
Citation: Suwanlee, S.R.;

Keawsomsee, S.; Pengjunsang, M.;

Homtong, N.; Prakobya, A.;

Borgogno-Mondino, E.; Sarvia, F.;

Som-ard, J. Monitoring Agricultural

Land and Land Cover Change from

2001–2021 of the Chi River Basin,

Thailand Using Multi-Temporal

Landsat Data Based on Google Earth

Engine. Remote Sens. 2023, 15, 4339.

https://doi.org/10.3390/rs15174339

Academic Editor: Michael Sprintsin

Received: 13 July 2023

Revised: 7 August 2023

Accepted: 31 August 2023

Published: 3 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Monitoring Agricultural Land and Land Cover Change from
2001–2021 of the Chi River Basin, Thailand Using
Multi-Temporal Landsat Data Based on Google Earth Engine
Savittri Ratanopad Suwanlee 1 , Surasak Keawsomsee 1, Morakot Pengjunsang 1, Nudthawud Homtong 2,
Amornchai Prakobya 3, Enrico Borgogno-Mondino 4 , Filippo Sarvia 4 and Jaturong Som-ard 1,*

1 Department of Geography, Faculty of Humanities and Social Sciences, Mahasarakham University,
Maha Sarakham 44150, Thailand; savittri.s@msu.ac.th (S.R.S.); 62010117013@msu.ac.th (S.K.);
62010117032@msu.ac.th (M.P.)

2 Department of Geotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand;
nudth@kku.ac.th

3 Geo-Informatics and Space Technology Development Agency (Public Organization),
Chonburi 20230, Thailand; amornchai.pra@gistda.or.th

4 Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Torino, Italy;
enrico.borgogno@unito.it (E.B.-M.); filippo.sarvia@unito.it (F.S.)

* Correspondence: jaturong.s@msu.ac.th

Abstract: In recent years, climate change has greatly affected agricultural activity, sustainability and
production, making it difficult to conduct crop management and food security assessment. As a
consequence, significant changes in agricultural land and land cover (LC) have occurred, mostly
due to the introduction of new agricultural practices, techniques and crops. Earth Observation (EO)
data, cloud-computing platforms and powerful machine learning methods can certainly support
analysis within the agricultural context. Therefore, accurate and updated agricultural land and
LC maps can be useful to derive valuable information for land change monitoring, trend planning,
decision-making and sustainable land management. In this context, this study aims at monitoring
temporal and spatial changes between 2001 and 2021 (with a four 5-year periods) within the Chi
River Basin (NE–Thailand). Specifically, all available Landsat archives and the random forest (RF)
classifier were jointly involved within the Google Earth Engine (GEE) platform in order to: (i) generate
five different crop type maps (focusing on rice, cassava, para rubber and sugarcane classes), and
(ii) monitoring the agricultural land transitions over time. For each crop map, a confusion matrix and
the correspondent accuracy were computed and tested according to a validation dataset. In particular,
an overall accuracy > 88% was found in all of the resulting five crop maps (for the years 2001, 2006,
2011, 2016 and 2021). Subsequently the agricultural land transitions were analyzed, and a total of
18,957 km2 were found as changed (54.5% of the area) within the 20 years (2001–2021). In particular,
an increase in cassava and para rubber areas were found at the disadvantage of rice fields, probably
due to two different key drivers taken over time: the agricultural policy and staple price. Finally, it is
worth highlighting that such results turn out to be decisive in a challenging agricultural environment
such as the Thai one. In particular, the high accuracy of the five derived crop type maps can be useful
to provide spatial consistency and reliable information to support local sustainable agriculture land
management, decisions of policymakers and many stakeholders.

Keywords: agriculture; land cover; change detection; Earth Observation; multi-temporal image;
Landsat; Google Earth Engine (GEE); random forest

1. Introduction

Anthropogenic activities, such as Land Use (LU) and Land Cover (LC) changes, are af-
fecting environmental conditions around the world, especially in developing countries [1,2].
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In particular, LU/LC dynamics that involve deforestation and urban expansion boost car-
bon levels in the atmosphere and worsen climate change [3]. As a result, assessing LU/LC
change could potentially offer several advantages concerning sustainable land use and key
important drivers in the present and future [2,4]. According to SDGs (Sustainable Develop-
ment Goals), Earth Observation (EO) data is a reliable source of information for mapping
and monitoring agricultural land. Specifically, it provides valuable and reliable information
for economic, social and environmental policies to accommodate LU/LC dynamics caused
by population growth, suburbanization and agricultural expansion [5–7]. Fast progress in
remote sensing technology provides a wide spatial distribution and, consequently, enables
LU/LC monitoring and mapping over time [8].

Thailand is one of the main agricultural product exporters in the world. The coun-
try’s agricultural production has significantly contributed to domestic and global market
demand, and as a consequence, agricultural activities have become a significant source
of economic growth in the past decades [9]. The amount of cultivated area in 2020 was
23.88 billion hectares (about the 46.54% of the nation areas). The northeast region of Thai-
land is mainly suited to agriculture, and is actually the most highly cultivated area within
the country (about 60% characterized by crop plantations). Many small landowners are
located in this area and the agricultural business based on rice, cassava, sugarcane and para
rubber (the main local crops) represents their main economic activity. Within this context,
the Thai government has supported crop cultivation to increase areas and production for
market demand, resulting in higher incomes for farmers [10,11].

Moreover, it is well know that farmers in the northeast region have acquired high
adaptability to unfavorable conditions by using different crop management activities, many
materials and national policies to increase productivity and production on the one hand,
while still leading to intensive planting on the other hand [12,13]. Thus, this region is an
important area for sustainable agricultural land management.

Although the northeast region of Thailand has the greatest agricultural areas and
production in the country, increasing demands of agricultural production and renewable
energy, as well as national policy, have recently influenced LU/LC patterns [11,13,14].
Specifically, forest and rice-growing areas have been replaced by other crops. With this
premise, several main challenges have arisen including: crop management, food security,
low productivity, lack of labor and irrigation management. Related agencies have started
to work on these aspects; however, some of them are still present [15,16].

