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Abstract: UAV-SfM photogrammetry is widely used in remote sensing and geoscience communities.
Scholars have tried to optimize UAV-SfM for terrain modeling based on analysis of error statistics
like root mean squared error (RMSE), mean error (ME), and standard deviation (STD). However,
the errors of terrain modeling tend to be spatially distributed. Although the error statistic can
represent the magnitude of errors, revealing spatial structures of errors is still challenging. The “best
practice” of UAV-SfM is lacking in research communities from the perspective of spatial structure
of errors. Thus, this study designed various UAV-SfM photogrammetric scenarios and investigated
the effects of image collection strategies and GCPs on terrain modeling. The error maps of different
photogrammetric scenarios were calculated and quantitatively analyzed by ME, STD, and Moran’s I.
The results show that: (1) A high camera inclination (20–40◦) enhances UAV-SfM photogrammetry.
This not only decreases the magnitude of errors, but also mitigates its spatial correlation (Moran’s
I). Supplementing convergent images is valuable for reducing errors in a nadir camera block, but
it is unnecessary when the image block is with a high camera angle. (2) Flying height increases the
magnitude of errors (ME and STD) but does not affect the spatial structure (Moran’s I). By contrast,
the camera angle is more important than the flying height for improving the spatial structure of
errors. (3) A small number of GCPs rapidly reduce the magnitude of errors (ME and STD), and
a further increase in GCPs has a marginal effect. However, the structure of errors (Moran’s I) can
be further improved with increasing GCPs. (4) With the same number, the distribution of GCPs is
critical for UAV-SfM photogrammetry. The edge distribution should be first considered, followed
by the even distribution. The research findings contribute to understanding how different image
collection scenarios and GCPs can influence subsequent terrain modeling accuracy, precision, and
spatial structure of errors. The latter (spatial structure of errors) should be routinely assessed in
evaluations of the quality of UAV-SfM photogrammetry.

Keywords: UAV-SfM; spatial distribution of errors; terrain modeling; image collection strategies;
ground control points
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1. Introduction

Unmanned aerial vehicles (UAVs) have been widely used in different fields of geo-
science, such as terrain modeling [1–3], ecological environment monitoring [4–6], vege-
tation information extraction [7–12], and disaster response [13–15]. Particularly, UAVs
combined with structure-from-motion and multiview stereopsis (SfM–MVS) photogram-
metry attracted wide attention due to their flexibility, low cost, and efficiency in terrain
modeling [16–18].

The accuracy of UAV-SfM terrain modeling is a general and popular topic in UAV
communities. Many factors affect the accuracy [19–21], such as image collection strategies,
ground sample distance (GSD), camera lens, quality of the UAV pose data, georeferencing
method, the number and distribution of ground control points (GCPs), texture of the terrain,
etc. Among these factors, image collection strategies and GCPs are important controllable
factors in practice.

Image collection strategies include camera angle, overlap rates, and flying height.
During the image collection process, flying height directly determines the ground resolution,
which in turn affects terrain modeling accuracy [22]. Smith and Vericat (2015) summarized
previous studies and found that the ratio between modeling accuracy and flying height
is usually 1:640–1:2100, which is related to oblique camera angle and ground control
measurement. For camera angle, previous studies have proposed that oblique photography
can improve the accuracy of UAV terrain modeling [23]. For consumer UAVs, studies have
shown that multiple flight lines by flying in a “double-grid” (two orthogonal blocks) or
nadir images supplemented with convergent images can achieve similar results to that
of using a five-lens tilt camera. Furthermore, using higher overlap and higher oblique
camera angles (20–35◦) can effectively improve the overall accuracy of terrain modeling for
consumer UAVs [24,25].

Ground control-related factors comprise the accuracy, number, and distribution of
GCPs. The accuracy of GCPs is mainly affected by measuring instruments and is hard to
change, while the number and distribution of GCPs can be flexibly arranged in practice. For
the distribution of GCPs, scholars have gradually formed a consensus that a combination of
edge distribution and stratified distribution is the best practice [26–28]. For the number of
GCPs, the greater the number, the higher the accuracy of terrain modeling, but the accuracy
does not improve after a certain number of GCPs [29,30].

