
Citation: Hu, Q.; Li, Y.; Liu, W.; Lu,

W.; Hai, H.; He, P.; Liu, X.; Ma, K.;

Zhu, D.; Wang, P.; et al. Research on

Soil Moisture Inversion Method for

Canal Slope of the Middle Route

Project of the South to North Water

Transfer Based on GNSS-R and Deep

Learning. Remote Sens. 2023, 15, 4340.

https://doi.org/10.3390/rs15174340

Academic Editors: Xianjun Hao and

Liming He

Received: 1 July 2023

Revised: 31 August 2023

Accepted: 1 September 2023

Published: 3 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Research on Soil Moisture Inversion Method for Canal Slope of
the Middle Route Project of the South to North Water Transfer
Based on GNSS-R and Deep Learning
Qingfeng Hu 1, Yifan Li 1, Wenkai Liu 1, Weiqiang Lu 1, Hongxin Hai 1, Peipei He 1, Xianlin Liu 1,2,*, Kaifeng Ma 1,
Dantong Zhu 1, Peng Wang 1 and Yingchao Kou 1

1 College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power,
Zhengzhou 450046, China; huqingfeng@ncwu.edu.cn (Q.H.); z20211151026@stu.ncwu.edu.cn (Y.L.);
liuwenkai@ncwu.edu.cn (W.L.); z202210151111@stu.ncwu.edu.cn (W.L.);
z202210151100@stu.ncwu.edu.cn (H.H.); hepei@ncwu.edu.cn (P.H.); makaifeng@ncwu.edu.cn (K.M.);
zhudantong@ncwu.edu.cn (D.Z.); z20211151045@stu.ncwu.edu.cn (P.W.);
z20201150995@stu.ncwu.edu.cn (Y.K.)

2 Chinese Academy of Engineering, Beijing 100088, China
* Correspondence: liuxl@cae.cn

Abstract: The soil moisture from the South-to-North Water Diversion Middle Route Project is assessed
in this study. Complex and variable geological conditions complicate the prediction of soil moisture
in the study area. To achieve this aim, we carried out research on soil moisture inversion methods for
channel slopes in the study area using massive monitoring data from multiple GNSS observatories
on channel slopes, incorporating GNSS-R techniques and deep learning algorithms. To address
the issue of low accuracy in linear inversion when using a single satellite, this study proposes a
multi-satellite and multi-frequency data fusion technique. Furthermore, three soil moisture inversion
models, namely, the linear model, BP neural network model, and GA-BP neural network model,
are established by incorporating deep learning techniques. In comparison with single-satellite data
inversion, with the data fusion technique proposed in this study, the correlation is improved by
12.7%, the root mean square error is reduced by 0.217, the mean square error is decreased by 0.884,
and the mean absolute error is decreased by 0.243 with the linear model. With the BP neural network
model, the correlation is increased by 15.4%, the root mean square error is decreased by 0.395, the
mean square error is decreased by 0.465, and the mean absolute error is reduced by 0.353. Moreover,
with the GA-BP neural network model, the correlation is improved by 6.3%, the root mean square
error is decreased by 1.207, the mean square error is decreased by 0.196, and the mean absolute error
is reduced by 0.155. The results indicate that performing data fusion by using multiple satellites and
multi-frequency bands is a feasible approach for improving the accuracy of soil moisture inversion.
These research findings provide new technical means for the risk analysis of deformation disasters in
the expansive soil channel slopes of the South-to-North Water Diversion Middle Route Project.

Keywords: data fusion; deep learning; drought detection; GNSS-R; soil moisture; South to North
Water Transfer

1. Introduction

To address the issue of the uneven spatial distribution of water resources, as there are
more water resources in the southern regions of China and less in the northern regions, the
Chinese government has planned and implemented the South-to-North Water Diversion
Middle Route Project. The South-to-North Water Diversion Middle Route Project is one
of the world’s major water conservancy projects. Its objective is to address the water
scarcity issue in Northern China by diverting the abundant water resources from the
southern regions of the country to the water-deficient areas in the north. The South-to-
North Water Diversion Middle Route Project in China has a total length of 1432 km. The

Remote Sens. 2023, 15, 4340. https://doi.org/10.3390/rs15174340 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15174340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15174340
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15174340?type=check_update&version=1


Remote Sens. 2023, 15, 4340 2 of 34

project encounters complex and variable geological conditions, especially in the multiple
sections along the channel that have expansive soil foundations [1]. Due to its characteristics
of desiccation-induced consolidation and water-induced expansion, expansive soil is prone
to the induction of deformation disasters in channel slopes during prolonged cycles of
consolidation and expansion [2]. Therefore, the effective detection of soil moisture is crucial
for ensuring the safe operation of this project. Soil moisture is one of the key factors
influencing the stability of expansive soil channel slopes. By monitoring soil moisture,
real-time information about soil water content can be obtained. This provides the support
of scientific data for a comprehensive assessment of the risk of deformation disaster in
the expansive soil channel slopes. The early detection of potential slope instability issues
and the implementation of appropriate maintenance and repair measures can be facilitated
to ensure the safety of the project [3]. Therefore, conducting research on soil moisture
inversion methods holds significant importance for the high-quality development of the
South-to-North Water Diversion Middle Route Project and for the regional economies
involved.

Traditional soil moisture monitoring methods mainly include soil drying method,
neutron moisture meter method, and tensiometer method, etc. They are all based on point
measurement, which is high in accuracy but has a large workload, a long time period, and
more demanding requirements, and cannot obtain data quickly. Conventional optical re-
mote sensing (e.g., TM, SPOT, etc.), with fewer bands and low spectral resolution, is suitable
for soil moisture monitoring over large areas, and has a large error for regional or plot-level
soil moisture monitoring. In recent years, in order to obtain soil moisture in real-time,
people have developed soil moisture sensors, but a single sensor can only realize the soil
moisture monitoring of its buried location, and if you want to realize regional soil moisture
monitoring, you need to bury a large number of sensors, which will cost a lot of manpower,
material, and financial resources. In order to realize the soil moisture monitoring of the
channel slopes in the deep excavated expansive soil section of the China South-to-North
Water Diversion Project, through the on-site research, we found that in order to grasp the
deformation status of the channel slopes in real-time, the project managers have installed a
large number of GNSS observation stations in the risk areas of the channel slopes, and a
huge amount of GNSS observation data can be acquired every day. At the same time, by
reviewing the literature, we found that the monitoring of soil moisture can be realized by
using GNSS-R technology. Based on the above, we fused the GNSS-R technique and deep
learning method to carry out the soil moisture inversion study on the channel slope of the
deep excavated square canal section of the South-to-North Water Diversion Central Route
Project in China. GNSS-R technology utilizes the multipath reflection component of the
signal-to-noise ratio (SNR) from GNSS satellites to retrieve near-surface physical parame-
ters. In comparison with traditional soil moisture measurement methods, rapidly evolving
remote sensing techniques offer numerous irreplaceable advantages for monitoring soil
moisture. The use of GNSS-R involves the microwave frequency band (L-band), which
exhibits strong penetration capabilities, reduced atmospheric attenuation, and excellent
vegetation penetration. Consequently, it is considered an ideal frequency for soil moisture
inversion at present [4]. Currently, GNSS-R technology has been widely extended to vari-
ous application areas, including soil moisture [5], sea surface wind measurement [6], oil
spill detection [7], and sea ice monitoring [8], among others.