Remote sensing technology has evolved into a cutting-edge tool for merging multi-
source images for high spatiotemporal resolutions for agricultural activity monitoring. EO
data have been extensively utilized for mapping and monitoring agricultural crop fields
from a variety of perspectives, including crop type, area of coverage, crop calendar, and
yield, in different time periods [17–19]. At the same time, new technologies and EO data
cloud platforms have enabled vast data computations by providing great opportunities
for mapping land use on a large scale. For instance, the Google Earth Engine (GEE) is
increasingly used across borders, mostly for agricultural area mapping [20]. As a result,
EO data cloud computing platforms and powerful machine learning methods have un-
doubtedly improved analysis within the agricultural sector. Moreover, they provide free
and open access information for all communities, which is very important in a sector such
as this one, which is frequently characterized by climatic and environmentally related
difficulties [21–23]. The information acquired by EO can subsequently serve as input
data for numerous models that monitor changes in many natural resources, as well as
predict significant scenarios such as natural disasters and crop type dynamics, including
the changes of LC/LU consequences [17].

Several studies have highlighted that multi-temporal dataset combinations (i.e., Sentinel-1
(S1), Sentinel-2 (S2), and Landsat 8 (L8)) from multiple sensor sources, coupled with
powerful machine learning approaches and time periods, make it possible to obtain crop
classifications with high overall accuracy (OA > 85%) [11,24–26]. In particular, Som-ard,
et al. [11] classified 13 different crop type classes in the Udon Thani province (Thailand)
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using the random forest (RF) algorithm, with OA > 87%, whereas Kluger, et al. [24] devel-
oped a procedure to map different crop shifts in France and Kenya using the RF classifier,
achieving OA > 85%. Sun, et al. [25] identified three crop classes in the Yangzi River (China)
using support vector machine (SVM), artificial neural network (ANN) and RF classifiers
and showed up to 93% OA results. Tariq, et al. [26] classified five crop types in the Gu-
jranwala District of Punjab Province, Pakistan from Decision-Tree-Classifier (DTC) and RF
algorithms, and indicated OA values of > 85%. As highlighted in the previously reported
studies, the efficiency of using multi-temporal data from multi-sensor data for classifying
agricultural land/LC was proved. Moreover, they have shown that the RF classifier has the
greatest efficiency and excellent results in terms of crop type/LC classification. However, a
multi-temporal Landsat dataset for mapping several crop types for small field sizes—such
as in Thailand—based on the RF algorithm is still a challenge.

Monitoring agricultural land dynamics using EO data over time makes it possible to
offer valuable information on food management, related stockholders and environmen-
tal conditions [11,27]. Consequently, reliable and accurate information of cropland/LC
maps at the national or international levels can be obtained. Such information can be
subsequently involved in many applicable problems in agricultural lands and LC change
monitoring. However, mapping, monitoring and evaluating crop/LC types in small areas
(i.e., field < 1 ha sizes) and complicated landscapes is still a real problem, especially when
areas are regularly characterized by high cloud cover, such as in Thailand.

Within this framework, in this work, proper mapping and monitoring of temporal and
spatial dynamics related to LU/LC was performed in the northeast Thailand area within
five different years from 2001 to 2021 (2001, 2006, 2011, 2016, and 2021). In particular, all
available Landsat archives were involved inside the Google Earth Engine (GEE) platform,
making it possible to produce several LU/LC maps for each period by adopting an RF
classifier. Therefore, different sophisticated classification approaches without even down-
loading the satellite dataset were adopted in order to achieve the highest map accuracy of
our result.

It is important to highlight that in this work, cutting-edge methods and technology,
such as remote sensing and a machine learning technique, were adopted. In particular, in
this work, the main aims were to: (i) produce LC maps focusing on the main local crops
(i.e., rice, cassava, para rubber, and sugarcane crops) within the Chi River Basin in (NE-
Thailand); (ii) monitor long-term transitions in agricultural land and LC transformations
within four 5-year periods (2001–2006, 2006–2011, 2011–2016, and 2016–2021).

The main advantages of this work are to use reliable historical agricultural land and LC
to substitute ground truth and training samples in satellite images. Resulting map accuracy
and reliability can be attributed to two distinct key drivers: agricultural policy and staple
prices. Therefore, all this information can be useful to support sustainable agriculture land
organization, food management, decisions of government and many agricultural industries.

2. Study Area and Materials

In this work, multi-temporal Landsat image data (i.e., L5, L7, L8 and L9), as well as
local and auxiliary geo-data, were jointly used in order to map and monitor four time
periods of agricultural land dynamics in Thailand. In particular, the salient points can
be summarized as: (i) preprocessing and feature extraction of the Landsat data; (ii) crop
type/LC classification by the RF algorithm; (iii) crop type/LC map generation and evalua-
tion of agricultural land changes over a 20-year period. A workflow containing all steps
involved in the work are reported in Figure 1.
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Figure 1. The implemented workflow for monitoring crop types/Land cover (LC) changes in the Chi
River Basin, Thailand from 2001–2021 (over 20 years) using multi-temporal Landsat image datasets
together with the random forest (RF) classifier based on Google Earth Engine (GEE).

