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Abstract: This study developed a satellite, reanalysis, and gauge data merging model for daily-
scale analysis using a random forest algorithm in Sichuan province, characterized by complex
terrain. A high-precision daily precipitation merging dataset (MSMP) with a spatial resolution
of 0.1◦ was successfully generated. Through a comprehensive evaluation of the MSMP dataset
using various indices across different periods and regions, the following findings were obtained:
(1) GPM-IMERG satellite observation data exhibited the highest performance in the region and proved
suitable for inclusion as the initial background field in the merging experiment; (2) the merging
experiment significantly enhanced dataset accuracy, resulting in a spatiotemporal distribution of
precipitation that better aligned with gauge data; (3) topographic factors exerted certain influences
on the merging test, with greater accuracy improvements observed in the plain region, while the
merging test demonstrated unstable effects in higher elevated areas. The results of this study present
a practical approach for merging multi-source precipitation data and provide a novel research
perspective to address the challenge of constructing high-precision daily precipitation datasets in
regions characterized by complex terrain and limited observational coverage.

Keywords: data merging; machine learning; satellite data; reanalysis data

1. Introduction

As one of the fundamental meteorological parameters, precipitation plays a crucial
role in global water and energy cycles. In recent years, extreme precipitation events have
increased due to global warming, posing significant threats to human lives and property and
causing substantial economic losses [1,2]. Accurate estimation of precipitation is paramount for
weather prediction and meteorological disaster warnings. Surface meteorological stations are a
common method used to gather precipitation data. However, due to the uneven distribution of
stations and underlying surface complexities, it is challenging to obtain uniformly distributed
and continuous precipitation data [3,4]. Meanwhile, the spatial interpolation method used
to generate the continuous spatial distribution of precipitation data is characterized by high
uncertainty, particularly in regions with complex terrain and limited observations [5–7].

In recent years, numerous researchers have conducted extensive research to obtain pre-
cipitation data with wide coverage, high precision, and enhanced spatiotemporal resolutions.
These efforts have focused on developing multi-source precipitation merging methods that
leverage the advantages of various observational data [8–10]. Researchers have constructed
specific merging models tailored to the characteristics of different study areas. Geographi-
cally weighted regression (GWR) [11], optimum interpolation (OI) [12], regression kriging
interpolation (RK) [13], Bayesian model averaging (BMA) [14], and other techniques have
been employed. Although considerable progress has been made in multi-source precipitation
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merging, most existing methods primarily concentrate on merging satellite and gauge data
with a relatively limited number of data sources involved in the merging process. Moreover,
the aforementioned merging methods predominantly involve the numerical merging of the
data sources, as both gauge and satellite data only provide direct or indirect precipitation mea-
surements without modeling the physical characteristics of atmospheric changes. Therefore,
the obtained multi-source merging data also lack information characteristics in this aspect. In
addition, with the increasing demand for spatiotemporal resolutions and accuracy of precipi-
tation datasets, the need to choose precipitation data and parameters from more sources is
becoming increasingly urgent, while some traditional data merging methods may not meet
such demand. In terms of methods, with the rapid development of machine learning and deep
learning, Chiang et al. [8] used recurrent neural networks to integrate hydrological responses
from various precipitation sources and forecast flash floods in Taiwan, China. Wu et al. [9]
introduced the CNN-LSTM method to conduct a spatiotemporal deep merging scheme for
satellite and gauge data in Mainland China. Based on the ANN method, Hong et al. [10]
integrated multi-source precipitation data such as satellite, reanalysis, and gauge data to
obtain multi-source merging precipitation data with a resolution of 0.1◦ over the Tibetan
Plateau. These studies show that the machine learning method can integrate more information
related to precipitation from more sources to a greater extent, and precipitation estimation
and precipitation event detection have been significantly improved. However, most machine
learning methods are prone to overfitting when training small-batch datasets, and fewer data
samples in a local area may eventually affect the accuracy of merged precipitation products.

In the hinterland of southwest China, Sichuan province is located in the upper reaches
of the Yangtze River, bordered by Tibet to the west, the Qinling Mountains to the north, and
the Yunnan–Guizhou Plateau to the south [11,12]. It contains a variety of landforms, such
as plateaus, hills, mountains, plains, and basins. The distribution of stations in Sichuan
province is highly uneven. The stations in the plain of eastern Sichuan province are very
dense. However, the stations in the western region, especially on the plateau, are sparsely
distributed, significantly complicating studying detailed precipitation characteristics in
this region. As a key area through which the convective system of the Qinghai–Tibet
Plateau moves eastward, Sichuan province often generates local heavy rain and further
stimulates or strengthens disastrous processes such as heavy rain and flooding in the
middle and lower reaches of the Yangtze River [13]. However, the error of various satellite
data for inversion algorithms and the uncertainty of model reanalysis data sources lead
to considerable limitations in exploring precipitation characteristics in areas of complex
terrain or limited observation [14–16]. Therefore, it is vital to explore the distribution
characteristics of precipitation in Sichuan province by integrating various precipitation
datasets and combining the advantages of multiple precipitation datasets to obtain more
accurate grid precipitation datasets. Additionally, this study divides the Sichuan province
into three research areas: the plateau region, the basin region, and the transitional zone
from the plateau to the basin. The aim is to explore the merging effects in complex terrain
and compare the performance between areas with sparse and dense gauge observations,
aiming to compensate for the lack of precipitation data in regions with limited or no gauge
observations. Ultimately, this research supports theoretical studies of weather system
development and high-resolution initial field information for numerical models.