Currently, European and American countries have conducted extensive fundamental
research and experimentation on soil moisture detection techniques based on GNSS-R.
In 2002, NASA included GPS dual-frequency radar measurements in the SMEX02 (Soil
Moisture Experiment 2002) trial, which demonstrated the spatial and temporal correla-
tions between the reflected signal strength and soil moisture [9]. In 2003, the UK-DMC
satellite, which was equipped with GNSS-R instruments, successfully obtained physical
parameters of the Earth’s surface, such as sea surface roughness [10]. Additionally, high-
precision elevation measurements can be derived from GPS reflection signals over calm
sea areas [11]. During the period of 2013–2015, the Polytechnic University of Catalonia in
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Spain conducted multiple ground-based and airborne GNSS-R experiments to carry out soil
moisture measurements. These experiments involved both direct and reflected GNSS signal
measurements while considering polarization. The researchers also took the instrument
parameters that could affect the calculation of reflection coefficients into account [12–16].
With the emergence of unmanned aerial vehicles (UAVs) as a new remote sensing platform,
there have been studies on soil moisture inversion with GNSS-R by using UAVs. In the field
of direct and reflected signal interferometry with GNSS, Larson et al. proposed the GPS-MR
(GPS–multipath reflectometry) soil moisture measurement technique. They utilized GPS
signal-to-noise ratio (SNR) data from the Crustal Deformation Monitoring Network for this
purpose [17]. Rodriguez-Alvarez et al. proposed the interference pattern technique (IPT)
for soil moisture measurement. They used a custom-designed receiver and a vertically
polarized antenna for this technique [18]. In China, research on GNSS-R technology started
relatively later. In 2016, Han Moutian et al. derived a model for soil moisture inversion
by using GNSS interferometric signal amplitudes based on the interference effect and the
GNSS receiver signal-to-noise ratio estimation method. They also conducted a simulation
verification of the proposed model [19]. In 2016, Yang Lei et al. and Zou Wenbo et al.
conducted research on soil moisture measurement by using signals reflected from GEO
satellites. They proposed empirical or analytical soil moisture inversion models based on
their studies [20,21]. In 2018, Wu Jizhong et al. addressed the parameter estimation problem
for obtaining soil moisture content by using GPS-IR (GPS–interferometric reflectometry).
They proposed an improved method for estimating reflection signal parameters and stud-
ied the process of establishing soil moisture inversion models [22]. With the development
of computer technology, scholars began to use deep learning techniques for soil moisture
inversion. In 2019, Sun Bo et al. proposed a GA-SVM (genetic algorithm–support vector
machine)-assisted method for soil moisture inversion and demonstrated through experi-
ments that this method effectively improved the accuracy of soil moisture inversion [23].
In the same year, Zhang Nan et al. proposed a method for eliminating the micro-Doppler
effect in GEO satellites for soil moisture inversion [24]. Zhang Xiaoyu et al. used GA-BP
neural network to invert snow depth, effectively eliminating the jump phenomenon in
the inversion process, reducing the error and improving the inversion accuracy [25]. In
2020, Zhu Chonghao et al. used the GABP neural network model to assess landslide risk in
Sichuan Province as an example, and the results were better than BP neural network, which
improved the efficiency of landslide risk assessment [26]. In 2021, Yang Lianbing et al.
used a BP neural network optimized by a genetic algorithm to invert soil salinity, and the
inversion results were better than the traditional BP neural network [27]. In the same year,
Zhao Jianhui et al. used feature selection and GA-BP neural network to invert soil moisture,
which provided a new idea for multi-source remote sensing surface soil moisture inversion
in farmland [28]. In 2022, Schiajer performed soil moisture inversion using three neural
networks, GABP, GRNN, and ELM, all of which achieved better inversion results [29].
In the same year, new mathematics study findings have been reported by researchers at
Akdeniz University by comparing different ANN (Ffbp Grnn F) algorithms and multiple
linear regression for daily streamflow prediction in Kocasu River, Turkey [30].

However, single-site single-satellite GNSS-R is unable to accurately monitor short-term
variations in soil moisture, and the limited observation information obtained with a single
satellite can result in significant differences in data quality [31]. To enhance the accuracy of
the results, this study proposes a novel technique for multi-satellite and multi-frequency
data fusion. This technique automatically selects satellites with a high correlation among
the amplitude, phase, and soil moisture. It employs an adaptive fusion algorithm based
on least squares to combine data from multiple satellites in the same frequency band.
Furthermore, an entropy-based method is applied to fuse data from different frequency
bands. By utilizing the fused data for GNSS-R technology, this study mitigates signal gaps
and improves the quality of observational data, thereby enhancing the estimation accuracy
of soil moisture. The data fusion approach helps fill in missing information and reduces
the variability in the observations, leading to more reliable and precise estimations of soil
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moisture. In order to validate the feasibility of the proposed method, this study employed
the deep excavation of expansive soil channels in the South-to-North Water Diversion
Project as the study area. By using deep learning techniques, models were established to
correlate the phase, amplitude, and other relevant features with soil moisture. The results
demonstrated that the soil moisture estimations obtained with the fused data from the
proposed multi-satellite multi-frequency fusion technique outperformed those obtained
from single-satellite single-frequency data inversion in terms of accuracy. This confirmed
the effectiveness of the data fusion approach in improving the accuracy of soil moisture
estimation when applied to the study area of the deep excavation of expansive soil channels
in the South-to-North Water Diversion Project. In this paper, we use multi-satellite and
multi-band data fusion techniques to process the GNSS-R observation data in order to
obtain more comprehensive observation information, and use deep learning techniques
to establish high-precision inversion models, which provide a new technical route for soil
moisture inversion of deep excavated expansive soil channel slopes in the South-to-North
Water Diversion Middle Route Project.

2. Basic Principles and Methods of GNSS-R Soil Moisture Inversion
2.1. GNSS-R Fundamentals

The GNSS-R reflectometry technique involves a dual-base radar that allows one to
obtain surface roughness features and geophysical parameters, i.e., by using GNSS to
measure the delay (time delay or phase delay) between the direct signal and the signal
reflected from the surface mirror; then, based on the geometric positional relationships
between GNSS satellites, receivers, and mirror reflection points, the surface features can
be inverted [32]. When using geodetic receivers, the environmental noise level remains
constant, so the signal-to-noise ratio directly corresponds to the strength of the GNSS signal
that is received. Figure 1 depicts the direct and reflected signals received by the GNSS
antenna, where the direct signal exhibits much higher intensity than that of the reflected
signal. As shown in Figure 1, the interference between the direct signal and the reflected
signal (or multipath signal) results in an overlay effect, causing oscillations, particularly
at low satellite elevations. In most environments, the amplitude of the reflected signal is
much smaller than that of the direct signal. Therefore, the signal-to-noise ratio is controlled
by the direct signal, and the desired multipath effects can be extracted by separating this
oscillation pattern.
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the radiation relationships of the direct reflection signal.

The relationship between the SNR multipath amplitude and SNR is established by
identifying the effect of the gain pattern of the receiving antenna on the recorded sig-
nal strength, and at any moment, the SNR and satellite altitude θ can be expressed by
Equation (1) [33]:

SNR2(θ) = A2
c (θ) = A2

d(θ) + A2
m(θ) + 2Ad(θ)Am(θ)cosψ (1)
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where Ad and Am represent the amplitudes of the direct signal and multipath signal,
respectively, which indicate the contributions of the multipath signal to the SNR. ψ denotes
the phase difference between the two signals. Ac is expressed as the composite signal
amplitude of the two signals, i.e., the signal-to-noise ratio (SNR). Figure 2 shows the trend
of SNR variation and altitude angle variation in the L1 band of the G02 satellite on 1 January
2021 at station GP01.
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As seen in Equation (1) and Figure 2, the change in the amplitude of the direct signal
or multipath signal with respect to the phase leads to a corresponding change in the SNR
amplitude, and the effect of the antenna gain pattern indicates that Ad � Am. Thus, the
overall amplitude of the SNR is mainly driven by the direct signal [34], while the multipath
signal produces a small-amplitude, high-frequency oscillation in the direct signal and, thus,
affects the SNR. This oscillation is more pronounced at lower satellite azimuth angles [35].

To determine the multipath amplitude of the SNR, it is necessary to separate the contri-
bution of the multipath signal to the SNR from the amplitude of the direct signal dSNRdirect.
This can be achieved by fitting a low-order polynomial to the SNR time series to estimate
the direct signal and subtracting it from the original SNR data. The residual sequence,
dSNRmultipath, represents the multipath component and can be expressed with Equation (2):

dSNRmultipath = SNR− dSNRdirect = Amcos
(

4πh
λ

sinθ + ψ

)
(2)

In the equation, Am represents the amplitude, λ denotes the carrier wavelength, ψ
represents the phase, and h is the distance from the phase center of the receiving antenna to
the reflecting surface, which is also known as the effective antenna height.