2.1. Study Area

The study area is located in the Chi River Basin (NE-Thailand) and is characterized by
having agriculture cultivations for almost 2⁄3 of the land use. In particular, the dominant
crops are: rice, sugarcane, para rubber and cassava [28]. The Chi River Basin covers an area
of 49,132 km2, accounting for 29% of this region (between 15◦10′ to 17◦50′N and 101◦00′ to
105◦50′E) (Figure 2). The Chi River Basin is characterized by having plains and highlands
topographical features, and the height above mean sea level differs from 0 to 1324 m. In
particular, the central and western parts of this region are part of the Dong Phayayen
Mountains, a place known as the starting point for the Chi river and several tributaries
such as Nam Phong, Lam Pao and Nam Yang. All of these tributaries are very important
for local agricultural cultivations and livelihoods since they represent the water sources of
the area. From a climatic standpoint, the study region is classified as tropical semi-humid
wet/dry-savanna (Köppen climate, classification: Aw), characterized by high cloudiness
and inclement weather, as well as three different seasons of summer, rainy, and winter,
ranging from February to May, May to October, and October to February, respectively.
Finally, considering temperature, the long-term temperature (average 10 years) is about
27 ◦C and the average annual precipitations are about 1690 mm. The relative humidity in
this region is approximately 72% [29].
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Figure 2. Area of Interest (Chi River Basin, Thailand): background shows elevation (height from 0
to 1324 m). The red boxes are nine Landsat tiles across the study area. Yellow points are the 2303
training points, red points are the 987 validating points. Both sampling datasets are taken from field
campaigns performed in 2021.

2.2. Reference Data

Approximately 3290 sampling points (SP) were randomly collected within the Chi
River Basin and used as reference data in order to train and validate the RF classifier
approach. Subsequently, SP was randomly spilt in two different datasets in order to
obtain the training and validation sets involved in the RF classification algorithm. In
particular, 2303 (70%) sampling points were used for the training phase and 987 (30%) for
the validation phase (Figure 2). Within SP, eight different major classes were collected,
as reported in Table 1, including rice, sugarcane, cassava, para rubber, forest, built-up,
water and bare soil. It is worth highlighting that SP field campaigns were performed
between May and July 2021. Consequently, different methods aimed at collecting reference
data were involved in this work in order to construct and validate the five classifications
corresponding to the 2001, 2006, 2011, 2016 and 2021 years. Details on how the reference
data were acquired for the different years considered in this work are given below.

• 2021 year: A total of 3290 sampling points were collected as reference data from a field
survey performed between 15 May 2021 and 30 July 2021. Point position was then
georeferenced with high accuracy by a handheld Global Positioning System (GPS)
version Garmin 62 s [30].

• 2006, 2011 and 2016 years: The same 3290 sampling points considered in the 2021 year
were photo-interpreted and digitized using very high-resolution data available within
the Google Earth pro imagery database.

• 2001 year: In addition, the same reference points were photo-interpreted, digitized
and finally acquired through very high-resolution color orthophoto images provided
by the Land Development Department (LDD) [11]. LDD color orthophoto images
were used to search and record different agricultural land fields/LC within the Chi
River Basin. LDD is characterized by having spatial resolution equal to 1 m. Moreover,
to improve sampling point dataset reliability, authors interviewed 20 local farmers
who have been farming and living for over 20 years in the area.
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Table 1. Reference data sets of crop type/LC over Chi River Basin, Thailand in years 2001, 2006, 2011
and 2021.

Crop
Type/LC

2001 2006 2011 2016 2021

Color Orthophoto Google Earth Pro Field Campaigns

Training Validation Training Validation Training Validation Training Validation Training Validation

Rice 261 112 341 146 335 144 301 129 340 146
Sugarcane 890 381 836 358 742 318 615 264 452 194
Cassava 61 26 63 27 180 77 235 101 240 103

Para rubber 247 106 227 97 209 90 311 133 365 156
Built-up 350 150 350 150 350 150 350 150 350 150
Forest 303 130 272 117 268 115 243 104 225 96
Water 118 51 126 54 125 54 136 58 150 64

Bare soil 73 31 88 38 94 40 112 48 181 78

Total 2303 987 2303 987 2303 987 2303 987 2303 987

2.3. Landsat Image Datasets

This study involved a total of 428 Landsat images in order to map the crop type/LC
within the Chi River Basin. In particular, L5, L7, L8 and L9 Level-2 products (atmospher-
ically corrected) were used in this work, and 78, 78, 48, 90 and 134 Landsat scenes were
used for the 2001, 2011, 2016 and 2021 base years, respectively. Specific information about
the Landsat mission and the corresponding number of images involved are reported in
Table 2. Through the GEE platform, only the scenes characterized by having less than 30%
cloud cover were selected.

Table 2. Landsat image datasets deployed for mapping agricultural fields/LC in 2001, 2006, 2011,
2016 and 2021. The number of scenes show the availability for crop type/LC mapping. Landsat-5
(L5) images were applied for 2001, 2006 and 2011, and Landsat-7 (L7) data was adapted in analysis
for only 2001. Landsat-8 (L8) images were employed for mapping in years 2016 and 2021, while
Landsat-9 (L9) datasets were included for 2021.

Image Data
(January–December) Sensor

Years (Scenes)

2001 2006 2011 2016 2021

Landsat-5 TM 45 78 48
Landsat-7 ETM+ 33
Landsat-8 OLI 90 112
Landsat-9 OLI-2 22

Total (scenes) 78 78 48 90 134

It is worth reminding that the L5 and L7 images are characterized by having seven
and eight portions of spectral information, respectively, while a total of eleven bands, with
a spatial resolution of 30 m, are present in the L8 and L9 data [31,32]. Despite the fact that
several bands are available within the Landsat data, in this work, only six bands were
involved. In particular, blue: 490 nm, green: 560 nm, red: 665 nm, NIR: 842 nm, SWIR1:
1910 nm and SWIR2: 2190 nm bands were used. These six pieces spectral information are
known in the literature due to the possibility to produce several vegetation indices (VIs)
able to detect, monitor and map different crop types [11].

Land surface can be labelled with VIs that are able to identify and monitor phenological
crop dynamics [33]. The main aims include crop type and LC classification [13,34]. In this
study, according to Table A1, nine different potential VIs were selected among the main
ones present in the literature in order to separate crop type classes.

As mentioned in the previous section, the Chi River Basin is characterized by high
cloudiness and inclement weather. Therefore, a median composite (MC) was applied to
initiate gap-free image composites that are spatio-temporally consistent.
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According to previous studies [35,36], the MC algorithms can provide consistent
phenological datasets and reduce cloud conditions over large coverage regions with the
requirement of an atmospheric correction and accurate cloud masking [34,37].