The remaining research is organized as follows: Section 2 is the introduction of the
research region and data, Section 3 is the introduction of the research method, Section 4
is the analysis of the results, Section 5 is a discussion of the paper, and the last part is the
summary of the paper.

2. Study Area and Data
2.1. Study Area

Sichuan province is characterized by complex terrain and significant variations in eleva-
tion, with a general trend of higher elevation in the west and lower elevation in the east. The
western region mainly consists of plateaus and mountains, with elevations averaging around
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4000 m. In contrast, the eastern part is dominated by plains, basins, and hills, with elevations
below 1500 m [17]. The dramatic variation in elevation leads to noticeable differences in
the spatiotemporal distribution of precipitation in Sichuan province. The eastern region
includes the Sichuan Basin and the eastern plain, which have a mild climate and abundant
annual precipitation, with most areas receiving over 1000 mm of rainfall. This area belongs
to a subtropical humid monsoon climate [13,18]. High plateaus on the Qinghai characterize
the northwestern part of Sichuan province–Tibet Plateau’s edge. It has a high altitude and
cold climate, with annual precipitation ranging from 500 to 900 mm. Southwestern Sichuan
province is primarily mountainous and falls within a subtropical semi-humid climate zone
with fewer rainy days and lower rainfall amounts [19,20]. The region’s significant variation
in topography and climate makes it an ideal subject for theoretical research and practical
applications. In this study, we divide the Sichuan province into three zones based on elevation
information: Area I includes the Sichuan Basin, with elevations below 1000 m, Area II includes
the hilly areas and the margin of the basin in central and southern Sichuan province, with
elevations ranging from 2000 to 3000 m, and Area III represents the high plateaus in western
Sichuan province, with elevations above 3000 m. Figure 1 illustrates the elevation information
and the distribution of station locations in Sichuan province.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 21 
 

 

2.1. Study Area 
Sichuan province is characterized by complex terrain and significant variations in 

elevation, with a general trend of higher elevation in the west and lower elevation in the 
east. The western region mainly consists of plateaus and mountains, with elevations av-
eraging around 4000 m. In contrast, the eastern part is dominated by plains, basins, and 
hills, with elevations below 1500 m [17]. The dramatic variation in elevation leads to no-
ticeable differences in the spatiotemporal distribution of precipitation in Sichuan prov-
ince. The eastern region includes the Sichuan Basin and the eastern plain, which have a 
mild climate and abundant annual precipitation, with most areas receiving over 1000 mm 
of rainfall. This area belongs to a subtropical humid monsoon climate [13,18]. High plat-
eaus on the Qinghai characterize the northwestern part of Sichuan province–Tibet Plat-
eau’s edge. It has a high altitude and cold climate, with annual precipitation ranging from 
500 to 900 mm. Southwestern Sichuan province is primarily mountainous and falls within 
a subtropical semi-humid climate zone with fewer rainy days and lower rainfall amounts 
[19,20]. The region’s significant variation in topography and climate makes it an ideal sub-
ject for theoretical research and practical applications. In this study, we divide the Sichuan 
province into three zones based on elevation information: Area I includes the Sichuan Ba-
sin, with elevations below 1000 m, Area II includes the hilly areas and the margin of the 
basin in central and southern Sichuan province, with elevations ranging from 2000 to 3000 
m, and Area III represents the high plateaus in western Sichuan province, with elevations 
above 3000 m. Figure 1 illustrates the elevation information and the distribution of station 
locations in Sichuan province. 

 
Figure 1. Location and digital elevation information of Sichuan province. Triangles represent the 
locations of ordinary national stations. 

2.2. Data 

Figure 1. Location and digital elevation information of Sichuan province. Triangles represent the
locations of ordinary national stations.

2.2. Data

Three main types of precipitation data are used in this study: gauge data, satellite
remote sensing inversion data, and global model reanalysis data. Gauge data have high
precision and are often considered the actual precipitation value to include in a merging
experiment. Satellite remote sensing observation data can detect atmospheric characteristics
by infrared sensor and estimate precipitation by inversion algorithm and have a wide range
of precipitation estimation with high spatiotemporal resolutions and can better reflect
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the spatiotemporal distribution characteristics of precipitation. Model reanalysis data,
through the data assimilation of model data, some satellite data, and gauge data, contain
the information description of the physical characteristics of atmospheric change in the
model data and can better reflect the physical characteristics of atmospheric change.

The gauge data are obtained from daily precipitation data collected by 4320 automatic
weather stations of the Sichuan Meteorological Bureau, and the distance between stations
is between 1 and 30 km. This study selects daily precipitation data from stations in Sichuan
from 1 January 2018 to 31 December 2020. Since most stations have missing measurements,
meteorological stations missing more than ten days a month excluded during the merging
model’s evaluation.