Due to the inability to obtain a complete periodic segment of the SNR’s residual
sequence in Figure 2, it is generally challenging to address it with a fast Fourier transform.
However, the Lomb–Scargle algorithm can effectively extract weak periodic signals from
non-uniform sequences [36]. Therefore, Lomb–Scargle spectral analysis is applied to the
SNR’s residual sequence to obtain the highest frequency, leading to the determination of the
most effective vertical reflection height, h. During the fitting process for obtaining ψ and
Am, the effective antenna height, h, is often treated as a fixed constant. However, in practical
measurements, variations in satellite trajectories and environmental conditions around the
receiver station can cause changes in h. In long-term observation sequences, the median
of the effective antenna height is closest to the vertical distance from the receiver antenna
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to the reflecting surface. Therefore, this study adopts the median value of the effective
antenna height in the long-term observation sequence as a fixed value for h in the fitting of
the feature parameters. The SNR reflection component exhibits periodic oscillations with
the satellite elevation angle, approximating a cosine function. Therefore, a nonlinear least
squares algorithm is employed to perform cosine fitting on the resampled data to obtain
the reflection signal’s amplitude parameter Am and phase parameter ψ. Finally, the soil
moisture is inverted by using the amplitude parameter Am and phase parameter ψ.

2.2. Data Fusion Methods

This study proposes a novel data fusion method that utilizes multiple data processing
algorithms for data preprocessing to enhance the inversion process. The method auto-
matically selects satellites with a high correlation among the amplitude, phase, and soil
moisture. An adaptive fusion algorithm based on least squares is then applied to merge
data from multiple satellites in the same frequency band. Furthermore, an entropy-based
fusion method is employed to merge amplitude and phase data from different frequency
bands. By using this method, signal gaps are reduced, and the limitations of the limited
observation information from a single satellite and varying data quality are addressed,
resulting in improved data quality and enhanced accuracy in soil moisture inversion.

Before performing data fusion, to reduce the significant differences in amplitude
caused by different satellites, the amplitude sequence is first arranged in ascending or-
der. The average value of the top 20% of the sequence is selected as the baseline for
normalization, as shown in Equation (3):

Anorm =
A

A20%
(3)

For the phase, the initial phase of each satellite signal arriving at the ground is dif-
ferent. In order to clearly derive the phase variation caused by humidity changes for the
comparison of the phase characteristics of different satellites, etc., the phase time series of
each satellite track needs to be zeroed, i.e., the minimum value is set to zero. When zeroing
according to Equation (4), first, the average of the lowest 20% of observations for each track
(satellite) is calculated, and then this average is subtracted from the phase time series.

∆ψ = ψ− ψ20% (4)

In the above equation, A20% represents the average of the top 20% of the largest values
in the amplitude sequence, and ψ20% represents the average of the bottom 20% of the
smallest values in the phase sequence. By applying the aforementioned processing, noise
and errors caused by vegetation, terrain, and other factors can be removed from the time
series, which is beneficial for soil moisture inversion. This step helps enhance the accuracy
of soil moisture retrieval by mitigating the impacts of various sources of interference.

After normalizing the data, the same frequency band data from multiple satellites
are fused by using an adaptive fusion algorithm based on the least squares method. The
adaptive fusion algorithm based on the least squares method aims to minimize the total
variance with respect to the true value by adjusting the weights of each datum, thus
achieving more accurate fusion results. For the SNR observations provided by multiple
satellites, the phase and amplitude values of each satellite are obtained after processing.
These phase and amplitude data are then fused to obtain a more precise estimation. In this
algorithm, the least squares method is used to solve for the optimal weighting coefficients
that minimize the sum of squared errors between the fused result and the true value.
Specifically, assuming that there are n satellites providing observations, and after processing,
the phase data x1, x2, . . . , xn is obtained, along with their corresponding weight coefficients
w1, w2, . . . , wn, the objective is to solve the optimal weight coefficients that bring the
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weighted result closest to the true value y. Then, the problem can be transformed into the
following problem of minimizing an objective function:

minw1,w2,...wn∑n
i=1 wi(xi − y)2 (5)

Equation (5) is derived so that the derivative is zero to solve for the optimal weight
coefficients w1, w2, . . . , wn. The optimal weighting factor can be expressed as Equation (6):

w =
(

XTX
)−1

XTy (6)

where X = [x1, x2, . . . , xn], y is the true value, and w = [w1, w2, . . . , wn] is the weight
coefficient. Specifically, for the ith weighting factor,

w*
i =

1

∑n
j=1

( xi−xj
xi−y

)2 (7)

The optimal weighting coefficients are calculated according to Equation (7), and they
are used to weigh the observations to obtain a more accurate estimate.

Finally, the entropy method is used to fuse data from different frequency bands
acquired by GNSS receivers for fusion in order to obtain higher-quality observation data and
improve the inversion accuracy. Data fusion with the entropy method involves multivariate
data fusion based on the principle of information entropy. The core idea is that a greater
information entropy indicates a greater uncertainty of the index and a smaller weight; a
smaller information entropy indicates a lower uncertainty of the index and a larger weight.
The observed values of each indicator are quantified according to certain rules, and then
the information entropy and weight of each indicator are calculated; the final fusion result
is calculated through the information entropy principle and the weighted average principle.
Specifically, the entropy value method is calculated as follows:

(1) The normalized values of each column in the data are calculated and scaled to a range
of [0, 1]; the formula is shown in Equation (8):

xij =
x− xmin

xmax − xmin
(8)

In Equation (8), x represents the original data, xmin denotes the minimum value of the
data, and xmax corresponds to the maximum value of the data.

(2) The weight of the ith sample under the jth indicator is calculated for that indicator;
the formula is shown in Equation (9):

pij =
xij

∑m
i=1 xij

(9)

(3) The entropy value is calculated for each column of data; the definition of entropy is
used to compute the entropy value for each column of data. Entropy represents the
uncertainty or information content of the data, and the formula for calculating the
entropy value is shown in Equation (10):

Ej = −∑m
i=1 pijlog pij (10)

(4) The weights of each datum are calculated; the formula for calculating the weight wj
for the jth indicator is shown in Equation (11):

wj =
1− Ej

∑m
i=1(1− Ek)

(11)
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(5) The formula for performing data fusion is shown in Equation (12):

xi = ∑n
j=1 wj pij (12)

The fusion algorithm automatically selects satellites with high correlation between
amplitude–phase data and soil moisture, fuses data from multiple satellites in multiple
segments, reduces signal loss, improves the quality of observation data, and obtains high-
precision inversion models.

2.3. Soil Moisture Inversion Based on Deep Learning
2.3.1. BP Neural Network

The artificial neural network algorithm, as the name suggests, is an algorithmic
network composed of artificial neurons that mimics the way neural transmission occurs in
the human brain. It possesses strong capabilities for nonlinear mapping, self-organization,
adaptation, memory, and prediction, making it well suited for solving complex logical
operations and nonlinear problems [37]. Neural networks can be used for tasks such as
classification, clustering, and prediction. They require a sufficient amount of historical
data, and by training on this data, a network can learn the underlying knowledge within
the data. The BP neural network, which is a widely used and a classical artificial neural
network, possesses the aforementioned capabilities, along with characteristics such as
strong plasticity, simplicity, and powerful learning abilities. Today, it is used in extensive
applications across various fields [38].

The BP neural network is the fundamental form of a neural network, and its output
is obtained through forward propagation, while the error is propagated back through the
network by using a backpropagation method. A BP neural network emulates the activation
and propagation processes of human neurons. Considering a three-layer neural network
as an example, a BP neural network consists of three layers: the input layer, the hidden
layer, and the output layer. The input layer receives data, and the output layer outputs
data. Each neuron in the previous layer is connected to neurons in the next layer, collecting
information from the previous layer and transmitting it to the next layer through activation.
The structure of a BP neural network is depicted in Figure 3.
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Figure 3. Diagram of the structure of a BP neural network. The blue arrow represents the input layer
to the hidden layer, while the brown arrow represents the hidden layer to the output layer.

Here, i is the number of input layer neurons, j is the number of hidden layer neurons,
k is the number of output layer neurons, w is the weight, and b is the “bias”. Each circle is
a neuron.

The BP algorithm includes the following two processes: (1) Forward propagation of
information, where the feature signal is passed forward along the input layer and passed
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to the output layer nodes through the hidden layer’s neurons. The output nodes do not
directly output the signal but need to undergo a series of nonlinear changes. The obtained
output signal is analyzed for error with the target output signal, and if the error is too large,
it is transferred to the error backpropagation process. (2) In the backward propagation of
error, the error obtained from the forward propagation of the signal is reversed from the
output layer to the entire neural network; the error is divided equally among the nodes in
each layer when it passes through the hidden layer and the input layer, and the network
weights are updated so that the error decreases layer by layer along the reversed neural
network and so on until the forward propagation of the signal reaches the desired output.
The threshold and weights corresponding to the actual output are determined at this time,
and the training of the neural network can be stopped. Specifically, assuming a three-layer
BP neural network with M input layer nodes, N hidden layer nodes, and O output layer
nodes and by using a sigmoid function as the activation function, the main steps of BP
neural network training are as follows.