MC was applied to all spectral bands and the derived VIs were involved in this work.
Composites were implemented for all years and for all time steps considered in this work.
Specifically, Landsat data available from January to December of each year were collected
and MC was subsequently computed in order to generate a single annual image for each
VI considered for each of the five years (i.e., 2001, 2006, 2011, 2016 and 2021). In particular,
MCs composites were generated by using the “ee.Reducer.median()” and mosaicked by
the “ee.Reducer.mosaic()” function available on GEE. The resulting images were finally
compared with high-resolution imagery available in Google Earth Pro in order to assess
their output quality.

Final number of annual image composites (i.e., spectral bands and derived VIs) and
topographical indicators used for mapping agricultural fields/LC for each of the five base
years are reported in Table 3.

Table 3. All features (i.e., the spectral bands, vegetation indices (VIs) and topographical variables)
were used for agricultural fields/LC classification in 2001, 2006, 2011, 2016 and 2021.

Feature Data
2001 2006 2011 2016 2021

L5 & L7 L5 L5 L8 L8 & L9

Spectral bands 12 6 6 6 12
Vegetation indices (VIs) 18 9 9 9 18

Topographic 2 2 2 2 2

Total (Full Set of Features) 32 17 17 17 32

2.4. Auxiliary Geo-Data

Related geo-data can offer significant information to support disentangling different
crop phenology and other specific agricultural practices [38]. For this reason, the digital
elevation model (DEM) dataset was involved in this work in order to retrieve elevation and
slope variables. DEM was obtained for free from the Land Processes Distributed Active
Archive Center (LP DAAC) (United States) at 30 m of spatial resolution [39].

3. Methods
3.1. Supervised Classification

In agriculture, the RF algorithm is commonly used for classification and regression
problems [40]. This classifier is a decision tree (DT)-based ensemble machine learning
classifier. The bootstrap with replacement technique generates multiple sample data sets
and, as a result, individual and independent DTs, the results of which are combined for
the majority decision [40]. The expected generalization error based on “out-of-bag” (OOB)
data is considered as one of the primary advantages derived from the RF algorithm. Other
advantages include the internal relevance measure of the input features and the ability
to adapt to a large number of input features. Many previous studies have demonstrated
the high efficiency of feature importance in selecting the most relevant variables for crop
type/LC classification in order to minimize over-fitting, and for well-organized computa-
tions [25,41–43].

For this research, the “Mean Decrease in Accuracy” (MDA) measure was employed
for a recursion feature selection, as in earlier studies [11,44,45]. It should be noted that
the derived feature significance was calculated in R version 4.2.2 using the random forest
package [46].

The RF classification model requires two hyper-parameters, which are the number
of randomly nominated features for each node (mtry) and the number of trees (ntree). In
particular, we implemented ntree setting from 50 up to 1500 with the default of the mtry
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(the square root of the total number of input variables). Subsequently, we selected the best
parameter as 1000 trees based on the OOB result for all five base years.

Based on the 2303 sampling points, RF models were trained to categorize eight crop
type/LC classes for each of the five base years (Table 1). The feature variables, comprising
spectral bands, derived VIs, and supplementary geo-data, were used for all time steps.
Appendix A lists the top ten most important features for each year (details in Table A2).

The MDA and OOB findings for the five base years were examined for evaluating
the efficiency of the optimized RF classification models, and the final RF models were
evaluated from the independent data set using the GEE and utilized to predict the entire
data set.

3.2. Accuracy Evalutation

The accuracy assessment of the results of this work was conducted consisting of
two parts:

• The generalization error provided by the OOB result was utilized to assess the effec-
tiveness of the RF classifier [40,46].

• The accuracy of the crop type/LC maps was generated using an independent valida-
tion dataset (987 reference points). As mentioned previously, the validation dataset
was collected from a field survey for 2021 and from visual interpretation by using very
high-resolution data available within the Google Earth pro imagery for 2001, 2006 and
2011 (Table 1). The maps’ accuracy evaluations were assessed by combining typical
statistics resulting from the confusion matrix, such as overall accuracy (OA), user’s
accuracy (UA), producer’s accuracy (PA) [47] and the kappa statistic [48].

Furthermore, the uncertainty of area estimations was examined for each year based
on the related 95% confidence interval. Finally, the rates of classification errors enabled in
modifying of crop type/LC map estimated areas using the stratified evaluation approach
was proposed by Olofsson, et al. [49].

3.3. Post-Classification

In order to assess the crop types/LC maps variability over time, the five base year
maps were investigated. Specifically, a post-classification comparison method was applied
at pixel level for the areas that have transformed “from to” over time. This analysis made it
possible to monitor and map how crop type areas transformed over the four time periods
(i.e., 2001–2006, 2006–2011, 2011–2016 and 2016–2021). A chord diagram was used to show
the temporal change of the different time periods. The chord diagram shows a set of nodes
of proportional crop type/LC areas, and connected nodes demonstrate crop transitions
from one to another for each time period.

4. Results
4.1. Crop Type/LC Classification

RF classification maps are reported in Figure 3. These maps turn out to be very useful
to monitor LC dynamics over time; thus, it can be noted that some classes have changed
over the years while others have remained stable in terms of area. For example, on the
2001 map, the main classes are rice and forest; while considering the same classes in the
2021 map, they seem to have less impact. This assumption can actually be made, specifically
when considering that the cassava class area within the 2001 map compared to the 2021 map
rises from about 5000 km2 to almost 12,000 km2, respectively. Moreover, in addition to
the cassava increase, para rubber, sugarcane and built-up land also register large surface
increments. Specifically, during the observed period, there is an increase from dozens
of km2 to over 3000 km2 for para rubber, from about 4500 km2 to almost 6000 km2 for
sugarcane and from about 2000 km2 to almost 3000 km2 for built-up land, respectively, in
the maps referring to 2001 and 2021. In contrast, rice cultivation, an opposite behavior, can
be observed, i.e., a decline in rice fields cultivation over time. Specifically, fields classified
as rice in 2001 covered about 25,000 km2, while there was only 17,000 km2 in 2021. In
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contrast, considering the water classes and bare soil, these have remained constant over
time in terms of surface.
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2021 in the Chi River Basin, Thailand using all available Landsat data, several vegetation indices (VIs)
and geo-data together with a random forest (RF) classifier based on Google Earth Engine (GEE).