The satellite data include GPM-IMERG, CMORPH-BLD, and GSMAP-Gauge precipita-
tion data. The GPM-IMERG precipitation product is a tertiary product derived from the Global
Precipitation Measure (GPM), a follow-up project to the Tropical Precipitation Measurement
Measure (TRMM). Based on the TRMM, the GPM enhances solid and trace precipitation
observation. The CMROPH-BLD precipitation product is a real-time satellite precipitation
inversion product developed by NOAA’s Climate Prediction Center (CPC) that uses a “motion
vector” approach to estimate precipitation rather than simply using statistical relationships. To
a certain extent, it preserves the continuity of the spatiotemporal distribution of precipitation.
The Japanese Space Agency is responsible for developing the global precipitation product
GSMAP-Gauge. Its precipitation calculation method combines the precipitation inversion
methods of TRMM and other pole-orbiting satellites. It uses the geosynchronous orbit (GEO)
satellite cloud image to assess high-precision global precipitation in the 60◦N to 60◦S latitude
range. The above satellite data are several mainstream satellite observation products with high
accuracy, stability, and long-term series of historical observation data. Many scholars have
conducted various evaluations and error analyses on these satellite precipitation products and
have evaluated their applicability to China [21–24].

The data comes from the ERA-5 reanalysis data, the 5th generation of global climate
products released by the European Centre for Medium-Range Weather Forecasts (ECMWF),
a dataset with a spatiotemporal resolution of 0.25◦ [25]. Compared to ERA-interim, the
ERA-5 reanalysis improved its spatiotemporal resolutions, upgraded its integrated forecast
model (IFS) from Cy31r2 to Cy41r2, and integrated ten ensemble members for the first
time using the 4D-Varz data assimilation method, assimilating many of the latest instru-
mental data, including IASI, ASCAT, MWHS-2, TMI, SSMIS, AMSR-2, GMI, etc. Many
studies have comprehensively evaluated the ERA-5 reanalysis data. The research results
suggest that ERA-5 reanalysis data can better detect precipitation events and reproduce the
spatiotemporal distribution characteristics of precipitation [26–28].

In addition, the observation accuracy of precipitation by satellites may be affected
by terrain and other factors. Additional auxiliary parameters (elevation, slope, latitude,
and longitude) are added in this study for the merging experiment to adjust the bias of
the precipitation estimation [10,29]. The digital elevation information (DEM) is derived
from the Shuttle Radar Topography Mission (SRTM), measured by NASA, with a spatial
resolution of 90 m [30]. At the same time, topographic data such as slope, longitude, and
latitude are also extracted from DEM elevation data.

Since the spatiotemporal resolutions of the satellite data or reanalysis data are differ-
ent, to obtain 0.1◦ daily precipitation datasets in Sichuan province, we need to perform
interpolation processing on those data and unify their spatiotemporal resolutions to 0.1◦

daily. Firstly, the inverse distance-weighted interpolation method is used to interpolate
the spatial resolutions of the gridded precipitation data to 0.1◦, and the data in a day are
aggregated to unify all the precipitation data to the daily scale. In this way, the spatiotem-
poral characteristics of the original data are retained, and more errors not be introduced to
affect the merging experiment [31–34]. In addition, in order to ensure the validity of the
evaluation experiment, we randomly divide the gauge data into two parts according to a
ratio of 7:3. One part is used for the correction of the background field and multi-source
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precipitation merging experiment, and the other part is used for the results evaluation
experiment. Table 1 shows the details of the data used in this study.

Table 1. All data products used in the study.

Products Timescale Resolution

ERA-5 1 January 2018–31 December 2020 3 h, 0.25◦

GPM-IMERG 1 January 2018–31 December 2020 30 min, 0.1◦

GSMAP-Gauge 1 January 2018–31 December 2020 1 h, 0.1◦

CMORPH-BLD 1 January 2018–31 December 2020 1 h, 0.25◦

Gauge Observation 1 January 2018–31 December 2020 Daily, --
DEM -- --, 90 m

3. Method

The experimental scheme of this study is mainly divided into three parts: (1) Determin-
ing the initial background field. After evaluating the accuracy of the original observation
data, this study selects the appropriate precipitation data as the background field, corrects
it with the gauge data, and finally obtains the background field with a higher accuracy
of 0.1◦ resolution. (2) Model training. The error between gauge data and the initial back-
ground field is the output of a model. The precipitation data of other satellites, reanalysis
precipitation data, and auxiliary parameters are input, and the relative weight of each
precipitation datum is calculated, predicting the weight matrix in the other grids without
a station. (3) Data merging. Combined with the weight matrix obtained by the above
method, multi-source precipitation data and auxiliary parameters are used to adjust the
initial background field.