(1) The input variables neti are computed for the ith node of the hidden layer of the
neural network; the equation is shown in Equation (13):

neti =
M

∑
j=1

wijxi + θi (13)

where the meaning of the variable xi denotes the input parameter of the jth node
of the input layer, j = 1, . . . , M; the meaning of the variable wij denotes the neural
network’s weight parameter between the ith node of the hidden layer and the jth node
of the input layer; the meaning of the variable θi denotes the threshold parameter of
the ith node of the hidden layer.

(2) The output variable yi is computed for the ith node of the hidden layer of the neural
network; the equation is shown in Equation (14):

yi = g(neti) = g

(
M

∑
j=1

wijxi + θi

)
(14)

where g(x) is the excitation function of the hidden layer. A sigmoid function expressed
by Equation (15) is used in this study:

g(x) =
1

1 + e−x (15)

(3) The input variable netk is calculated for the kth node of the output layer of the neural
network; the equation is shown in Equation (16):

netk =
q

∑
i=1

wkiyi + ak =
q

∑
i=1

wkig

(
M

∑
j=1

wijxi + θi

)
+ ak (16)

where the meaning of the variable wki denotes the weight parameter between the kth
node of the output layer and the ith node of the hidden layer, i = 1, . . . , q; the variable
ak denotes the threshold parameter of the kth node of the output layer, k = 1, . . . , L;

(4) The output variable ok is computed for the kth node of the output layer of the neural
network; the equation is shown in Equation (17):

ok = g(netk) = g

(
q

∑
i=1

wkiyi + ak

)
= g

(
q

∑
i=1

wkig

(
M

∑
j=1

wijxi + θi

)
+ ak

)
(17)
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(5) The error E is calculated with Equation (18):

E =
1
2

M

∑
k=1

(Yk − ok) (18)

where Yk is the desired output.
(6) The weight is updated with Equation (19):{

wij = wij + ηyi(1− yi)xi

wjk = wjk + ηyi(Y k − ok

) (19)

where η is the learning rate.
(7) The threshold is updated with Equation (20):{

θi = θi + ηyi(1− yi)
ak = ak + η(Y k − ok)

(20)

(8) It is determined whether the iteration of the algorithm is finished, and if not, one
returns to step (2).

A flowchart of the BP neural network is shown in Figure 4.
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2.3.2. GA-BP Neural Network

While BP neural networks have strong learning capabilities and robustness, they can
suffer from some limitations. Because their search mechanism is that of gradient descent,
without prior knowledge, the initial values and weights of the network are random, making
them prone to being trapped in local minima instead of finding the global minimum.
Consequently, a network may fail to obtain the optimal solution, and its learning and
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memory can be unstable. If training samples are added, the pre-trained network needs to
be retrained from the beginning without leveraging the previous knowledge of weights
and thresholds. This increases the learning burden and reduces the learning efficiency [39].
To address these issues, the genetic algorithm (GA) can be used to optimize a BP neural
network. By incorporating the GA, it is possible to quickly obtain the optimal neural
network parameters, accelerate the learning process, and enhance the progress of network
inversion.

Genetic algorithms are used to construct a fitness function based on the objective func-
tion of a problem, evaluate and perform genetic operations, select a population consisting
of multiple solutions (each solution corresponds to a chromosome), and reproduce it over
multiple generations to obtain the individual with the best fitness value as the optimal
solution to the problem [40]. The specific steps are as follows:

(1) Chromosome encoding: A real-number encoding strategy is used to implement the
encoding of the chromosomes of the genetic algorithm. The S-order real matrix is set
to [−1, 1], based on which the parameters, such as the connection weights between
nodes in each layer of the BP neural network and node thresholds in the hidden layer
and output layer, are encoded and solved for optimality [41]. Compared with binary
coding, real-number coding does not require decoding at a later stage, the coding
length is shorter, and the accuracy of the parameter search is high [42].

(2) Initializing the population: The initial population of W = (w1; w2; . . . ; wp) is randomly
generated, and the number of individuals in the population is set to P. Individuals wi,
w1; w2; . . . ; ws are generated with a linear interpolation function for one chromosome
of the algorithm.

(3) Calculation of the population individuals’ fitness values: The sum of the squared
training errors is used for the calculation of the population individuals’ fitness values.

(4) Selection: By using the roulette wheel method, the selection probability can be calcu-
lated with Equation (21):

pi =
fi

∑
p
i=1 fi

(21)

where fi is the fitness function, and p is the population size.
(5) Crossover: The crossover operation of gene wq at position j and the crossover operation

of gene ws at position j are performed according to Equation (22):{
wqj = wqj(1− b) + wsjb
wsj = wsj(1− b) + wqjb

(22)

where b is a random number in the range of [0,1].
(6) Mutation: The jth gene of the ith individual undergoes population variation, and the

operation of which can be described by Equations (23) and (24):

wij =

{
wij +

(
wij − wmax

)
f (g) r ≥ 0.5

wij +
(
wmin − wij

)
f (g) r < 0.5

(23)

f (g) = r2

(
1− g

Gmax

)
(24)

where wmax and wmin are the maximum and minimum values of gene wij, respectively;
Gmax is the maximum number of evolutions; g is the current iteration number; r is a
random number in the range of [0, 1]; r2 is a random number.

(7) Obtaining new populations: Steps (4) to (6) are repeated until the optimal solution is
output.

A flowchart of GA-BP neural network training is shown in Figure 5.
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3. Experimental Area and Data Sources
3.1. Experimental Area

The study area was the head canal section of the South–North Water Diversion Project
in China, which was located at the head of the Tao Fork Canal in Danyang Village, Jiu
Chong Town, Xi Chuan County, Nanyang City, Henan Province, terminating at the junction
of Fangcheng County and Ye County, with the end pile number 185 + 545 and a total length
of 185.545 km, of which the channel length was 176.718 km and the building length was
8.827 km. Here, there were 58.411 km of deep excavation canals, with a maximum depth
of 47.5 m and an opening width of 373.22 m; there were 33.689 km of fill canals, with a
maximum fill height of 17 m; there were 149.476 km of swelling soil canals, accounting
for 84.5% of the total canal length and including 56.729 km of weak swelling soil canals,
84.37 km of medium swelling soil canals, and 8.377 km of strong swelling soil canals. The
experimental area is shown in Figure 6.



Remote Sens. 2023, 15, 4340 13 of 34Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 35 
 

 

 

Figure 6. Real map of the GNSS study area. 

3.2. Experimental Data 

The data adopts multi-system data from three GNSS automated measurement sta-

tions (GP01, GP02, GP03) in the experimental area, and uses continuous observation sat-

ellite data from three stations for a total of 150 days from December 16, 2020 to May 14, 

2021 to conduct a multi-system combination GNSS-R high-resolution soil moisture inver-

sion study. A soil moisture sensor probe was buried at a depth of approximately 7.5cm 

about 1m next to the GNSS receiver device, and the soil moisture communication device 

and GNSS receiving device were integrated. To validate the performance of the method, 

in situ soil moisture data measured near the station sites were used as reference data for 

comparison. The modeling data consisted of 125 days of satellite data and the correspond-

ing soil moisture priors collected from December 16, 2020 to April 19, 2021. The data for 

verifying the model accuracy, on the other hand, comprised satellite data and soil mois-

ture priors collected from April 20, 2021 to May 14, 2021. All GNSS receiver data can be 

used, and the Beiyun receiver used in this study. The GNSS station map and soil moisture 

meter map is shown in Figure 7, the GNSS monitoring receiver is shown in Figure 8, and 

the parameter configuration is shown in Table 1. 

Figure 6. Real map of the GNSS study area.

3.2. Experimental Data

The data adopts multi-system data from three GNSS automated measurement stations
(GP01, GP02, GP03) in the experimental area, and uses continuous observation satellite data
from three stations for a total of 150 days from 16 December 2020 to 14 May 2021 to conduct
a multi-system combination GNSS-R high-resolution soil moisture inversion study. A soil
moisture sensor probe was buried at a depth of approximately 7.5 cm about 1 m next to the
GNSS receiver device, and the soil moisture communication device and GNSS receiving
device were integrated. To validate the performance of the method, in situ soil moisture
data measured near the station sites were used as reference data for comparison. The
modeling data consisted of 125 days of satellite data and the corresponding soil moisture
priors collected from 16 December 2020 to 19 April 2021. The data for verifying the model
accuracy, on the other hand, comprised satellite data and soil moisture priors collected from
20 April 2021 to 14 May 2021. All GNSS receiver data can be used, and the Beiyun receiver
used in this study. The GNSS station map and soil moisture meter map is shown in Figure 7,
the GNSS monitoring receiver is shown in Figure 8, and the parameter configuration is
shown in Table 1.
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Table 1. GNSS receiver parameter configuration.

