveness of our algorithm SiamTM, we compared the proposed
SiamTM algorithm with 12 state-of-the-art target tracking algorithms, namely SiamFC [6],
SiamRPN [7], ATOM [59], SiamRPN++ [9], SiamRPN++_lt [9], SiamMask [60], DiMP18 [61],
DiMP50 [61], SiamCAR [12], PrDiMP18 [62], ToMP50 [19], and ToMP101 [19].

4.3.2. Overall Performance on SatSOT and SV248S

Tables 5 and 6 present the quantitative results of precision score, success score, and
speed for the proposed SiamTM tracker and the selected trackers on the SatSOT and SV248S
datasets, respectively. The precision score and success score of the SiamTM tracker outper-
form those of the selected comparative trackers on both two satellite video single-object
tracking datasets. These findings demonstrate the effectiveness of the proposed SiamTM
tracker in satellite video object tracking. In terms of speed, the top three performers on both
datasets are SiamRPN, SiamFC, and ATOM. Due to the presence of the TIE module and
the MM module, the speed of SiamTM on SatSOT and SV248S is 89.76 FPS and 72.50 FPS,
respectively, which shows a slight decrease compared to the Baseline SiamCAR. However,
it still surpasses the real-time tracking benchmark of 24 FPS. This trade-off, sacrificing some
speed in exchange for higher tracking performance, is considered acceptable.

Taking the SV248S dataset as an example, we examine the performance of various
trackers on this dataset. In terms of precision metric, the SiamTM tracker achieves the
highest score of 75.3%, surpassing the second-ranked SiamCAR by an improvement of
5.2 percentage points and the third-ranked SiamRPN++ by an improvement of 9.7 percent-
age points. This remarkable performance is primarily attributed to the superior matching
paradigm of the MM module. After enhancing the extracted feature maps with the TIE
module, the MM module first obtains a rough intermediate response map through Concate-
nation. This response map emphasizes the proximity between the centers of objects rather
than contour matching. Subsequently, the final response map is obtained based on Depth-
wise Cross Correlation on this intermediate response map. By adopting this approach of
initial center-point coarse matching followed by contour fine matching, SiamTM achieves
reduced centroid error between the predicted target bounding boxes and the ground truth,
as well as a higher overlap rate between contours. Furthermore, it is noteworthy that the
ToMP series, which is based on Transformer for tracking, has achieved state-of-the-art
performance in natural scene tracking. However, its results in satellite video object tracking
are rather mediocre. Unlike objects in natural scenes, targets in satellite videos exhibit lower
inter-class separability [63]. Therefore, although ToMP has been trained extensively on
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natural scene images, directly applying it to RSOT is inappropriate, as experiment results
have also confirmed.

Table 5. Overall performance on SatSOT. The best three performances are respectively highlighted
with red, green, and blue colors. (For features, ConvFeat/CF:Convolutional Feature, TF:Transformer).

Trackers Features Backbone Prec. (%) Succ. (%) Speed (FPS)

SiamFC ConvFeat AlexNet 49.8 41.3 298.3
SiamRPN ConvFeat AlexNet 49.4 38.5 436.6

ATOM ConvFeat ResNet-18 52.9 42.4 249.2
SiamRPN++ ConvFeat ResNet-50 55.4 41.5 172.0

SiamRPN++_lt ConvFeat ResNet-50 52.5 38.4 148.2
SiamMask ConvFeat ResNet-50 55.6 40.2 173.5

DiMP18 ConvFeat ResNet-18 52.8 42.6 115.9
DiMP50 ConvFeat ResNet-50 51.3 42.0 92.7

SiamCAR ConvFeat ResNet-50 56.4 44.6 158.41
PrDiMP18 ConvFeat ResNet-18 46.0 39.7 69.5
ToMP50 CF+TF ResNet-50 49.2 38.8 58.1

ToMP101 CF+TF ResNet-101 46.7 36.9 52.4
SiamTM(Ours) ConvFeat ResNet-50 60.8 47.5 89.76

Table 6. Overall performance on SV248S. The best three performances are respectively highlighted
with red, green, and blue colors. (For features, ConvFeat/CF:Convolutional Feature, TF:Transformer).

Trackers Features Backbone Prec. (%) Succ. (%) Speed (FPS)

SiamFC ConvFeat AlexNet 63.4 39.4 402.0
SiamRPN ConvFeat AlexNet 34.4 14.7 625.6

ATOM ConvFeat ResNet-18 62.8 36.4 262.0
SiamRPN++ ConvFeat ResNet-50 65.6 40.5 180.7

SiamRPN++_lt ConvFeat ResNet-50 56.8 21.5 167.6
SiamMask ConvFeat ResNet-50 55.9 21.9 179.6

DiMP18 ConvFeat ResNet-18 58.3 35.3 111.5
DiMP50 ConvFeat ResNet-50 61.4 36.7 82.6

SiamCAR ConvFeat ResNet-50 70.1 44.8 176.16
PrDiMP18 ConvFeat ResNet-18 57.6 36.4 68.2
ToMP50 CF+TF ResNet-50 38.7 16.5 65.4

ToMP101 CF+TF ResNet-101 37.1 16.0 56.0
SiamTM(Ours) ConvFeat ResNet-50 75.3 48.7 72.50

4.3.3. Attribute-Based Evaluation

To analyze the tracking performance of the trackers on different challenge attributes,
we plotted the precision score plots and success score plots of the trackers on each chal-
lenge attribute of the SatSOT dataset, respectively. The plotting results are shown in
Figures 6 and 7.