Although previous research on image collection strategies and ground control points
provides substantial references for optimizing the accuracy of UAV terrain modeling,
they only focused on the whole accuracy of study areas. For example, overall statis-
tics, such as root mean squared error (RMSE), mean error (ME), and standard deviation
(STD), were generally used to analyze the influences of photogrammetric factors on ter-
rain modeling [31–33]. However, the errors in terrain modeling tend to be spatially dis-
tributed [22,34,35]. With the same overall statistic (i.e., RMSE), the GCP errors could vary
in space. Although the overall statistic can represent the magnitude of errors, revealing
the spatial structure of errors is challenging. Thus, the “best practice” of UAV-SfM is still
lacking in research communities from the perspective of spatial structure of errors.

Accordingly, this paper aims to: (1) Investigate the effects of image collection strategies
(camera inclination, flying height, and combination dataset) and GCPs (the number and
distribution) on the spatial structure of errors. (2) Put forward recommendations for
improving UAV SfM-MVS practices in high-relief areas from the perspective of spatial
structure of errors.
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2. Materials and Methods
2.1. Overview

To investigate the effects of image collection strategies and GCPs on terrain modeling
errors and their spatial structure, we designed different image collection strategies, includ-
ing 7 various camera angles, 6 different flying heights, and 25 various combination datasets
at first (detailed in Section 2.2) in two study areas (Figure 1). Second, the 30 different GCPs
and 50 times random selection were used for georeferencing and optimizing the UAV-SfM
models (detailed in Section 2.3). Third, more than 105 UAV-SfM scenarios with various
combinations of camera angles, flight heights, nadir and/or oblique imagery, and different
numbers and distribution of GCPs were processed (2 study areas × (7 camera angles +
6 flying height + 25 various combination datasets) × 30 different numbers of GCPs ×
50 random selections of GCPs), and the corresponding point cloud data were generated.
Finally, the error maps were generated by comparing the generated point cloud with the
reference point cloud. Moreover, the effects of image collection strategies and GCPs on
terrain modeling errors were assessed by quantitative analysis of the error maps (mean
error, stand deviation error, and Moran’s I).
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Figure 1. Workflow of the study. 

2.2. Image Data Collection 
2.2.1. Study Areas 

Two small catchments T1 (110°17′3.2″E, 37°33′48.8″N) and T2 (110°21′45.7″E, 
37°35′12.8″N) located in Suide county, Shaanxi province, with 5.1 ha (T1) and 3.6 ha (T2), 
were selected as study areas (Figure 2). The two areas are loess hilly landforms with high 
relief topography. The maximum height difference is 100 m (T1) and 80 m (T2). We col-
lected the UAV images in the spring of 2021. In this season, the vegetation is sparse, which 
reduces errors in UAV terrain modeling. 

Figure 1. Workflow of the study.

2.2. Image Data Collection
Study Areas

Two small catchments T1 (110◦17′3.2′′E, 37◦33′48.8′′N) and T2 (110◦21′45.7′′E,
37◦35′12.8′′N) located in Suide county, Shaanxi province, with 5.1 ha (T1) and 3.6 ha
(T2), were selected as study areas (Figure 2). The two areas are loess hilly landforms with
high relief topography. The maximum height difference is 100 m (T1) and 80 m (T2). We
collected the UAV images in the spring of 2021. In this season, the vegetation is sparse,
which reduces errors in UAV terrain modeling.
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2.3. Image Collection
2.3.1. Camera Angle Design

(1) Single camera with different angles
UAV images were collected using a DJI-Phantom 4 Professional quadcopter equipped

standard with a 1′′ CMOS camera with 20 megapixels. The on-board GNSS accuracy of this
UAV was 1.5 m (horizontal) and 0.5 m (vertical). Due to the low on-board GNSS accuracy,
optimizing image collection strategy and ground control quantity is generally needed. The
remote-control equipment was used to preset the flight line, overlap, camera inclination,
and flying height parameters to control the posture and track of the UAV.

To explore the influence of camera angle on survey errors, the camera angle was varied
from 0 to 40◦ (0◦ indicating a nadir inclination) within individual surveys. The flight line
was designed as a “double-grid” (two orthogonal blocks) grid (Figure 1). During flying,
the drone rotates through 180◦ at the end of each strip, which means that with an angle
of 10◦, the camera angle is +10◦ in one line and -10◦ in the next strip. To minimize the
effects of other flight factors, both side and forward overlaps were fixed at 80%, and the
flying height remained constant (Table 1). A camera angle bigger than 40◦ is not included
because the observation distance will be much bigger than the flying height under such
a high inclination. Due to high-relief landforms, the take-off point was halfway up the
mountain, the flying height was set to 100 m (T1) and 70 m (T2), respectively, and the
ground resolution was 2.7 cm (T1) and 1.9 cm (T2), respectively (Table 1).