3.1. Determination of Background Field

In the merging experiment, the initial background field is the basis of the final merging
data, and its spatial distribution characteristics of precipitation and the overall data accu-
racy greatly affect the effectiveness of the merging experiment. Since the background field
information needs to provide the approximate precipitation distribution structure within the
observation range, we often use satellite data and reanalysis data with continuous precipitation
information as the initial background field [10,35]. We compare the correlation between the
satellite data used in this study and the reanalysis data and the gauge data; Figure 2 shows the
scatterplot of the daily precipitation of the four precipitation datasets used in this study from 1
February 2018 to 31 December 2020. Each scatterplot represents the daily average precipitation
of the four grids of precipitation data and the gauge data in Sichuan province. It can be seen
that the ERA-5 precipitation data have the lowest RMSE, but the evaluation index of its bias is
too high, and there is an apparent underestimation phenomenon, indicating that there may
be more abnormal values in the ERA-5 precipitation data. The CMORPH-BLD precipitation
data have the lowest bias evaluation results, but the CC and RMSE evaluation results are the
worst, which may not sufficiently reflect the distribution characteristics of actual precipitation.
GPM-IMERG precipitation data have the best correlation, and the evaluation results of RMSE
and bias are relatively good. Compared with the other three precipitation data, it should
be able to reflect the Sichuan region’s precipitation characteristics better. Some researchers
have evaluated the applicability of GPM-IMERG precipitation data in Mainland China, and
the results showed that GPM-IMERG has quite a good precipitation detection ability and
can effectively estimate the spatiotemporal distribution characteristics of precipitation [36,37].
Therefore, this study is based on the GPM-IMERG data, and these are combined with the
data of some stations to perform correction experiments to obtain the GPM-IMERG correction
data. It is used as the initial background field (IMERG-BG below). The calibration method
adopts the GWR method, a spatial regression model based on variable parameters proposed
by Fotheringham et al. [38,39]. Compared with traditional spatial interpolation methods,
IDW, OK, and other classical methods only use the spatial autocorrelation of precipitation for
estimation. The GWR method estimates precipitation by combining gauge observation and
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geographic information and quantitatively describes the non-stationary relationship between
spatial variables based on kernel regression and local smoothing. It can directly describe
and explain the quantitative relationship between spatial variables to provide uncertainty
estimation of the valuation results and has good computational flexibility so it has obvious
advantages over the traditional multiple regression method [40,41]. The basic idea is first to
calculate the difference between the actual value and the estimated value around the estimated
point, take the spatial distance between the estimated point and the measured point as the
dependent variable, use the spatial weight kernel function to calculate the error weight of the
estimated point, and obtain the final estimate through the error weight. The formula is shown
in Equation (1):

y = x0(u, v) + ∑m
k=1 wk(u, v)xk + θ (1)

where (u,v) represents the spatial position of the sample point to be measured, x0(u,v) is the
constant estimate of the sample point to be measured, xk represents the k-th observation
value around the observation point, wk is its corresponding weight, and θ is its random
error term.
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The observation points’ weights are adjusted according to the spatial distance (Eu-
clidean distance) between the observation points and the measured points. In order to
determine the appropriate kernel function, three commonly used spatial kernel functions
are tested in this study. These include the Gaussian kernel, bi-square kernel, and K-nearest-
neighbor kernel functions. By comparing and verifying three calibration experiments using
different kernel functions, the results show that the Gaussian kernel function can obtain a
better calibration effect, so the Gaussian distance weight method is used to estimate the
weight information in this study. Its formula is shown in Equation (2):

w = e−1/2( d
b )

2
. (2)

where w is the weight of the observation point, d is the Euclidean distance between the
observation point and the sample point to be measured, and b is the basic bandwidth of the
kernel function.
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3.2. Model Training

In this study, the weights corresponding to various precipitation information are de-
termined based on the errors between the gauge data and IMERG-BG data, and the other
auxiliary parameters are involved in the merging experiment to complete the correction of
the IMERG-BG data. The grid with the gauge data is screened out, and the errors between
the gauge data and IMERG-BG data are calculated. The grid’s remaining precipitation
data and auxiliary parameters are obtained by the nearest proximity method, and a model
relationship between satellite data, reanalysis data, and other auxiliary parameters and
the errors of IMERG-BG data is built. Random forest (RF) is a classification regression
algorithm based on the decision tree model proposed by Breiman [42]. It is an extension of
the classification regression tree (CART), which improves the accuracy and stability of the
regression model by training multiple classification regression trees and merging the predic-
tion results of multiple trees. Random forest selects the label values of the training data and
subsets of the input variables based on the random variables by introducing independent
and equally distributed random variables. In addition, in order to improve the accuracy of
model prediction, random forest also includes a bagging algorithm [43], which randomly
samples multiple training subsets from the training datasets through a random retracting
sampling algorithm, and simultaneously trains the obtained multiple training subsets of
the decision tree model to generate multiple different weak trainers. Finally, averaging
the prediction results of all the models obtains the final predicted value. Random forest is
an effective method for classification and regression which can significantly alleviate the
overfitting phenomenon. This algorithm integrates the results of classification regression
trees with multiple decision trees by the bagging method, cancels part of the random
errors, and has a good tolerance for random noise and outliers. Therefore, this study uses
a random forest algorithm to fit the model relationship between the three precipitation
datasets, auxiliary parameters, and background field errors. Since the model problem in
this study is a regression problem in nature, we use the RMSE between the predicted value
of the model and the actual error as a loss function to evaluate the quality of the training
model, and the final prediction error of the training model is less than 2 mm. Figure 3 is the
schematic diagram of random forest.
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3.3. Data Merging

Based on the above research scheme, we use a random forest algorithm to train the
weights of precipitation data and auxiliary parameters in the grid with gauge observation to
minimize the background field error. Then, in the grid without gauge observation, the error
of the background field is directly predicted using the trained model, three precipitation
datasets, and the values of the auxiliary parameters. Finally, the error and background
field data are added to complete the multi-source precipitation merging experiment. The
mathematical description of the whole experiment scheme can beis described by Equation
(1), where y is the final merging data, x0 is the IMERG-BG data, m is the number of
precipitation products contained in the grid, k is the data of the k-th precipitation data, Wk
is its corresponding weight, and θ is the relative deviation obtained according to the other
auxiliary parameters.