Receiver Performance Indicators

tracking channel GPS L1C/A, L2C, L2P
positioning accuracy 3 h positioning accuracy: plane: ±1–3 mm, elevation: ±2–5 mm.
data sampling rate Supports up to 50 Hz

data logging 32 GB TF card; supporting data storage and transmission;
Supports circular storage.

timing accuracy 20 ns RMS
Speed measurement accuracy 0.03 m/s RMS

power supply 12 V DC input; the power is less than 2 W.
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4. Experiments and Results
4.1. Experimental Technical Program

Figure 9 shows a flowchart of the soil moisture inversion technique used in this study.
As can be seen in the figure, the technical route of this study can be divided into three steps:
(1) preprocessing of the GNSS-R soil moisture inversion data to extract the characteristic
parameters of the amplitude and phase of the reflected signal from the observation data
acquired with the original GNSS receiver; (2) the use of the multi-satellite multi-frequency
data fusion technique to fuse the acquired characteristic parameter data to obtain more
accurate observation data and improve the inversion accuracy; and (3) a linear model, BP
neural network model, and GA-BP neural network model are developed to invert the soil
moisture and compare the inversion accuracy of single-satellite data with that of the fused
data.
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4.2. Extraction of the Reflected Signal’s Feature Parameters

The GNSS receiver’s observation data are collected in the carrier phase and pseudor-
ange format, while GNSS-R soil moisture retrieval requires the utilization of the satellite
elevation angle and signal-to-noise ratio (SNR). To obtain these parameters, it is neces-
sary to calculate them from the GNSS observation and navigation files with the relevant
equations.

In this study, the signal-to-noise ratio data were extracted from the navigation file
with the satellite altitude angle data by using teqc software. At low satellite altitude angles,
the signal-to-noise ratio had a serious multipath effect and showed periodic oscillations.
With the gradual increase in the satellite altitude angle, the antenna had a larger gain, and
the signal-to-noise ratio tended to be stable. In order to extract the reflected signal data
from the GNSS SNR data, a low-order polynomial fit to the SNR data was used to separate
the contribution of the multipath effect to the SNR from the amplitude of the direct signal
and to remove the direct component. In addition, in order to standardize the SNR data in
dB/Hz units, which are normally converted into values in linear units (Volts/Volts), the
linearization formula shown in Equation (25) was used [43]:

SNRV/V = 10SNRdB/Hz/20 (25)

Figure 10a shows a plot of the signal-to-noise ratio versus the satellite altitude angle.
The signal-to-noise ratio data are shown in blue, and the direct radiation signal data from
the low-order polynomial fit are shown in red. Figure 10b shows the linearized reflected
signal after removing the direct signal.
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The research area is a slope with a gentle slope, with a maximum slope of around
15 degrees, which affects signal reception. In order to eliminate the influence of surface
environmental factors, the Savitzky–Golay algorithm was introduced to preprocess the
multipath components [44] in order to remove the effects of noise and coarse differences.
Figure 11 shows the reflected signal after processing with the SG algorithm.
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Figure 11. Reflected signal processed with the Savitzky–Golay algorithm.

Lomb–Scargle spectrum analysis (LSP) was used to estimate the temporal variations
in the principal frequency of the signal-to-noise ratio interferogram to obtain the principal
frequency; this was obtained as the effective reflector height h according to Equation (26).
Figure 12 shows the LSP spectrum analysis of station GP02 and satellite G01 on 1 January
2021.

h =
1
2

λ f (26)

where f is the main frequency, λ is the carrier wavelength, the wavelength of the L1 band
is 24.42 cm, and that of the L2 band is 19.03 cm.
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Figure 12. LSP spectrum analysis of station GP02 and satellite G01 on 1 January 2021.

After obtaining the h values, the characteristic parameters of the amplitude and
delayed phase were obtained by fitting the nonlinear least squares in Equation (2) [45].
Table 2 shows some of the amplitude and phase data obtained by fitting station GP02.

Table 2. Phase and amplitude data of station GP02.

Satellite Maximum
Elevation/◦

Minimum
Elevation/◦

Frequency
Band Amplitude/v Phase/rad

G29 24.93 2.47 L1 3.987 3.053
G05 24.94 7.34 L1 5.570 4.126
G19 24.99 2.07 L1 4.911 3.883
G26 24.95 4.06 L1 7.780 2.324
G22 24.97 2.79 L2 3.485 3.884
G14 24.95 3.34 L2 6.362 1.788
G32 24.98 2.90 L2 5.067 2.916
G21 24.92 2.02 L2 2.180 3.308

4.3. Data Fusion

Before data fusion, in order to reduce the excessive differentiation of the feature
elements caused by different satellites, the inverse-derived data were first normalized by
using Equations (3) and (4) for the amplitude and phase data, respectively. Table 3 shows
the normalized data of some characteristic elements of station GP02. Figure 13 shows the
normalized feature elements of some satellites of station GP02.

Table 3. Normalization phase and amplitude data of station GP02.

Satellite Maximum
Elevation/◦

Minimum
Elevation/◦

Frequency
Band Amplitude/v Phase/rad

G29 24.93 2.47 L1 0.818 1.446
G05 24.94 7.34 L1 0.502 2.190
G19 24.99 2.07 L1 0.766 1.533
G26 24.95 4.06 L1 0.991 1.310
G22 24.97 2.79 L2 0.489 2.982
G14 24.95 3.34 L2 0.445 1.140
G32 24.98 2.90 L2 0.385 2.246
G21 24.92 2.02 L2 0.178 1.787
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Figure 13. (a) Phase data map of the L1 frequency band of station GP02 after the normalization
of multiple satellites. (b) Amplitude data map of the L1 frequency band of station GP02 after the
normalization of multiple satellites. (c) Phase data map of the L2 frequency band of station GP02
after the normalization of multiple satellites. (d) Amplitude data map of the L1 frequency band of
station GP02 after the normalization of multiple satellites.

The normalized characteristic elements were subjected to a correlation analysis with
soil moisture. The results of the correlation analysis are shown in Table 4.

Table 4. Correlation analysis between characteristic elements and soil moisture.

Monitoring Station Feature Frequency Band Correlation Coefficient (R2)

GP01

satellite G06 G19 G22 G29 G05

Phase
L1 −0.586 −0.566 −0.493 −0.492 −0.474
L2 −0.610 −0.574 −0.487 −0.414 0.356

Amp L1 −0.470 −0.391 −0.340 0.312 0.301
L2 0.582 0.564 −0.523 −0.494 0.486

GP02
Phase

L1 −0.375 −0.535 −0.426 0.505 0.275
L2 −0.451 0.440 0.578 −0.532 0.503

Amp L1 0.335 0.422 −0.302 0.292 −0.287
L2 −0.370 0.451 0.469 0.308 −0.243

GP03
Phase

L1 −0.776 −0.668 0.549 −0.485 0.485
L2 −0.715 0.672 0.427 0.394 0.393

Amp L1 −0.469 0.464 −0.436 −0.431 0.410
L2 −0.705 0.683 −0.649 −0.607 0.606

According to the correlation results in Table 4, it can be seen that for points GP01
and GP03, the phase and amplitude of the L1 and L2 bands of satellite G06 had a strong
correlation with soil moisture; for point GP02, the phase and amplitude of satellite G19 had
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a strong correlation with soil moisture in the L1 band, while the phase and amplitude of
satellite G22 had a strong correlation with soil moisture in the L2 band. Therefore, in this
study, satellite G06 was selected for subsequent single-satellite inversion experiments for
points GP01 and GP03, satellite G19 was selected for subsequent single-satellite inversion
experiments for point GP02 in the L1 band, and satellite G22 was selected for subsequent
single-satellite inversion experiments for point GP02 in the L2 band. At the same time,
the four satellites with the highest correlations were automatically selected by using the
fusion algorithm for the joint multi-satellite inversion experiments with the corresponding
satellites at the corresponding points. Table 5 shows the fusion of the single-satellite data
with multi-satellite multi-band data on 16 December 2020 for the data on the characteristic
parameters.