Table 1. Experiment of camera angle of UAV photogrammetry.

Study Area Camera Angle (◦) Flying Height (m) Flight Sorties Ground Resolution
(cm)

T1 0, 5, 10, 20, 30, 35, 40 100 7 2.7
T2 0, 5, 10, 20, 30, 35, 40 70 7 1.9

(2) Combination of different camera angles
The combination dataset has been proposed for improving UAV-SfM photogramme-

try [36,37]. Here, we designed different combination dataset experiments. We combined a
nadir block with supplemented convergent imagery given its importance for reducing sys-
tematic error in UAV-SfM photogrammetry [22]. In this study, we added more combinations
because an off-nadir double-grid block can also be supplemented with several additional
convergent images. Then, we referred to the double-grid blocks (nadir or off-nadir) as
the main blocks. The main blocks used were the same as those in Table 1. The additional
convergent images with camera angles from 0◦ to 40◦ were collected at 120 m and 80 m
flying heights in T1 and T2 areas (Table 2), respectively. Each additional convergent dataset
comprises 16 photos. The supplemented photos are added into the main block (double-grid
blocks), and then all the photos will be regarded as a combination block.
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Table 2. The strategies of “Main Block + Supplemented Images”.

No. Main Block (◦) Supplemented Images (◦) Combinations (Main + Supplement)

1 0 5, 10, 20, 30, 35, or 40 0 + 5◦, 0 + 10◦, 0 + 20◦, 0 + 30◦, 0 + 35◦, 0 + 40◦

2 5 10, 20, 30, 35, or 40 5 + 10◦, 5 + 20◦, 5 + 30◦, 5 + 35◦, 5 + 40◦

3 10 20, 30, 35, or 40 10 + 20◦, 10 + 30◦, 10 + 35◦, 10 + 40◦

4 20 30, 35, or 40 20 + 30◦, 20 + 35◦, 20 + 40◦

5 30 35, or 40 30 + 35◦, 30 + 40◦

6 35 40 35 + 40◦

2.3.2. Flying Height Design

(1) Single flying at different heights
Except for the camera angle, the flying height is also an important factor affecting the

accuracy. Due to the high relief of the study areas, the actual flying height will be inconstant.
Here, we used the average flying height. The flying height directly affects the ground
resolution and indirectly affects the elevation accuracy. This study focuses on a 1:500
photography survey. According to Specifications for low-altitude digital aerial photography
(CH/Z3005-2010), the ground resolution of 1:500 scale aerial photography should be less
than 5 cm. Therefore, we designed a flying height of 60–160 m and the ground resolution
is 1.6–4.4 cm (Table 3). For better comparison, we kept the camera angle and the overlap
constant under different flying heights. We used a nadir camera for the T1 area and a 15◦

inclined camera for the T2 area to investigate the effect of camera angle (Table 3).

Table 3. Experiment of flying height of UAV photogrammetry.

Study Area Flying Height (m) Camera Angle (◦) Flight Sorties Average Ground Resolution (cm)

T1 60, 80, 100, 120, 140, 160 0 6 1.6–4.4
T2 60, 80, 100, 120, 140, 160 15 6 1.6–4.4

(2) Combination of multiple flying heights
Here, we combined multiple flying heights into one block because it has also been

suggested for improving the UAV-SfM model in previous studies [38]. To investigate
whether the number of combined flying heights affects errors or not, we designed the
image combinations of 2, 4, and 6 flying heights, and kept the mean flight height the
same (Table 4). This experiment can also demonstrate the effect of camera angle on the
combinations of flying height because we set a nadir camera and a 15◦ inclined camera in
the T1 and T2 areas, respectively.

Table 4. The experiment of combinations with different flying height.