In terms of precision score, the proposed SiamTM tracker outperforms the other 12
tracking algorithms in eight challenge attributes, including the overall attribute. Specifically,
SiamTM achieves the highest performance in the overall attribute, Background Clutter,
Low Quality, Rotation, Partial Occlusion, Tiny Object, Similar Object, and Deformation.
Notably, SiamTM delivers exceptional performance in the Tiny Object challenge attribute. It
achieves a precision score of 71.6%, which is 11.9 percentage points higher than the second-
ranked SiamCAR tracker in this attribute. Figure 6 clearly demonstrates that, compared to
other trackers, the SiamTM tracker excels in exploring and enhancing feature information
within small targets, resulting in superior tracking of such objects. This improvement is
particularly significant for satellite video tracking datasets predominantly composed of
small-sized objects.
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(e) Precision plot of ROT
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(f) Precision plot of PO
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Precision plots on SatSOT - Full Occlusion (12)
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(g) Precision plot of FO
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Precision plots on SatSOT - Tiny Object (21)
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(h) Precision plot of TO
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(i) Precision plot of SO
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Figure 6. Precision plots of 13 trackers under overall attributes and different challenge attributes.

Regarding success score, compared to the other 12 tracking algorithms, the proposed
SiamTM tracker achieves the highest success scores in 9 out of the 12 challenge attributes.
For the remaining three challenge attributes, namely Illumination Variation, Full Occlusion,
and Scale Variation, the trackers with the highest scores are SiamFC, ATOM, and ToMP50,
respectively. Similar to the precision score metric, SiamTM outperforms the second-ranked
tracker by 5.6 percentage points in the Tiny Object (TO) attribute. Hence, the success score
plots across various challenge attributes demonstrate that the SiamTM tracker can deliver a
robust tracking performance in scenes with different challenges.
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(a) Overall success plot
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Success plots on SatSOT - Background Clutter (45)
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(b) Success plot of BC
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Success plots on SatSOT - Illumination Variation (3)
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(c) Success plot of IV
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Success plots on SatSOT - Low Quality (13)
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(d) Success plot of LQ
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Success plots on SatSOT - Rotation (56)
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(e) Success plot of ROT
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Success plots on SatSOT - Partial Occlusion (34)
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(f) Success plot of PO
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Success plots on SatSOT - Full Occlusion (12)
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(g) Success plot of FO
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Success plots on SatSOT - Tiny Object (21)
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(h) Success plot of TO
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Success plots on SatSOT - Similar Object (27)

ours [0.458]
SiamCAR [0.432]
SiamFC [0.358]
SiamRPNpp [0.351]
dimp50 [0.332]
ATOM [0.330]
prdimp18 [0.329]
dimp18 [0.327]
SiamMask [0.321]
SiamRPNpp_lt [0.302]
SiamRPN [0.256]
tomp50 [0.231]
tomp101 [0.214]

(i) Success plot of SO
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Success plots on SatSOT - Background Jitter (14)
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(j) Success plot of BJ
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Success plots on SatSOT - Aspect Ratio Change (26)
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(k) Success plot of ARC
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Success plots on SatSOT - Deformation (6)
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(l) Success plot of DEF

Figure 7. Success plots of 13 trackers under overall attributes and different challenge attributes.

4.3.4. Visual Analysis

To qualitatively analyze the tracking performance of the proposed SiamTM tracker,
we visualized its tracking results alongside the tracking results of four other trackers that
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achieved the highest accuracy scores on the SatSOT dataset, as well as the ground truth.
The visualization results are shown in Figure 8. In order to comprehensively analyze the
tracking performance of the trackers under different challenging attributes, we selected
four video sequences from SatSOT, each with distinct challenging attributes. From top to
bottom in Figure 8, the sequences are Car_06, Car_07, Car_27, and Car_45.

Figure 8. Qualitative comparison of five trackers and groundtruth in different videos with different
challenging attributes.

The Car_06 sequence exhibits the attributes of low quality (LQ) and tiny object (TO),
allowing us to visually compare the tracking performance of different trackers in terms of
tracking low-quality and small objects. In the early frames of the Car_06 sequence, the target
itself has relatively prominent features, enabling clear distinction between the target and
its surrounding background. As a result, all selected trackers demonstrate good tracking
performance in frames 1, 150, and 200, with SiamTM yielding tighter predicted bounding
boxes. In the later frames of the Car_06 sequence, the discriminative features between
the target and the background gradually diminish, limiting the information provided by
the target itself. From frames 250 and 313, it can be observed that while other trackers
experience tracking drift, the proposed SiamTM tracker maintains correct and consistent
tracking. These results indicate that the SiamTM tracker exhibits robust tracking capability,
allowing it to track small targets in low-quality satellite images.