In order to better understand class variations over time, hexagon examples of crop
types/land cover (LC) classifications considering the eight classes for the entire observed
period within the Chi River Basin were reported (Figure 4). In particular, a qualitative
increase in area is again observed over time in the cassava, para rubber, sugarcane and built-
up land classes. Specifically, row d of Figure 4 shows a large change in comparisons of the
cassava class between 2016 and 2021. In contrast, with regard to the hexagons representing
the para rubber class (row b), a large change in LC can be observed between 2006 and 2011.
The hexagons representing the sugarcane class (line b) show a large variation between 2001
and 2011, while the one representing the water class (row f) show no variation between the
years. The interesting point that arises is that, according to Figure 4, LC variation does not
occur between two specific periods, but can in relation to the class observed that can occur
between different years.

Following the primary performance parameters that had been calculated (refer to the
section in Materials and Methods for more information), a comparison and discussion of
each classifier was proposed with reference to the validation set that was presented in
Table 1. Results related to the model accuracy and validation were reported in Figure 5 and
Tables 4 and 5.
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Figure 5. A bare chart shows overall accuracy (OA) and kappa results of a random forest (RF)
classification models and map validations for crop types/land cover (LC) classification in 2001, 2006,
2011, 2016 and 2021 in the Chi River Basin, Thailand.

Considering Figure 5, the average values of OA (model accuracy), Kappa (model
accuracy), OA (validation) and Kappa (validation) are 86.7%, 83.4%, 90.3% and 88.1%,
respectively. Such high average values of OA and Kappa validation confirm the goodness
of the proposed classifications. However, considering OA over the years, the 2021 results
have the highest values (OA = 92.9%), while 2006 results have the lowest (OA = 88.7%).

Considering PA and UA, they were generated starting from independent validation
datasets (Table 1) for eight crop types/LC over the five time steps and are reported in
Tables 4 and 5. The classification map in 2021 achieved height accuracy with OA and kappa
of 92.9% and 91.8%, while other map results obtained accuracies > 85%.

For classification results in 2001, 2006, 2011 and 2016, almost all crop types/LC had
PAs and UAs with accuracies higher > 75%. The greatest misclassifications were obtained
in the classes of “cassava” and “sugarcane”. Mapping agricultural land or LC in 2021
achieved accuracies > 90% for nearly all classes. Conversely, the class of cassava achieved
the highest confusion with ≤ 85%.

Figure 6 provides a visual representation of the mapped and estimated areas of the
various crop type classes in the Chi River Basin for each of the five periods, along with the
confidence intervals (CI) for 95% of the data. In our results, in 2001, 2006, 2011, 2016 and
2021, small differences appeared between mapped and estimated areas, as shown by the
95% CI of the error bars.
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Table 4. Accuracy assessment using independent validation datasets for eight crop type/land cover
(LC) classification results in 2001, 2006 and 2011 from all available Landsat datasets and a random
forest (RF) classifier. (OA: overall accuracy, PA: producer’s accuracy, UA: user’s accuracy).

2001
Crop Types

Reference Data

Cassava Rice Para Rubber Sugarcane Built-Up Forest Water Bare Soil Total UA (%)
Cassava 96 5 3 6 1 1 0 0 112 85.71

Rice 22 339 0 12 4 3 1 0 381 88.98
Para rubber 0 0 26 0 0 0 0 0 26 100.00
Sugarcane 10 5 0 88 0 3 0 0 106 83.02
Built-up 1 4 0 0 144 1 0 0 150 96.00
Forest 0 0 4 0 1 125 0 0 130 96.15
Water 0 3 0 0 2 3 43 0 51 84.31

Bare soil 0 0 0 0 0 0 0 31 31 100.00
Total 129 356 33 106 152 136 44 31 987

PA (%) 74.42 95.22 78.79 83.02 94.74 91.91 97.73 100.00

OA = 90.37%; Kappa = 87.80%

2006 Cassava Rice Para rubber Sugarcane Built-up Forest Water Bare soil Total UA (%)

Cassava 114 12 0 20 0 0 0 0 146 78.08
Rice 25 319 1 7 4 2 0 0 358 89.11

Para rubber 0 0 25 0 0 2 0 0 27 92.59
Sugarcane 16 5 0 75 0 1 0 0 97 77.32
Built-up 0 0 0 1 147 0 0 2 150 98.00
Forest 0 2 1 1 0 113 0 0 117 96.58
Water 0 1 0 2 1 2 48 0 54 88.89

Bare soil 0 1 0 0 2 1 0 34 38 89.47
Total 155 340 27 106 154 121 48 36 987

PA (%) 73.55 93.82 92.59 70.75 95.45 93.39 100.00 94.44

OA = 88.65%; Kappa = 85.78%

2011 Cassava Rice Para rubber Sugarcane Built-up Forest Water Bare soil Total UA (%)

Cassava 110 12 0 22 0 0 0 0 144 76.39
Rice 18 283 0 12 3 2 0 0 318 88.99

Para rubber 0 0 74 0 0 3 0 0 77 96.10
Sugarcane 16 3 0 71 0 0 0 0 90 78.89

Built-up land 0 0 0 0 148 0 0 2 150 98.67
Forest 0 1 2 1 0 110 0 0 114 96.49
Water 0 0 0 2 1 2 49 0 54 90.74

Bare soil 0 0 0 0 2 1 0 37 40 92.50
Total 144 299 76 108 154 118 49 39 987

PA (%) 76.39 94.65 97.37 65.74 96.10 93.22 100.00 94.87

OA = 89.36%; Kappa = 87.08%
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Table 5. Accuracy assessment using independent validation datasets for eight crop type/land cover
(LC) classification results in 2016 and 2021 based on all available Landsat datasets and a random
forest (RF) classifier. (OA: overall accuracy, PA: producer’s accuracy, UA: user’s accuracy).