Table 5. Table of the characteristic parameters for 16 December 2020.

Monitoring Station Satellite Maximum
Elevation/◦

Minimum
Elevation/◦

Frequency
Band Amplitude/v Phase/rad

GP01
G06 24.98 6.32 L1 1.061 1.098
G06 24.98 6.32 L2 0.901 1.157

24.98 2.37 Fusion 0.370 0.277

GP02
G19 24.99 2.07 L1 0.850 1.754
G22 24.97 2.79 L2 0.617 1.007

24.99 2.07 L2 0.280 0.277

GP03
G06 24.97 2.10 L1 0.559 1.752
G06 24.97 2.10 L2 1.012 1.241

24.98 2.02 Fusion 0.271 0.279

4.4. Soil Moisture Inversion Results

In order to verify the effectiveness of the fusion algorithm, and considering that
the deep learning algorithm had self-learning and adaptive abilities for solving high-
dimensional nonlinear problems, models of three methods were established for a compar-
ative analysis. The three models included the conventional linear regression model, the
BP neural network model, and the GA-BP neural network model. We trained using the
data from the first 125 days (for linear inversion experiments, we used 125 days of data
to establish the model; for neural network experiments, we divide the data into training
and validation sets in an 8:2 ratio to establish the model) and then used the 25 day data
that did not participate in the training as the test set to verify the accuracy of the trained
model, in order to verify its generalization ability and real performance. The linear model
was modeled separately for the amplitude and phase with soil moisture, and it has been
verified by many studies that the inversion effect of unifying the amplitude and phase as
x-value inputs when using a deep learning algorithm is more accurate than when using
single-feature element inversion [45]. Therefore, in this study, the amplitude, phase, and
frequency were used as input x-values for the deep learning network, and soil moisture
values were used as output y-values for training.

Figure 14 shows the linear model that was built at site GP01. Figure 15 shows the
linear model that was built at site GP02. Figure 16 shows the linear model that was built at
site GP03. Table 6 shows the results of the root mean square error (RMSE), model goodness
of fit (R2), correlation (r), mean squared error (MSE), and mean absolute error (MAE) for
the linear model’s training.
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Figure 16. Linear model established for station GP03: (a) amplitude linear model; (b) phase linear
model.

Table 6. Analysis of the accuracy of the linear model.

Monitoring Station Data RMSE R2 r MAE MSE

GP01

Amp
L1 2.035 0.116 0.340 1.415 4.141
L2 1.844 0.274 0.523 1.290 3.400

Fusion 1.724 0.321 0.567 1.128 2.972

Phase
L1 1.754 0.343 0.586 1.183 3.077
L2 1.890 0.237 0.487 1.339 3.572

Fusion 1.612 0.432 0.657 1.037 2.599

GP02

Amp
L1 0.743 0.091 0.302 0.618 0.552
L2 0.688 0.218 0.467 0.559 0.473

Fusion 0.689 0.220 0.469 0.547 0.475

Phase
L1 0.737 0.106 0.326 0.594 0.543
L2 0.740 0.097 0.311 0.587 0.548

Fusion 0.717 0.133 0.365 0.560 0.514

GP03

Amp
L1 1.150 0.220 0.469 0.973 1.323
L2 1.211 0.135 0.368 1.055 1.467

Fusion 0.923 0.497 0.705 0.686 0.852

Phase
L1 0.822 0.602 0.776 0.643 0.676
L2 0.911 0.511 0.715 0.698 0.830

Fusion 0.723 0.616 0.785 0.616 0.523

As shown in Figures 14–16 and Table 6, the linear model that was developed did reflect
the relationship between the characteristic elements and soil moisture. The highest single-
satellite inversion correlation for station GP01 was the phase inversion of the L1 band, with
a correlation of 58.6%, RMSE of 1.754, MAE of 1.183, MSE of 3.077, and R2 of 0.343, and the
highest single-satellite inversion correlation for station GP02 was the amplitude inversion
of the L2 band, with a correlation of 46.7%, RMSE of 0.688, MAE of 0.559, MSE of 0.473, and
R2 of 0.218. The highest single-satellite inversion correlation of station GP03 was the phase
inversion of the L2 band, with a correlation of 71.5%, RMSE of 0.911, MAE of 0.698, MSE
of 0.830, and R2 of 0.511; the highest correlation of the multi-satellite multi-band fusion
data from station GP01 was in the phase inversion, with a correlation of 65.7%, RMSE of
1.724, MAE of 1.037, MSE of 2.599, and R2 of 0.432, while the highest correlation of the
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multi-satellite multi-band fusion data from station GP02 was in the amplitude inversion,
with a correlation of 46.9%, RMSE of 0.689, MAE of 0.547, MSE of 0.475, and R2 of 0.220.
The highest correlation of the multi-satellite multi-band fusion data from station GP03
was in the phase inversion, with a correlation of 78.5%, RMSE of 0.723, MAE of 0.616,
MSE of 0.523, and R2 of 0.616. The results in Table 6 show that the fused data had an
improved correlation and model fit, and the root mean square error and mean absolute
error decreased, which verified the effectiveness of the multi-satellite multi-band fusion
technique with a linear model.

In this experiment, the training process of the BP neural network was set to 6000 epochs.
One epoch is the process of importing the entire dataset for complete training, with 16 hid-
den layers and a learning rate of 0.02. In the GA algorithm of GABP neural network, the
population size is set to 500, the mutation rate is 0.09, the crossover rate is 0.1, and the
number of iterations is 500; in the BP neural network, the number of epochs is set to 1000,
and the learning rate is 0.01. Figure 17 shows the loss value curve of the training set and
validation set during the training process of BP neural network, and Figure 18 shows the
loss value curve of the training set and validation set during the training process of GABP
neural network. As shown in the Figure, there is no overfitting during the training process.
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Figure 17. BP neural network training process of the training set and validation set of the loss value
curve (a) GP01 station training process loss value curve. (b) GP02 station training process loss value
curve. (c) GP03 station training process loss value curve.

After the training, we used untrained data from 20 April 2021 to 14 May 2021 as test
data to verify the accuracy of the model. Figure 19 shows the results of soil moisture values
in the linear model test set. Figure 20 shows the soil moisture results of the BP neural
network test set. Figure 21 shows the soil moisture results of the GA-BP neural network
model test set.
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Figure 19. The linear model’s prediction results for soil moisture. (a) Frequency band and fusion
data for predicting soil moisture values for station GP01. (b) Frequency band and fusion data for
predicting soil moisture values for station GP02. (c) Frequency band and fusion data for predicting
soil moisture values for station GP03.
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for predicting soil moisture values for station GP01. (b) Frequency band and fusion data for predicting
soil moisture values for station GP02. (c) Frequency band and fusion data for predicting soil moisture
values for station GP03.
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Figure 21. GA-BP neural network model for predicting soil moisture. (a) Frequency band and fusion
data for predicting soil moisture values for station GP01. (b) Frequency band and fusion data for
predicting soil moisture values for station GP02. (c) Frequency band and fusion data for predicting
soil moisture values for station GP03.

5. Discussion

In this study, five metrics—the root mean square error (RMSE), model goodness of
fit (R2), correlation (r), mean absolute error (MAE): and mean squared error (MSE)—were
used to evaluate the models’ accuracy.

Root mean square error (RMSE): The square root of the ratio of the square of the
deviation of the observed value from the true value to the number of observations N. This
reflects the extent to which the measured data deviate from the true value. The formula is
shown in Equation (27):

RMSE =

√√√√ 1
N

N

∑
i=1

(y i −Yi)
2 (27)

where yi is the predicted value of soil moisture, and Yi is the true value of soil moisture.
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Model goodness of fit (R2): The percentage of the variance in the dependent vari-
able y that can be explained by the independent variable x. The formula is shown in
Equation (28)–(31):

Y =
1
N

N

∑
i=1

Yi (28)

SStot =
N

∑
i=1

(
Yi −Y

)2 (29)

SSres =
N

∑
i=1

(yi −Yi)
2 (30)

R2 = 1− SSres

SStot
(31)

Correlation (r): This measures the correlation between the predicted and actual values.
The formula is shown in Equation (32):

r =
COV(y, Y)√

VAR(y)VAR(Y)
=

∑ (yi − y)
(
Y−Y

)√
∑ (yi − y)∑

(
Y−Y

) (32)

Mean absolute error (MAE): This is the average of the absolute error between the
predicted value and the actual value. The formula is shown in Equation (33):

MAE =
∑N

i=1|yi −Yi|
N

(33)

Mean Squared Error (MSE): This is a commonly used measure of the difference
between the predicted values of a model and the actual observed values to assess how well
the model fits on the given data. The formula is shown in Equation (34):

MSE =
1
N

N

∑
i=1

(y i −Yi)
2 (34)

Table 7 shows the results for the root mean square error (RMSE), model goodness of
fit (R2), correlation (r), mean absolute error (MAE), and mean squared error (MSE) between
the predicted and true values of soil moisture for the linear model.