Study Area Camera Angle (◦) No.1
Combination of Two Heights (m)

No.2
Combination of

Four Heights (m)

No.3
Combination of Six Heights

(m)

T1 0 100, 120 80, 100, 120, 140, 60, 80, 100, 120, 140, 160
T2 15 100, 120 80, 100, 120, 140, 60, 80, 100, 120, 140, 160
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2.4. Ground Control Points
2.4.1. Ground Control Design

The GNSS-RTK method is adopted for the field control survey. The GNSS receiver
is Topcon HiPer SR, and the size of the control point target is 1 m × 1 m. The horizontal
and vertical accuracy for GCPs surveyed with GNSS-RTK were ±0.010 m and ±0.015 m,
respectively. The control point (target center) is visible within 200 m flying height. To
ensure that the GCPs are evenly distributed on the plane and elevation, we set up GCPs
along peaks, ridges, and gully bottoms in each study area. We set up 33 (T1) and 31 (T2)
GCPs, respectively, for both study areas (Figure 1) (6.5 and 8.6 GCPs per hectare in T1 and
T2 area, respectively).

The UAV data are processed by the 3-D modeling software Agisoft PhotoScan Pro
1.5. The main processing flow includes preliminary processing, aerial triangulation, dense
cloud building, point cloud editing, and error spatial distribution map generation. To verify
the effect of different image collection strategies on terrain modeling errors, we designed
two data processing scenarios: GCP-constrained and GCP-free. With GCP-free scenario,
we only used two GCPs to shift, rotate, and zoom the tie points to a correct location for
georeferencing; and the two GCPs were excluded from the bundle adjustment process. With
GCP-constrained scenario, GCPs were used to improve the bundle adjustment. Here, two
factors need to be considered, including the number and the spatial distribution of GCPs.

2.4.2. The Number of GCPs

To investigate the effect of the number of GCPs and whether different image col-
lection strategies affect the optimal GCP number, we employed two Monte Carlo GCP
experiments [29] under different image collection strategies. First, for each Monte Carlo
realization, the same number (x) of GCPs was selected to optimize the bundle adjustment,
and the rest of the GCPs were used as check points to assess the accuracy. The process was
then repeated 50 times with a different random selection of GCPs. Second, for each Monte
Carlo realization, the number of selected GCPs gradually increased from 10% to 90% of
the total GCPs (33 and 31 for the T1 and T2 area, respectively) in steps of 10%. The Monte
Carlo GCP tests were carried out in the Agisoft PhotoScan Pro 1.5 and using the Python
code [29].

2.4.3. The Spatial Distribution of GCPs

To investigate the effect of the spatial distribution of GCPs, we used two indices for
quantifying the spatial pattern of GCPs. The mean distance between GCPs (MEDCP) is the
sum of the distance between GCP pairs divided by the number of GCP pairs, which can
reveal whether the GCPs are evenly distributed in space:

MEDCP =
∑n

1 di
n

(1)

where, the di is the distance of a GCP pair; n is the number of GCP pairs.
The Compaction Index (CI) of GCPs is the ratio of the perimeter of the convex hull

of GCPs to the square root of the convex hull area of GCPs, which shows the shape of the
GCP distribution:

CI =
P√
A

(2)

where, the p is the perimeter of the convex hull of GCPs; A is convex hull area of GCPs. The
smaller the value of CI, the closer the shape of the convex hull area is to a circle, indicating
that it is less compact. The bigger the value of CI, the closer the shape of the convex hull
area is to a straight line, indicating that it is more compact.
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Besides the two indices to quantify the spatial pattern of GCPs, three patterns that
edge layout, center layout, and edge combined with center layout (Figure 3) are used to
validate the effect of the indices due to the obvious differences of the three layouts in the
indices. Among the three layouts, the MEDCP of edge layout is the largest, followed by the
edge combined with center layout, and the center layout. With a same layout (e.g., center
layout), the CI varies with the GCP distribution. A larger CI can represent the discrete
distribution of the convex hull of GCPs.
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2.5. Accuracy Evaluation

We used all the GCPs (33 GCPs for T1 and 31 GCPs for T2) for georeferencing and
controlling the photogrammetry process to generate the reference data. Due to the high
density of GCPs in the two areas, the reference data generated by all GCP control have a
high accuracy. This study focuses on the error of terrain elevation (Z error). We used the
M3C2 tool in CloudCompare to evaluate the elevation error of each point between the ex-
perimental results (generated by the different experimental methods in Sections 2.3 and 2.4)
and the reference data. The evaluated elevation error point cloud is then converted to a
raster to obtain the error maps. Thereafter, we used the standard deviation error (STD)
and mean error (ME) of the error map to represent the overall error of the study areas. ME
reflects the overall systematic error. A large ME shows a systematic error in the study area.
STD reflects the level of random error, and the smaller the STD, the smaller the random
error. The two calculation formulas are shown below:

STD =

√
∑n

i=1(xi − x)2

n
(3)

ME =
∑n

i=1 xi

n
(4)

where n represents the number of pixels; xi represents each elevation error in each pixel;
and x represents the average error.