3.4. Result Evaluation Index

The evaluation indicators used in this study are classified into qualitative and quanti-
tative. Quantitative indicators include the correlation coefficient (CC), bias, mean absolute
error (MAE), root-mean-square error (RMSE), and normalized root-mean-square error
(NRMSE), which can be used to quantitatively evaluate the correlation and error size
between the merging data and the gauge data. Qualitative evaluation measures include
the probability of detection (POD), false-positive rate (FAR), and critical success ndex (CSI),
which can be used to evaluate the ability of observed data to detect precipitation events.
Among them, we define the presence of precipitation events as when the daily precipitation
is higher than 0.1 mm. Table 2 shows the calculation formula of the evaluation index.

Table 2. The calculation formula for the evaluation index.

Symbol Equation Performance

Quantitative evaluation CC 1 −
∑
i

y(i)−y(i)test

∑
i

y(i)test−mean(ytest)

Correlation coefficient

RMSE 1
m

m
∑

i=1
(y(i) − y(i)test)

2 Root-mean-square error

NRMSE RMSE/(max(ytest)−
min(ytest))

Normalized root-mean-square error

MAE 1
m

m
∑

i=1

∣∣∣y(i) − y(i)test

∣∣∣ Mean absolute error

Bias ∑
i

y(i)

∑
i

y(i)test

− 1 Bias

Qualitative evaluation POD H
H+M Probability of detection

FAR F
H+F False alarm rate

CSI H
H+F+M Critical success index

In the above table, y(i) represents the i-th sample of the precipitation estimation
datasets, ytest

(i) represents the i-th sample of the validation datasets, m represents the
total number of samples, H represents the number of events in which precipitation esti-
mation data can accurately detect precipitation, and F represents the number of events in
which precipitation estimation data incorrectly detect precipitation and precipitation does
not occur. M represents the number of events in which the precipitation estimation data
failed to detect precipitation.

The overall technological route is shown in Figure 4.
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4. Analysis and Inspection of Result
4.1. Merging Data Selection

Most current merging experiments are satellite and gauge data two-source precipita-
tion merging experiments [29,44–48]. However, due to the error of the inversion algorithm
and sensor observation error, it is often difficult to observe trace precipitation, or it is pos-
sible to underestimate heavy precipitation, in satellite data. Therefore, precipitation data
from three sources are selected for this study’s merging experiment: measured precipitation
data from the gauge, satellite data, and reanalysis data. In order to evaluate the influence
of reanalysis data on the merging experiment, this study conducts a two-source merging
experiment of satellite and station data successively and a comparative analysis of the
three-source merging experiment of satellite data, reanalysis data, and gauge data. The
results are shown in Table 3.

Table 3. Accuracy evaluation of each dataset under the validation dataset.

Dataset CC RMSE NRMSE Bias (%) POD FAR CSI

GPM-IMERG 0.51 10.44 0.036 12.45 0.62 0.19 0.56
ERA-5 0.43 11.60 0.038 30.43 0.55 0.05 0.53
CMORPH-BLD 0.46 11.84 0.040 9.47 0.63 0.34 0.48
GSMAP-Gauge 0.47 11.03 0.043 14.02 0.63 0.11 0.58
IMERG-BG 0.64 9.49 0.027 5.32 0.64 0.09 0.61
MSMP2

1 0.74 8.11 0.025 2.23 0.67 0.06 0.64
MSMP3

2 0.76 7.91 0.020 1.55 0.67 0.05 0.64
1. MSMP2: two-source merging precipitation data, including gauge and three satellites’ data. 2. MSMP3: three-
source merging precipitation data, including gauge, three satellites’, and reanalysis data.

Table 3 shows the overall accuracy evaluation of each dataset. After analyzing the
evaluation results of several original satellite data and reanalysis data, it can be seen that
the GPM-IMERG precipitation data have a relatively good evaluation performance, and the
correlation and RMSE error between the GPM-IMERG precipitation data and gauge data
are better than those of other precipitation observation data. However, the GMAP-Gauge
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precipitation data perform best in assessing POD and FAR, which shows that the GMAP-
Gauge precipitation data have a better ability to detect precipitation events qualitatively.
This study focuses on error correction of precipitation data to provide gridded precipitation
data with higher accuracy and correlation with the gauge data. In addition, the accuracy of
precipitation data is greatly improved after the error correction with the gauge data and the
multi-source precipitation merging experiment. The multi-source merging precipitation
data’s evaluation performance is the best in qualitative and quantitative evaluation analysis.
Secondly, by comparing the evaluation of the two merging experiments, we find that the
three-source precipitation merging experiment adding reanalysis data slightly improves in
terms of the quantitative evaluation compared with the two-source merging experiment
of satellite and station and has better performance in CC, RMSE, and bias. However,
the difference between the two merging experiments is insignificant in the qualitative
analysis. Generally speaking, merging the experiment with reanalysis data has a better
effect. Therefore, in this study, satellite, gauge, and reanalysis data are used as the data
source of the merging experiment, and the final merging experiment results are evaluated
in many aspects.