2016
Crop Types

Reference Data

Cassava Rice Para Rubber Sugarcane Built-Up Forest Water Bare soil Total UA (%)
Cassava 106 5 1 17 0 0 0 0 129 82.17

Rice 18 237 0 8 0 1 0 0 264 89.77
Para rubber 2 0 98 0 0 1 0 0 101 97.03
Sugarcane 16 4 2 111 0 0 0 0 133 83.46
Built-up 0 4 0 0 145 0 0 1 150 96.67
Forest 0 3 0 0 0 101 0 0 104 97.12
Water 0 6 0 2 3 2 45 0 58 77.59

Bare soil 0 1 0 1 0 0 0 46 48 95.83
Total 142 260 101 139 148 105 45 47 987

PA (%) 74.65 91.15 97.03 79.86 97.97 96.19 100.00 97.87

OA = 90.07%; Kappa = 88.21%

2021 Cassava Rice Para rubber Sugarcane Built-up Forest Water Bare soil Total UA (%)

Cassava 119 3 3 16 0 5 0 0 146 81.51
Rice 3 185 0 4 1 0 0 1 194 95.36

Para rubber 0 0 98 0 0 5 0 0 103 95.15
Sugarcane 18 2 0 136 0 0 0 0 156 87.18
Built-up 0 2 0 0 147 0 0 1 150 98.00
Forest 0 0 2 0 0 94 0 0 96 97.92
Water 0 1 0 0 0 3 60 0 64 93.75

Bare soil 0 0 0 0 0 0 0 78 78 100.00
Total 140 193 103 156 148 107 60 80 987

PA (%) 85.00 95.85 95.15 87.18 99.32 87.85 100.00 97.50

OA = 92.91%; Kappa = 91.76%

4.2. Crop Type Dynamics

The main factors driving crop type transition have been highlighted via an analysis
of classification maps and crop type changes in five time periods (Figure 7). The highest
crop type transformation occurred for a recent period between 2016 and 2021 of 9966 km2,
followed by 2011 to 2016 (8740 km2), 2001 to 2006 (4876 km2) and 2006 to 2011 (1068 km2).
Between 2001 and 2006, the crop transition with the greatest increase in terms of area can
be related to sugarcane (1579 km2) and cassava (1009 km2). However, this increase resulted
in a reduction in rice cultivation of 1993 km2. The largest percentage increases in areas
under cultivation have been observed for cassava (405 km2) and rice (39 km2) between
the years 2006 and 2011. In contrast, a decrease in crop area was seen in sugarcane, which
covered 438 km2. Between the years 2011 and 2016, the crop areas that have the potential to
generate the highest increase in yield are sugarcane (1615 km2) and para rubber (2502 km2).
In contrast, rice areas dropped by 4169 km2. From 2016 to 2021, the areas of major crops
expanded, in particular for cassava (5804 km2) and para rubber (220 km2). In contrast, rice
areas decreased to a total of 2217 km2 due to encouragement from the government’s policy
for changing crop cultivation in northeast Thailand. Moreover, Figure 7 illustrates the crop
type area transition for the four five-year periods, highlighted in the chord diagrams. From
2001 to 2006, the highest crop type transition was from rice to cassava. From 2006 to 2011
and 2011 to 2016, the same changes occurred in the major crop types, from rice to sugarcane.
The largest change from rice to cassava-cultivated areas was observed between 2016–2021.
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available Landsat data and a random forest (RF) classifier.

5. Discussion
5.1. Crop Type/LC Classification Assessment

The joint use of optimized RF classification models (involving single bands and
VIs) and auxiliary geo-data presented results of agricultural fields/LC classifications. As
reported in Figure 5, the constructed RF classification models achieved excellent results
in all five time periods analyzed. Specifically, the highest accuracy of the crop type/LC
classification has been observed in 2021, followed by 2001, 2016 and 2006, respectively.
Specifically, 2021 accuracy is always higher than in other years, which can certainly be
related to the number of images available for the year in question (134 scenes available
in the 2021 compared to 40/90 available in other years). The efficient result of 2021 that
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used the high spectral and temporal information of the combined analysis of Landsat data
sets (i.e., L8 and L9) as well as the availability of high-quality ground-truth data were
used. Recent studies [11,27] also highlighted the multi-temporal Landsat data support LC
and crop type classifications. Furthermore, implementing important RF feature rankings
makes it possible to select the input variables when applying the classification to large-scale
mapping. Similar results were reported by Pflugmacher, et al. [38], who highlighted the
efficiency for use in automated mapping of crop type/LC in the large region using Landsat
spectral-temporal metrics. In our study, Landsat spectral-temporal compositing, together
with the powerful RF classifier, showed very good results for crop type/LC mapping when
dealing with a wide scale and cloudy region.

In 2006, 2011 and 2016, high PAs and UAs were obtained in almost all specific classes.
Conversely, the highest commission was obtained in 2006 between rice and cassava and
also sugarcane and cassava due to the similar spectral information based on crop phenol-
ogy, leading to misclassification. In 2011, the highest misclassification occurred between
sugarcane and cassava, as well as rice and cassava, probably due to spectral signatures
overlapping. Meanwhile, in 2016, the most significant crop confusion was between rice
and cassava and also cassava and sugarcane because several sugarcane and cassava fields
were recently cultivated during this time, leading to similar signatures, as seen in previous
findings [13].