As shown in Figure 19 and Table 7, the accuracy of the model built by using the data
from the L2 band was higher than that when using the L1 band in the model of amplitude
and soil moisture at station GP01, with the correlation between the predicted and true
values of L2 band being 76.0%, the root mean square error being 2.144, the goodness of fit
being 0.578, the mean square error being 4.597, and the mean absolute error being 1.608.
The correlation between the predicted and true values of the fused data was 87.7%, the
root mean square error was 1.927, the goodness of fit was 0.769, the mean square error
being 3.713, and the mean absolute error was 1.365. It was calculated that the correlation
between the predicted and true values of the fused data improved by 12.7%, the root mean
square error decreased by 0.217, the goodness of fit improved by 0.191, the mean square
error decreased by 0.884, and the mean absolute error decreased by 0.243 in comparison
with the single-satellite data on the L2 band. In the model, the accuracy of the model built
with data from the L2 band was higher than that built with data from the L1 band. The
correlation between the predicted and true values of the L2 band was 88.9%, the root mean
square error was 1.921, the goodness of fit was 0.790, the mean square error being 3.690, the
mean absolute error was 1.560, and the correlation between the predicted and true values
of fused data was 98.4%; the root mean square error was 1.028, the goodness of fit was
0.968, the mean square error being 1.057, and the mean absolute error was 0.790. It was
calculated that the correlation between the predicted and true values of the fused data was
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improved by 9.5%, the root mean square error was reduced by 0.893, the goodness of fit was
improved by 0.178, the mean square error decreased by 2.633, and the mean absolute error
was reduced by 0.770 in comparison with the single-satellite data in the L2 band. Similarly,
it could be calculated that the correlation between the predicted and true values of the
fused data in the amplitude and soil moisture model for station GP02 was improved by
7.6%, the root mean square error was reduced by 0.476, the fit was improved by 0.251, the
mean square error decreased by 0.719, and the mean absolute error was reduced by 0.449
in comparison with the single-satellite data for the L2 band. In the phase and soil moisture
model for station GP02, the correlation between the predicted and true values of the fused
data improved by 7.6%, the root mean square error decreased by 0.472, the fit improved by
0.127, the mean square error decreased by 0.969, and the mean absolute error decreased by
0.458 in comparison with the single-satellite data for the L2 band. In the amplitude and soil
moisture model for station GP03, the correlation between the predicted and true values
of the fused data improved by 9.3%, the root mean square error decreased by 0.636, the
fit improved by 0.151, the mean square error decreased by 0.940, and the mean absolute
error decreased by 0.463 in comparison with the single-satellite data for the L1 frequency
band. In the phase and soil moisture model for station GP03, the correlation between the
predicted and true values of the fused data improved by 6.5%, the root mean square error
decreased by 0.18, the fit improved by 0.087, the mean square error decreased by 0.240, and
the mean absolute error decreased by 0.162 in comparison with the single-satellite data for
the L1 band.

Table 7. Analysis of the accuracy of the linear model between the predicted and true values of soil
moisture.

Monitoring
Station Data RMSE R2 r MAE MSE

GP01

Amp
L1 2.792 0.558 0.747 2.195 7.795
L2 2.144 0.578 0.760 1.608 4.597

Fusion 1.927 0.769 0.877 1.365 3.713

Phase
L1 2.521 0.716 0.846 1.356 6.355
L2 1.921 0.790 0.889 1.560 3.690

Fusion 1.028 0.968 0.984 0.790 1.057

GP02

Amp
L1 1.192 0.616 0.785 1.089 1.421
L2 0.993 0.731 0.855 0.903 0.986

Fusion 0.517 0.867 0.931 0.454 0.267

Phase
L1 1.233 0.537 0.733 1.087 1.520
L2 1.263 0.632 0.795 1.115 1.595

Fusion 0.791 0.759 0.871 0.657 0.626

GP03

Amp
L1 1.057 0.623 0.789 0.822 1.117
L2 0.850 0.627 −0.792 0.644 0.723

Fusion 0.421 0.778 0.882 0.359 0.177

Phase
L1 0.760 0.411 0.641 0.614 0.578
L2 1.377 0.392 −0.626 1.029 1.896

Fusion 0.581 0.498 0.706 0.452 0.338

Table 8 shows the results for the root mean square error (RMSE), model goodness of
fit (R2), correlation (r), mean absolute error (MAE), and mean squared error (MSE) between
the predicted and true values of soil moisture from the BP neural network model.

As shown in Figure 20 and Table 8, the accuracy of the model built by using the
data from the L2 band in the BP neural network model of station GP01 was higher than
the accuracy of that built with the data from the L1 band. The correlation between the
predicted and true values for the L2 band was 84.2%, the root mean square error was 2.114,
the goodness of fit was 0.447, the mean square error was 4.469, and the mean absolute
error was 1.615. The correlation between the predicted and true values for the fused data
was 96.4%, the root mean square error was 0.907, the goodness of fit was 0.898, the mean
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square error was 0.823, and the mean absolute error was 0.602. It was calculated that the
correlation between the predicted and true values of the fused data was improved by 12.2%,
the root mean square error was reduced by 1.207, the goodness of fit was improved by
0.122, the mean square error was decreased by 3.646, and the mean absolute error was
reduced by 1.013 in comparison with the single-satellite data in the L2 band. In the BP
neural network model for station GP02, the accuracy of the model built with the data from
the L2 band was higher than that of the model built with data from the L1 band. The
correlation between the predicted and true values for the L2 band was 81.1%, the root mean
square error was 0.787, the goodness of fit was 0.594, the mean square error was 0.619,
and the mean absolute error was 0.651. The correlation between the predicted and true
values for the fused data was 96.5%, the root mean square error was 0.392, the goodness of
fit was 0.899, the mean square error was 0.154, and the mean absolute error was 0.298. It
was calculated that the correlation between the predicted and true values of the fused data
was improved by 15.4%, the root mean square error was reduced by 0.395, the goodness of
fit was improved by 0.305, the mean square error was decreased by 0.465, and the mean
absolute error was reduced by 0.353 in comparison with the single-satellite data for the L2
band. In the BP neural network model for station GP03, the accuracy of the model built
with the data from the L1 band was higher than that of the model built with data from the
L2 band. The correlation between the predicted and true values of the L1 band was 70.1%,
the root mean square error was 0.826, the goodness of fit was 0.671, the mean square error
was 0.682, and the mean absolute error was 0.635. The correlation between the predicted
and true values for the fused data was 75.9%, the root mean square error was 0.599, the
goodness of fit was 0.720, the mean square error was 0.359, and the mean absolute error was
0.432. Compared with the single-satellite data for the L1 band, the correlation between the
predicted and true values of the fused data was improved by 5.8%, the root mean square
error was reduced by 0.227, the goodness of fit was improved by 0.058, the mean square
error was decreased by 0.323, and the mean absolute error was reduced by 0.203.

Table 8. Analysis of the accuracy of the BP neural network model between the predicted and true
values of soil moisture.

Monitoring
Station Data RMSE R2 r MAE MSE

GP01
L1 2.459 0.252 0.734 2.102 6.047
L2 2.114 0.447 0.842 1.615 4.469

Fusion 0.907 0.898 0.964 0.602 0.823

GP02
L1 0.805 0.575 0.807 0.679 0.648
L2 0.787 0.594 0.811 0.651 0.619

Fusion 0.392 0.899 0.965 0.298 0.154

GP03
L1 0.826 0.671 −0.701 0.635 0.682
L2 0.843 0.642 0.684 0.677 0.711

Fusion 0.599 0.720 0.759 0.432 0.359

Table 9 shows the results for the root mean square error (RMSE), model goodness of
fit (R2), correlation (r), mean absolute error (MAE), and mean squared error (MSE) between
the predicted and true values of soil moisture for the GA-BP neural network model.