4.2. The Effect Evaluation of the Merging Experiment
4.2.1. Evaluation of Seasonal Variation Characteristics

In order to explore the change of actual precipitation with merging precipitation data,
this study selects a national meteorological station in each of the three research areas to
study the change of precipitation at a single station from 1 February 2018 to 31 October
2018. Figure 5 compares the error changes of the three kinds of precipitation data (GPM-
IMERG, IMERG-BG, MSMP) in three national meteorological stations. It can be seen
that, after the calibration of the GPM-IMERG satellite data with the gauge data and the
multi-source merging experiment, the difference between the satellite precipitation and the
gauge precipitation decreases significantly. The variation trend of the difference over time
does not change significantly, indicating that the correction of satellite data in this study
is only the corresponding error correction of the precipitation value. It makes it closer to
the gauge data but does not change the temporal variation characteristics of the original
precipitation data.
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Figure 6 shows the evaluation results of the three kinds of precipitation data in the
merging experiment in the rainy season (June to September) and non-rainy season (February
to May) of 2018. Among them, the IM index represents the accuracy improvement of the
MSMP data in each evaluation index compared with the GPM-IMERG data. It can be
seen that, under the quantitative evaluation index, the evaluation performance of satellite
data in the rainy season is weaker than in the non-rainy season. After the multi-source
merging experiment, the difference in evaluation performance is slightly improved. The
multi-source merging experiment has a better effect on improving the accuracy of the
satellite observation data during the rainy season. However, on the whole, the multi-source
merging precipitation data achieve stronger detection of precipitation information during
the non-rainy season.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 6. Evaluation of the GPM-IMERG, IMERG-BG, and MSMP precipitation datasets during the 
rainy season and non-rainy season in 2018. 

Regarding qualitative evaluation indicators, the multi-source merging experiment 
does not improve the POD index of precipitation events in the non-rainy season. How-
ever, it greatly reduces the FAR index of precipitation events, which may be because the 
precipitation in the non-rainy season is too low, and there is no obvious precipitation phe-
nomenon in many cases [49]. As a result, the training degree of the multi-source precipi-
tation merging model in this period insufficient, so the merging experiment did not im-
prove the POD index of precipitation events. However, on the whole, the MSMP data are 
better for the detection of precipitation events in non-rainy seasons. 

Figure 7 shows the accuracy evaluation of GPM-IMERG, IMERG-BG, and MSMP 
daily precipitation data. Qualitative and quantitative evaluation indicators show that the 
original satellite dataset has the lowest accuracy. After calibration with some gauge data, 
the accuracy of the dataset is improved to some extent, and the accuracy of the dataset is 
highest after the multi-source merging experiment. In addition, compared with the GPM-
IMERG data, the variation trend of the accuracy of the MSMP data does not change much, 
indicating that the overall experiment scheme not only improves the accuracy of the sat-
ellite data but also relatively retains the change of the precipitation sequence of the origi-
nal satellite data, and only slightly adjusts the numerical value, so that the accuracy of the 
datasets is greatly improved. 

Figure 6. Evaluation of the GPM-IMERG, IMERG-BG, and MSMP precipitation datasets during the
rainy season and non-rainy season in 2018.

Regarding qualitative evaluation indicators, the multi-source merging experiment
does not improve the POD index of precipitation events in the non-rainy season. However,
it greatly reduces the FAR index of precipitation events, which may be because the precipi-
tation in the non-rainy season is too low, and there is no obvious precipitation phenomenon
in many cases [49]. As a result, the training degree of the multi-source precipitation merging
model in this period insufficient, so the merging experiment did not improve the POD
index of precipitation events. However, on the whole, the MSMP data are better for the
detection of precipitation events in non-rainy seasons.

Figure 7 shows the accuracy evaluation of GPM-IMERG, IMERG-BG, and MSMP
daily precipitation data. Qualitative and quantitative evaluation indicators show that the
original satellite dataset has the lowest accuracy. After calibration with some gauge data,
the accuracy of the dataset is improved to some extent, and the accuracy of the dataset
is highest after the multi-source merging experiment. In addition, compared with the
GPM-IMERG data, the variation trend of the accuracy of the MSMP data does not change
much, indicating that the overall experiment scheme not only improves the accuracy of
the satellite data but also relatively retains the change of the precipitation sequence of the
original satellite data, and only slightly adjusts the numerical value, so that the accuracy of
the datasets is greatly improved.
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Figure 7. Variation trend of evolution index of GPM-IMERG, IMERG-BG, and MSMP precipitation
datasets.