The video sequences named Car_07 and Car_27 face similar types of challenges.
Both sequences primarily encounter challenges such as background clutter (BC), rotation
(ROT), target occlusion (TO), and low quality (LQ). Throughout the Car_07 video image
sequence, the tracked target consistently resides in a complex environment with low
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lighting conditions and undergoes rotation, which significantly amplifies the difficulty of
tracking small targets in such environments. When observing small targets in this scenario,
it was noticed at the 30th frame that the ATOM tracker exhibited tracking drift during the
early stages of the video image sequence. At the 60th and 90th frames of the video, all other
trackers, except for the proposed SiamTM tracker, encountered tracking drift or failures.
Similarly, when examining frames 50, 100, 150, and 200 of the Car_27 image sequence,
it becomes evident that SiamRPN++, ATOM, and DIMP experienced tracking failures
at various stages, while only SiamCAR and the proposed SiamTM achieved consistent
and accurate target tracking. These findings indicate that the SiamTM tracker, relative
to other trackers, better handles the challenges of tracking small targets amidst complex
backgrounds and rotation.

In the video sequence Car_45, in addition to the common challenge attributes found
in the previous three video sequences (TO, BC, ROT, LQ), it also exhibits unique attributes
such as partial occlusion (POC), similar object (SOB), and background jitter (BJT). Upon
observing frames 80 and 160 of Car_45, it can be observed that due to the presence of
similar objects in proximity, both SiamCAR and SiamRPN experienced tracking drift,
while DIMP50 also encountered difficulties. However, SiamTM maintained robustness
and achieved accurate tracking of the vehicle target. Even in the presence of short-term
occlusion (when the vehicle passes under a bridge), SiamTM is able to predict the target’s
position accurately once the occlusion ends. This demonstrates that the SiamTM tracker
exhibits excellent tracking performance in complex scenarios involving multiple challenges,
such as partial occlusion, similar object, and background jitter.

The above visualization results demonstrate that the proposed SiamTM tracker is
capable of effectively handling various challenge attributes in satellite video tracking
scenarios, particularly excelling in challenges such as tiny object (TO) and low quality
(LQ). This provides strong evidence of the effectiveness of SiamTM in satellite video
object tracking.

4.3.5. Failure Case Analysis

While our approach has yielded highly competitive results in single-object tracking on
satellite videos, inevitably, our proposed SiamFM method has encountered tracking drift
or failure in some video sequences. Taking the second video sequence in Figure 8 as an
example, during the initial stages of tracking, our tracker successfully distinguishes the
target of interest from the surrounding background interference, thanks to the assistance
provided by the TIE module and MM module. This enables the tracker to maintain
continuous tracking of the target. However, at frame 130 of the video sequence, the tracker
experienced tracking drift, where the predicted results deviated towards a similar distractor
located very close to the target’s position. The reason for the tracking drift is as follows: due
to various factors such as the satellite video’s resolution and background jitter, the target’s
distinguishable features become scarce at frame 130 of the video sequence and are almost
overwhelmed by the background information. Conversely, within the same search area, a
distractor appears that is very similar to the target. This distractor possesses highly similar
features to the target’s template in the first frame. For the proposed tracker SiamFM, which
relies on the appearance features of the target for foreground-background discrimination,
it is unable to discern the distinction between the target and the interfering object in
such scenarios. Consequently, it erroneously assigns a higher classification confidence
to the interfering object. This, in turn, leads to the tracking drifting from the correct
target to the surrounding similar distractor. In the future, integrating feature enhancement
with solutions such as super-resolution or motion-aware approaches holds promise for
addressing tracking failure cases of this nature.

5. Conclusions

In this paper we present SiamTM, a single-object tracking algorithm based on the
target information enhancement (TIE) module and the multi-level matching (MM) module,
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especially for typical moving targets in satellite video. First, to address the problem of
indistinct features caused by the tiny size of objects in satellite video, we propose a TIE
module to extract more effective and discriminative features from the original feature maps
corresponding to the images, laying a good foundation for subsequent matching and target
prediction tasks. Furthermore, In order to solve the problem that the matching method of
the common Siamese network algorithm cannot fully release the tracker performance and
better match the template feature map and the search feature map, we propose a MM mod-
ule that is more suitable for satellite video objects. We conduct comprehensive experiments
on two dedicated satellite video single-object tracking datasets, namely SatSOT and SV248S.
The results of ablation experiments show that the proposed two modules proposed in this
article effectively improve the accuracy of single-object tracking in satellite videos. When
compared with other 12 competitive methods, our proposed method SiamTM achieved
state-of-the-art tracking results. The propoed SiamTM method selects and enhances dis-
criminative features by means of attention, while acquiring response maps by moving from
coarse to fine, which inevitably increases the computational complexity of the tracker. In
the future, we will further improve the proposed method by reducing the computational
complexity and maintaining the accuracy and robustness of the method for satellite video
object tracking.
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