In addition, this study calculates Moran’s I [39] to quantify the autocorrelation of the
error maps because ME and STD do not consider the extent to which error is spatially
variable. The Moran’s I reflects the spatial structure (clustering or discrete) of errors. If the
errors present a clustering or discrete pattern, there is a systematic error. Thus, Moran’s I
is important for revealing systematic error. The value of Moran’s I is between −1 and 1:
The closer its value to 1 or −1, the more positive or negative the spatial autocorrelation of
errors, respectively. A value of 0 indicates a random distribution of error in space:

I =
n
So
·
∑n

i=1 ∑n
j=1 wi,j(xi − x)

(
xj − x

)
∑n

i=1(xi − x)2 (5)

where n is the number of spatial units indexed by i and j; x is the variable of interest; x is
the mean of x; wi,j is a matrix of spatial weights with zeroes on the diagonal; and So is the
sum of all wi,j.
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3. Results
3.1. The Effects of Camera Angle
3.1.1. Single Camera Angle

The error maps with different camera angles are shown in Figure 4. Errors in T1 and
T2 areas show the same spatial distribution pattern. When the camera angle is 0◦, the error
map shows an obvious spatial clustering pattern. Positive errors are concentrated in the
valley area, and negative errors are concentrated in the ridge area. When the camera angle
is greater than or equal to 10◦, the spatial distribution of errors are relatively even. Then,
we use ME and STD to quantify the overall accuracy of the study areas. When the camera
angle is 0◦, the ME of the two areas is the largest; when the camera angle is greater than
10◦, the ME is close to 0, indicating that the georeferencing in Z direction is acceptable. The
trend of the STD is the same as the ME, indicating that the use of oblique photography
reduces the magnitude of errors. However, the STD is larger than ME with a higher camera
angle (>20◦) (Figure 4b,e), indicating that the systematic error is optimized and then the
random error dominates.
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Figure 4. (a–c) are the error maps with different camera angles, STD and ME of error maps, and 
Moran’s I of error maps in the T1 area, respectively; (d–f) are the error maps with different camera 
angles, STD and ME of error maps, and Moran’s I of error maps in the T2 area, respectively. 

The Moran’s I reveals that the structure of errors varies with camera angle. The Mo-
ran’s I is positive with nadir and 5° camera angle in the two study areas (Figure 4c,f) (P 
values are less than 0.01, and Z values are greater than 1.96), showing that the spatial 
distribution of errors has positive spatial correlation, that is, the errors are clustered in 
space; this is consistent with the error maps in Figure 4a,d. As the camera angle increases, 
Moran’s I decreases rapidly. After the camera angle is greater than 10°, Moran’s I gradu-
ally stabilizes and closes to 0, indicating that the error is similar to the spatial random 
distribution. This result means that using oblique photography with a large camera angle 
(greater than 20°) not only reduces the magnitude of errors but also improves the spatial 
structure of errors. 
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ported by a reduced ME, STD, and Moran’s I. However, when the main block angle is 
higher than 10°, supplementing with additional oblique images seems to have no effect 

Figure 4. (a–c) are the error maps with different camera angles, STD and ME of error maps, and
Moran’s I of error maps in the T1 area, respectively; (d–f) are the error maps with different camera
angles, STD and ME of error maps, and Moran’s I of error maps in the T2 area, respectively.