4.2.2. Evaluation of Spatial Distribution Characteristics

Figure 8 shows the spatial distribution of the average daily precipitation of the GPM-
IMEG precipitation data, IMERG-BG precipitation data, MSMP precipitation data, and
gauge data during the rainy season from 2018 to 2020. As can be seen from the figure,
the overall spatial distribution structure of GPM-IMERG precipitation data is the same
as that of the gauge data, but there are still some differences in the local scope. After the
error correction experiment and multi-source precipitation merging experiment, the spatial
distribution characteristics of satellite precipitation data gradually change and close to the
gauge data’s spatial precipitation distribution. The MSMP data show prominent correction
compared to the GPM-IMERG data. For example, in terms of precipitation distribution
in 2019, the precipitation of the original satellite precipitation data in northeast Sichuan
province is low, which is underestimated compared with the gauge data. After a series of
correction experiments, the average daily precipitation of the multi-source precipitation
merging data in Northeast China increases somewhat, and the spatial distribution is
closer to that of the gauge data. In addition, we can see that the precipitation in the
plateau and mountain areas of northwest Sichuan province is relatively low, and the daily
average precipitation is below 4 mm. Currently, the multi-source precipitation merging
experiment presents an overestimation phenomenon. In the south of Sichuan province
and the surrounding areas of the Sichuan Basin, there is heavy precipitation, while, in the
central area of the basin in the east, the precipitation is relatively reduced. So, in study Area
II, there is a north–south heavy precipitation zone, which is more evident in the spatial
precipitation distribution in 2018 and 2020. The unique geographical factors and climate of
Sichuan province influence this precipitation feature. The Sichuan Basin has a subtropical
humid monsoon climate and is surrounded by mountains. In summer, warm and humid
air from eastern China cannot easily create rainfall in the basin’s center. The northwestern
mountainous area is located on the southeastern edge of the Qinghai–Tibet Plateau. It has
relatively little annual precipitation, while, in the southern part of Sichuan province and
the edge of the basin, its large altitude difference causes sufficient rainfall [49,50].

In this study, 130 national meteorological stations are selected to study the improve-
ment effect of the data accuracy of the merging experiments in independent spatial stations.
Figure 9 shows the accuracy evaluation of the three kinds of precipitation data from some
stations from 1 February 2018 to 31 October 2018. After the merging experiment, in the
whole research area, compared with the original satellite data, the accuracy of the multi-
source merging precipitation data is improved to a certain extent. Especially in the eastern
plain and basin area, the stations are densely distributed, and the effect of the merging
experiment is relatively better. Both quantitative and qualitative evaluations perform better.
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The CC index increases from about 0.5 to 0.8 in most regions, the RMSE index from 15 mm
to about 8 mm, the POD index increased from about 0.7 to more than 0.9, and the FAR
index decreased from 0.45 to about 0.35.
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4.2.3. The Effect of Topographic Factors on Merging Experiments

The conventional multi-source merging method is based on multiple regression analy-
sis of gauge data. The effect of the merging experiment often depends on the distribution
density of the stations in the study area, and the merging experiment is relatively better
in the area with dense stations. In this study, the random forest algorithm is used to
conduct the multi-source precipitation merging experiment, and the merging model is built
according to the relationship between the precipitation observed by satellites and gauge
data, which is relatively less dependent on the station density of the data. In order to verify
this phenomenon, in the research area with an elevation of less than 1000 m, the accuracy
of the original satellite data and the multiple merging data are evaluated according to the
station density D (the number of stations in the 0.1◦ grid), that is, D < 3, 3 < D < 7, and
D > 7. The results are shown in Figure 10, where the IM index of the multi-source merg-
ing precipitation data improves compared with the original satellite data under various
indicators. It is not difficult to see that, no matter the research area, precipitation data has
better performance under various evaluation indicators after the multi-source precipitation
merging experiment. It can be seen that there are minor differences in different station
density regions, which may be because the MSMP data are obtained based on the initial
background field, which is obtained by correcting the original satellite data using the gauge
data. The correction effect may be affected by the distribution density of the stations, but
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the impact is negligible. Therefore, the station density also affects the final experiment
effect less.
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To further investigate the influence of topographic factors on the experiment, the
Sichuan province is divided into three study regions based on DEM elevation. Only stations
with D < 3 in the three study areas are selected to ensure unbiased evaluation results. The
evaluation results are depicted in Figure 11, and all evaluation indices demonstrate a
significantly higher accuracy for the MSMP data than for the GPM-IMERG data. Following
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the merging experiment, the multi-source merging precipitation data exhibit a strong
correlation with the gauge data, as supported by the data presented in Table 4. Moreover,
through both qualitative and quantitative evaluation metrics, it is observed that the merging
experiment conducted in study Area I yields the most favorable outcomes, with all dataset
indicators showing the most substantial improvement, which might be attributed to the
more stable spatiotemporal distribution of precipitation in the plains and basins, making it
easier for the model to capture the consistent features of precipitation distribution.
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Table 4. Accuracy evaluation of MSMP datasets and GPM-IMERG datasets in the three study areas.