Combining both Landsat sensor datasets for 2001 (L5 and L7) and 2021 (L8 and L9) was
a good strategy to support crop separation, which consequently led to better classification
results for nearly all classes involved in this work. The aggregated Landsat sensor datasets
for 2001 demonstrated high efficiency for mapping crop types and LC. The confusion was
shown between rice and cassava and also between rice and sugarcane due to rice crop
phenology in the reproduction phase being similar in some cassava and sugarcane fields,
leading to the loss of accuracy in the results. For 2021, the map result was smoothed well
and reduced noises in crop type areas. Nevertheless, the commission between sugarcane
and cassava still persists because sugarcane crop phenology in tillering and grand growth
stages are similar to cassava canopy, leading to mixed spectral signatures, as reported by
Som-Ard, et al. [50]. In addition, cassava within the Chi River Basin is usually planted
in all seasons; therefore, the canopy and greenness are similar compared to the vigor of
sugarcane. In our study, this suggests increasing ground truth data for crop type classes
across the study region.

The multi-temporal Landsat data and the RF classifier based on GEE produced very ex-
cellent results (OA above 85%) in this research. This is consistent with studies that show the
utility of spectral and temporal data in monitoring crop types and land change [27,34,38,51].
Therefore, due to the high accuracy in crop classification mapping obtained in this work a
transferability can be applied for monitoring different agricultural contexts in other regions
or countries. Moreover, GEE generated good crop maps even if areas was characterized
by having high rainfall and cloudy weather. However, for a national scale such Thailand,
with high cloud cover and small field sizes (<1 ha) and complex landscapes, the GEE is still
challenging due to several limitations (i.e., data availability, processing time, and potential
inaccuracies). Future studies should consider these points for improving the accuracy of
crop type map results.

Som-ard, et al. [11] in order to increase spectral and temporal information for crop
type/LC mapping suggested to use Landsat-9 data. Specifically, they obtain outstanding
results in the 2021 crop type classification in Udon Thani Province (Thailand). However, the
constraint of this study was limited to cloud cover conditions, leading to image distortions
of spectral reflectance.

Considering the variables useful to generate a crop classification map, in this work
we highlight that maxNDVI variable result to be the most important feature able to reduce
cloud coverage impacts (in Appendix A Table A2). Such result is consistent with the
literature, in particular Griffiths, et al. [35], Li, et al. [52], Xu, et al. [53], Ghassemi, et al. [54],
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highlight that maxNDVI feature overcomes the cloudy impacts for regional to global crop
type or LC classifications.

Considering crop types/LC classifications carried out in Thailand present in literature
Emparanza, et al. [55] mapped four major classes (i.e., urban, crop, forest and water) in
Thailand’s Eastern Economic Corridor (EEC) obtaining > 90% of OA using convolutional
neural network (CNN) and satellite images. Kruasilp, et al. [56] classified LC (six classes
including agricultural land, built-up area, forest, para rubber, maize, and water) using the
RF classifier and multiple satellite data (S1, S2 and Landsat data) for Nan province (small
region), obtaining an OA range between 52–97%. Daraneesrisuk, et al. [57] generated a crop
classification map based on the RF algorithm by combining S1 and S2 data. In particular
they focus their attention on sugarcane and cassava crop in a small area (Khon Kean
province) and obtain an OA equal to 68%. However, in this last work the authors produced
a few crop type classes and did not measure optimized-feature RF classification models for
a large-scale mapping. Results obtained in this work appear to be very high in comparison
to those mentioned above. Despite several crop mapped classes (eight crop type classes)
excellent results were obtained by optimizing RF model and involving all available Landsat
data in a large region within Thailand. Specifically, cassava and sugarcane crop classes
achieved an OA > 75% turning out to be one of the best results compared to those presented
by similar work [57].

5.2. Agricultural Land Change Dynamics

The results that we obtained from a variety of years were utilized in the analysis
of crop type transitions based on the probability of change dynamics. Most cropland
changes were found from 2016–2021, followed by 2011–2016, 2001–2006 and 2006–2011.
The interviewed farmers and local governments confirmed the yielded results. In order to
better understand the agricultural land change in the Chi River basin, the critical drivers of
crop change transitions over 20 years (i.e., four 5-year periods) were analyzed.

From 2001 to 2006, there were significant agricultural changes with growing land
primarily stocked by cassava, sugarcane and para rubber for three main reasons:

• The irrigated crop plantation system was fully supported by the governmental sector;
• Agricultural industries needed crop production demands, which led to increased

prices for specific crops such cassava and sugarcane;
• The government policies aimed to extend crop cultivation areas, as well as support

capital for the farmers for land management.

Therefore, the dominant crop type transitions were rice to sugarcane and cassava
during this period.

From 2006–2011, increasing crop areas were identified for cassava and rice, as previ-
ously studied of Som-ard, et al. [11], indicating the main key drivers were:

• The government encouraged farmers to warranty a stable price for economic crop
production;

• The production demands were increased due to the rapid expansion of agricultural
industries in this region.

At the same time, other crop classes’ changes to cassava were the major change during
this period.

From 2011–2016, rice and cassava cultivation areas have been decreased. In contrast,
para rubber and sugarcane have been increased, which is caused by two main reasons:

• The international para rubber demand was increased, as well as the government
support for famers for enhancing supply of para rubber production;

• The unsuitable areas of rice production have been promoted by the government to
sugarcane cultivations.

As a result of the government policies, para rubber and sugarcane prices increased
during this period, when compared to the past 10 years. This is in line of findings by
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Som-ard [13], highlighting that sugarcane production provided the main income for local
farmers in this region.

During the recent period (2016–2021), cassava and para rubber as the most significant
crops with increasing areas, while rice areas dropped. The important key drivers for crop
changes were:

• The sugarcane cultivation was promoted by the government to replace unsuitable rice
production.

• The farmers were encouraged to produce sugarcane through financial loans and capital
support from the sugar mills.

• Farmers’ incomes were stabilized with balanced production by contract farming.
• The government policies deal with young, smart farmer groups to learning new

technology and address a lack of agricultural labor, while also increasing production
and productivity per area.

As a result of the important key crop drivers, more than 40% of the rice areas were
changed to important crops such as sugarcane, followed by cassava and para rubber areas.
This is consistent with Som-ard, et al. [11], who showed that rice areas mainly changed
to other crops. In addition, Som-ard [13] described that decreasing areas with rice was
directly influenced by government policy and price stability.