As shown in Figure 21 and Table 9, the accuracy of the model built with the data from
the L2 band in the GA-BP neural network model for station GP01 was higher than that of
the model built with data from the L1 band. The correlation between the predicted and
true values for the L2 band was 89.1%, the root mean square error was 1.078, the goodness
of fit was 0.856, the mean square error was 1.162, and the mean absolute error was 0.688,
and the correlation between the predicted and true values of the fused data was 95.4%.
The correlation between the predicted and true values of the fused data was 95.4%, the
root mean square error was 0.983, the goodness of fit was 0.880, the mean square error was
0.966, and the mean absolute error was 0.533. It was calculated that the correlation between
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the predicted and true values of the fused data improved by 6.3%, the root mean square
error decreased by 1.207, the goodness of fit improved by 0.024, the mean square error was
decreased by 0.196, and the mean absolute error decreased by 0.155 in comparison with the
single-satellite data for the L2 band. In the GA-BP neural network model for station GP02,
the accuracy of the model built with the data from the L2 band was higher than that of the
model built with the data from the L1 band. The correlation between the predicted and
true values for the L2 band was 88.5%, the root mean square error was 0.199, the goodness
of fit was 0.874, the mean square error was 0.040, and the mean absolute error was 0.151.
The correlation between the predicted and true values of the fused data was 94.2%, the
root mean square error was 0.154, the goodness of fit was 0.885, the mean square error
was 0.024, and the mean absolute error was 0.096. It was calculated that the correlation
between the predicted and true values of the fused data was improved by 5.3%, the root
mean square error was reduced by 0.045, the goodness of fit was improved by 0.011, the
mean square error was decreased by 0.016, and the mean absolute error was reduced by
0.055 in comparison with the single-satellite data for the L2 band. In the GA-BP neural
network model for station GP03, the accuracy of the model built with the data from the
L1 band was higher than that of the model built with the data from the L2 band. The
correlation between the predicted and true values for the L1 band was 82.2%, the root mean
square error was 0.409, the goodness of fit was 0.590, the mean square error was 0.167,
and the mean absolute error was 0.308. The correlation between the predicted and true
values of the fused data was 84.8%, the root mean square error was 0.342, the goodness of
fit was 0.713, the mean square error was 0.117, and the mean absolute error was 0.250. It
was calculated that the correlation between the predicted and true values of the fused data
was improved by 2.6%, the root mean square error was reduced by 0.067, the goodness of
fit was improved by 0.123, the mean square error was decreased by 0.050, and the mean
absolute error was reduced by 0.058 in comparison with the single-satellite data for the L1
band.

Table 9. Analysis of the accuracy of the GA-BP neural network model between the predicted and
true values of soil moisture.

Monitoring
Station Data RMSE R2 r MAE MSE

GP01
L1 1.173 0.830 0.852 0.820 1.376
L2 1.078 0.856 0.891 0.688 1.162

Fusion 0.983 0.880 0.954 0.533 0.966

GP02
L1 0.238 0.863 0.885 0.190 0.057
L2 0.199 0.874 0.889 0.151 0.040

Fusion 0.154 0.885 0.942 0.096 0.024

GP03
L1 0.409 0.590 0.822 0.308 0.167
L2 0.399 0.609 0.791 0.308 0.159

Fusion 0.342 0.713 0.848 0.250 0.117

We analyzed the soil moisture inversion error, calculated the absolute soil moisture
inversion error (the difference between the inversion error and the true value), and analyzed
the interval distribution pattern.

Table 10 shows the maximum, median, and minimum true values of soil moisture, the
predicted values of soil moisture for each inversion model, and the absolute errors between
the predicted values and the true values.

Figure 22 shows a statistical histogram of the frequency of absolute errors in soil
moisture accounted for by the three model inversions at station GP02. As shown in the
figure, the absolute error distribution of the linear model is between 0.5 and 1.5, the BP
neural network model has an absolute error distribution of −0.5 to 0.5, the GABP neural
network model has an absolute error distribution of −0.25 to 0.25, and overall, the three
models conform to a normal distribution.
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Table 10. Predicted soil moisture values for each model.

Monitoring
Station

Actual Soil Moisture
Value/%

Model Predicted Soil Moisture
Values/% Absolute Error

Linear
BP GABP

Linear
BP GABP

amp Phase amp Phase

GP01
max 35.0 31.0 33.0 32.5 32.6 −4.0 −2.0 −2.5 −2.4

median 28.5 28.3 27.8 28.5 28.3 −0.2 −0.7 0.0 −0.2
min 24.8 25.6 25.1 25.8 25.6 0.8 0.3 1.0 0.6

GP02
max 28.5 27.7 28.3 27.7 28.5 −0.8 −0.2 −0.8 0.0

median 26.9 26.7 27.0 26.7 27.3 −0.2 0.1 −0.2 0.4
min 25.1 24.7 25.4 25.3 25.1 −0.4 0.3 0.2 0.0

GP03
max 29.0 28.5 28.8 28.0 28.6 −0.5 −0.2 −1.0 −0.4

median 28.0 27.7 27.6 27.5 28.0 −0.3 −0.4 −0.5 0.0
min 27.5 28.0 28.1 27.0 27.5 0.5 0.6 −0.5 0.0
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distribution of GABP neural network models.

From the above experimental results, it can be seen that the accuracy of the linear
model, BP neural network model, and GA-BP neural network model built by fusing multi-
satellite multi-band data by using the technique proposed in this study was higher than
that of the model built from single-satellite data, which fully proved the feasibility and
effectiveness of the method proposed in the study. The values predicted with the GA-BP
neural network model were closer to the true values received by the sensors. Figure 23
shows the plot of soil moisture values and error in the true values for the inversion of
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the three models, where yellow is the predicted value and error in the true values for the
GA-BP neural network model, green is the predicted value and error in the true values for
the BP neural network model, red is the predicted value and error in the true values for
the linear model built with the amplitude of the characteristic elements, and blue is the
predicted value and error in the true values for the linear model built with the phase of the
characteristic elements.
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Figure 23. Chart of the inverted soil moisture values and error in the true values. (a) The error
between the predicted and true values of soil moisture for each model at GP01 station. (b) The error
between the predicted and true values of soil moisture for each model at GP02 station. (c) The error
between the predicted and true values of soil moisture for each model at GP03 station.

6. Conclusions

In this study, based on GNSS-R technology and deep learning method, we carried out
a study on soil moisture inversion for the channel slope of the deep excavated expansive
soil canal section of the South-to-North Water Diversion Middle Line Project in China,
and provided a systematic solution for soil moisture inversion in the study area, which
provided scientific data support for analyzing the deformation mechanism of the channel
slope in the study area, and the main conclusions of the study are as follows:

(1) In order to improve the accuracy of soil moisture inversion by GNSS-R technology,
a multi-satellite and multi-band data fusion technique is proposed based on the
least squares adaptive fusion algorithm and entropy value method, which provides
a solution to the problems of limited observation information and low inversion
accuracy of soil moisture in single-satellite inversion. Combining the fused data with
linear models, BP neural network models, and GA-BP neural network models for soil
moisture inversion experiments, it can be seen that compared with single satellite
retrieval, the root mean square deviation of the three models decreased by 0.893,
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1.207, and 1.207, respectively, which indicates that it is feasible and reliable to use the
multi-satellite multi-band data fusion technology proposed in this study to retrieve
soil moisture in the study area.

(2) The inversion analysis of soil moisture near the three GNSS stations was carried out
using linear model, BP neural network model, and GA-BP neural network model,
respectively, and the results showed that the results of inversion of soil moisture using
GA-BP neural network were better than the other two models, and the correlation
degree of the three sites is as low as 84.8% and as high as 95.4%, which indicates
that the comprehensive use of multi-satellite multi-band data fusion technology and
GA-BP neural network model inversion of soil moisture can achieve good results.
It provides a new technical path for the soil moisture inversion of deep excavated
expansive soil channel slopes in the South-to-North Water Diversion Project.

(3) The GNSS-R soil moisture inversion process is affected by terrain conditions and
soil roughness. The application scenario of this paper is the slope of the channel
of the South-to-North Water Diversion Middle Line Project, and the study area has
a low vegetation coverage, so the influence of vegetation on soil moisture is not
considered. In the future, we will further optimize the soil moisture inversion model
based on GNSS-R and deep learning, focusing on the influence of vegetation on the
inversion results, to achieve a more realistic soil moisture inversion and to expand the
application scenarios of the research results.
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