Study Area
CC RMSE POD FAR

IMERG MSMP IM IMERG MSMP IM IMERG MSMP IM IMERG MSMP IM

Area III (DEM > 3000) 0.57 0.82 43.8% 5.66 3.28 −42.0% 0.64 0.67 4.47% 0.26 0.06 −76.9%
Area II (1500 < DEM < 2500) 0.50 0.77 54.0% 9.43 5.38 −42.9% 0.61 0.65 6.55% 0.32 0.08 −75.7%
Area I (DEM < 1000) 0.51 0.89 74.5% 12.3 5.05 −58.9% 0.53 0.73 43.1% 0.37 0.08 −78.3%

5. Discussion

This study uses satellite and model reanalysis data, including GPM-IMERG, CMORPH-
BLD, GSMAP-Gauge, and ERA-5 data. It uses the gauge data as the benchmark to correct
and merge the above data. Finally, the multi-source merging precipitation data (0.1◦, daily)
of the station, satellite, and reanalysis data are obtained. Firstly, the accuracy evaluation and
error characteristics analysis of the used satellite data and reanalysis data are carried out.
The results show that all the satellite observation data and reanalysis data are more or less
overestimated compared with the gauge data, and the overestimation phenomenon is more
evident in the ERA reanalysis data. The correlation between the GPM-IMERGE data and the
gauge data is the best. Through quantitative and qualitative evaluation of all the observed
data, we find that the GPM-IMERG precipitation data perform better in quantitative
evaluation, and its CC, RMSE, and bias index are all better. However, its evaluation result
is weaker in qualitative evaluation than the GSMAP-Gauge precipitation data. GSMAP-
Gauge precipitation products show the best evaluation, with a POD index of 0.63 and a
CSI index of 0.58. In general, GPM-IMERG precipitation shows relatively good evaluation.
After calibration with the gauge data, all evaluation indexes improve to some extent,
meeting our demand for the initial background field of the merging experiment [10,27].
In addition, to verify the influence of the reanalysis data of the addition model on the
merging experiment, we compare two merging experiments (Table 3). It can be seen that
the three-source merging precipitation data have a better performance in the quantitative
evaluation. However, in the qualitative evaluation, the merging experiment effect differs
significantly from that of the two-source merging experiment of satellite and station.

The method used in the multi-source merging experiment in this study is a random
forest algorithm, and the topographic elements, including slope, elevation, longitude, and
latitude, are calculated. Compared with the original satellite data, the evaluation perfor-
mance of the obtained multi-source merging precipitation data is much better than that of
the original satellite data, both in the spatial distribution structure of precipitation and the
qualitative and quantitative evaluation of precipitation value, showing the advantages of
multi-source merging precipitation data. The random forest algorithm determines the pro-
portion of each precipitation value according to the errors of various precipitation products
and auxiliary variables and the gauge data. It determines the weight of precipitation in each
grid through the respective precipitation values and auxiliary parameters. The effect of the
merging experiment has no significant relationship with the density of stations in a single
grid (Figure 9). However, the traditional statistical regression algorithms are more or less
dependent on the number of stations in the grid and the area without station observation;
the accuracy of the obtained merging precipitation has a significant estimation error [35,51].

In order to evaluate the influence of terrain elements on the merging experiment,
the study area is divided into three parts based on elevation, and the accuracy of the
three different research areas is evaluated and compared. The results show that terrain
elements have a certain influence on the effect of the merging experiment because the
detection ability of the original satellite data on surface precipitation is also affected by
terrain features, such as altitude and slope. This influence also leads to a certain deviation
in the model relationship between the satellite precipitation and gauge data. It has been
shown [35] that the precipitation estimation of multi-source precipitation merging products
in regions with higher altitudes is highly unstable.
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6. Conclusions and Prospects

The following conclusions are obtained through the comprehensive evaluation and
analysis of multi-source merging precipitation data:

(1) Through qualitative and quantitative evaluation and analysis of the above grid pre-
cipitation data, we find that GPM-IMERG precipitation products perform relatively
well under quantitative evaluation indicators and have the best RMSE and CC index;

(2) After the multi-source merging precipitation experiment, satellite data’s accurate
evaluation has been greatly improved. In addition, the spatiotemporal distribution
changes of precipitation are consistent with the original satellite precipitation data.
The correlation with gauge data is also greatly improved. The merging experiment in
the non-rainy season improves the accuracy of the satellite data;

(3) Topographic factors have a certain influence on the merging experiment. In the plain
and basin area with low elevation and gentle terrain, the merging experiment has a
better effect, while, in the plateau and mountain areas with high altitudes, the merging
experiment has an unstable effect.

This study focuses on merging multi-source precipitation data, including three global
satellite data, reanalysis data, and gauge data. The merging approach incorporates terrain
factors as additional parameters and utilizes the random forest algorithm to generate daily
precipitation datasets for the Sichuan province from 2018 to 2020 with a spatial resolu-
tion of 0.1◦. By comparing the merged precipitation data with the original observations,
significant improvements are observed in both qualitative and quantitative evaluations.
The CC index increases from 0.15 to 0.76, the RMSE index decreases from 10.44 mm to
7.91 mm, the POD index increases from 0.62 to 0.67, and the FAR index decreases from
0.15 to 0.05, demonstrating the feasibility of the proposed merging scheme. Furthermore,
future research can incorporate additional multi-source precipitation data, such as weather
radar, microwave radiometer, and ground-based GPS-MET data, to further enhance the
accuracy of the merged datasets. Efforts should also be made to improve the spatiotem-
poral resolutions of the multi-source merging data, aiming for sub-hourly or even hourly
resolution and a spatial resolution of 1 km or finer. Such advancements in understanding
the spatiotemporal characteristics of precipitation in the complex terrain of the Sichuan
province hold significant importance.
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