As discussed above, during four 5-year periods, the rice was changed to the other
important crop types. This finding is in the line with our classified maps, indicating
agricultural changes. Som-ard, et al. [11] also mentioned that the rice areas rapidly dropped,
which directly related to government policy. In addition, from the short interviews of 20
farmers, it was found that the key socio-economic drivers leading to agricultural land
transitions were crop prices, stable income and relatable agricultural policy.

In brief, this study showed high accuracy of crop type map results for all five base years
due to increasing high spectral and temporal information and several VIs with topographic
variables. Specifically, the years 2001 and 2021 used both Landsat sensor datasets (L5 and
L7) and (L8 and L9) for improving crop type classification. However, the five base years
showed the same results as high misclassification between rice and cassava due to mixed
spectral signatures.

Finally, according to previous findings, future studies should consider other influential
factors such as climate change, technological advancements and socio-economic dynamics,
providing a more comprehensive analysis of crop type dynamics. Moreover, the integration
of microwave and optical satellite image data from multiple sensors and involving different
machine learning approaches (i.e., RF, DT, SVM and ANN) will be able to improve the crop
type/LC classification accuracy.

6. Conclusions

Crop type transition mapping in small field sizes (<1 hectare) over a 20-year period
can be effectively automated and delineated in the Google Earth Engine (GEE) platform
utilizing multi-temporal Landsat data (i.e., L5, L7, L8 and L9). A random forest (RF)
classifier and the multi-temporal Landsat datasets provided high OA for robust crop types
or land cover classifications. For crop type classification for the years 2001, 2006, 2011
and 2021, the mapping results were highly satisfactory. Market prices and governmental
support for reducing unsuitable rice production areas were certainly the main reasons that
encouraged farmers to transform their rice paddies into sugarcane, cassava or para rubber.

The young farmers and the authorities benefit from accurate and up-to-date informa-
tion on crop type/LU classification. Our study can offer highly performant and reliable
crop type patterns and long-term changes over four five-year periods and promote crop
land services by encouraging guidelines.

Our important findings and further suggestions can be concluded as follows:

• The derived crop type/LC transitions are highly significant for food security planting
and other agricultural land management, especially in developing countries;
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• Evaluations of biomass, carbon stock, and yield highly rely on accurate information
on crop type/LC classification maps over a large region;

• Using multi-temporal Landsat data (i.e., L5, L7, L8 and L9) based on GEE properly
enables crop type mapping in small fields and complex landscapes. A dense time
series analysis of earth observation data should be adopted for higher accuracy and
satisfaction. This improves persistent cloud and compositing methods for crop type
classification across the vast region;

• While our study demonstrated that the RF classifier method was highly efficient,
additional research towards using the method in small field sizes and combining with
multiple EO data sets is recommended;

• The joint use of the GEE computing platform and multi-temporal Landsat dataset
make it possible to map crop types on cloudy and rainy days in Northeast Thailand,
and ongoing research should be applied to this cloud platform to monitor the crop
types throughout all of Thailand;

• The estimated areas of the derived crop type/LC results in this study should be
compared to the official land use and land cover statistics from the government,
exploring the potential biases in crop transitions and external validation using inde-
pendent datasets;

• Our results offer up-to-date and reliable information for sustainable agricultural land
management in Thailand, as well as for dealing with policymakers, decision-making
and production planning.
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Appendix A

Table A1. Nine vegetation indices (VIs) for crop type and LC classification for five base years.

Indices Abbreviation Formula Reference

Normalized Difference
Vegetation Index NDVI NDVI =NIR−red

NIR+red
Rouse [58]

Maximum NDVI maxNDVI maxNDVI = max{NDVI(i, j)1 , NDVI(i, j)2, . . . , NDVI(i, j)n
}

Cihlar, et al. [59]
Minimum NDVI minNDVI minNDVI = min{NDVI(i, j)1 , NDVI(i, j)2, . . . , NDVI(i, j)n

}
Enhance Vegetation Index EVI EVI = G × NIR−red

NIR+(C1× red)−(C2× B)+L
Huete, et al. [60]

Normalized Difference
Water Index NDWI NDWI =GREEN−NIR

GREEN+NIR McFeeters [61]

Soil-Adjusted
Vegetation Index SAVI SAVI = NIR−red

NIR+red+L (1 + L) Huete [62]

Ratio Vegetation Index RVI RVI =NIR
red

Jordan [63]

Normalized Difference
Infrared Index NDII NDII = (NIR−SWIR1)

(NIR+SWIR1)
Hardisky [64]

Normalized difference
moisture Index NDMI NDMI = (NIR−SWIR2)

(NIR+SWIR2)
Gao [65]
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Table A2. Ranking features the importance of the top 10 variable sets from the random forest (RF)
models in 2001, 2006, 2011, 2016 and 2021.

Time Periods Feature Variables

2021 maxNDVI_L8, SWIR2_L9, EVI_L8, SWIR1_L9, NIR_L8, SWIR1_L8, SAVI_L8, Green_L9, EVI_L9,
minNDVI_L9

2016 NIR_L8, maxNDVI_L8, EVI_L8, SWIR1_L8, SAVI_L8, Green_L8, NDWI_L8, SWIR2_L8, Red_L8,
NDII_L8

2011 maxNDVI_L5, SWIR2_L5, SWIR1_L5, EVI_L5, NIR_L5, RVI_L5, SAVI_L5, Red_L5, Green_L5,
NDVI_L5

2006 maxNDVI_L5, EVI_L5, SWIR1_L5, Blue_L5, NIR_L5, SWIR2_L5, SAVI_L5, Green_L5, NDVI_L5,
RVI_L5

2001 NDWI_L5, NDVI_L5, SWIR1_L5, maxNDVI_L7, SWIR_L7, NIR_L7, Red_L7, RVI_L5, maxNDVI_L5, EVI_L7
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