The Moran’s I reveals that the structure of errors varies with camera angle. The
Moran’s I is positive with nadir and 5◦ camera angle in the two study areas (Figure 4c,f)
(P values are less than 0.01, and Z values are greater than 1.96), showing that the spatial
distribution of errors has positive spatial correlation, that is, the errors are clustered in space;
this is consistent with the error maps in Figure 4a,d. As the camera angle increases, Moran’s
I decreases rapidly. After the camera angle is greater than 10◦, Moran’s I gradually stabilizes
and closes to 0, indicating that the error is similar to the spatial random distribution. This
result means that using oblique photography with a large camera angle (greater than 20◦)
not only reduces the magnitude of errors but also improves the spatial structure of errors.
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3.1.2. Combination of Different Camera Angles

Figure 5 shows the error maps with different combinations of camera angles. When
both the main block angle and supplemented image angle are low (0◦ or 5◦), the errors
show a spatial clustering pattern, and a bigger ME, STD, and Moran’s I. With an increas-
ing supplemented image angle, the spatial distribution of errors can improve, which is
supported by a reduced ME, STD, and Moran’s I. However, when the main block angle is
higher than 10◦, supplementing with additional oblique images seems to have no effect on
the error patterns. This means that if the main block has a relatively high camera angle, the
supplemented convergent images are unnecessary.
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3.2. The Effects of Flying Height
3.2.1. Single Flying Height

Figure 6 shows the error maps with different flying heights. The T1 area presents
stable ME and STD values with increasing flying height with a nadir (0◦) camera; while the
ME and STD increase in the T2 area where a 15◦ camera angle was used. Generally, the
ME and STD would increase with flying height due to an increase in observation distance
and coarser image resolution. The T1 area shows an unexpected result. This could be due
to two reasons. First, the error is decimeter level with the nadir camera (supported by
Figure 4d,e). The error changes caused by flying height (60–160 m only) could be an order
lower than the error caused by the nadir camera. The photogrammetric solutions were still
dominated by camera calibration effects, not flying height. Thus, the experimental results
cannot reflect the error variation caused by flying height. This conclusion is supported
by the results from the T2 area. In the T2 area, there is a significant positive correlation
between the flying height, ME, and STD since the T2 area adopts oblique photography
with a camera angle of 15◦ and the error is centimeter-level which is enough to capture the
change caused by flying height.
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STD and ME of error maps, and Moran’s I of error maps in the T2 area, respectively. 

3.2.2. Combination of Multiple Flying Heights 
Figure 7 shows the effects of different combinations of flying heights on ME, STD, 

and Moran’s I. The combined multiple flying heights do not impact ME and Moran’s I, 
but they do affect STD. In the T1 area, where the nadir camera is utilized, increasing the 
flying heights from one to two exhibits a decreasing trend in STD. This implies that addi-
tional observation distance enhances accuracy. Conversely, the flying height appears to 
have no effect on the STD of the T2 area. The disparity between T1 and T2 can be attributed 
to the fact that in T2 all flights are conducted with a 15° camera angle, resulting in variable 
observation distances within the image. As a result, incorporating additional flying height 
does not yield a discernible difference in oblique photogrammetry. The additional flying 
height is unnecessary when using oblique photography. 

Figure 6. (a–c) are the error maps with different flying height, STD and ME of error maps, and
Moran’s I of error maps in the T1 area, respectively; (d–f) are the error maps with different flying
height, STD and ME of error maps, and Moran’s I of error maps in the T2 area, respectively.
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Figure 6 also confirmed the conclusion in Section 3.1 that oblique photography with
a large angle reduces the elevation error in high-relief landforms, and its error spatial
distribution is more even. However, the flying height marginally affects the spatial patterns
of errors. Although the flying height is changing (60–160 m), the spatial distribution
of errors shows the same pattern (Figure 6a,d). The Moran’s I slightly increases with
the flying height (Figure 6c,f). By contrast, the camera angle is more important than
flying height for improving the spatial pattern of errors. The Moran’s I in the T1 area
with oblique photography is an order of magnitude less than that in the T2 area with
vertical photography.

3.2.2. Combination of Multiple Flying Heights

Figure 7 shows the effects of different combinations of flying heights on ME, STD, and
Moran’s I. The combined multiple flying heights do not impact ME and Moran’s I, but
they do affect STD. In the T1 area, where the nadir camera is utilized, increasing the flying
heights from one to two exhibits a decreasing trend in STD. This implies that additional
observation distance enhances accuracy. Conversely, the flying height appears to have no
effect on the STD of the T2 area. The disparity between T1 and T2 can be attributed to
the fact that in T2 all flights are conducted with a 15◦ camera angle, resulting in variable
observation distances within the image. As a result, incorporating additional flying height
does not yield a discernible difference in oblique photogrammetry. The additional flying
height is unnecessary when using oblique photography.
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3.3. The Effects of GCPs
3.3.1. The Number of GCPs

Figure 8 shows the error maps with different numbers of GCPs. The overall trends
of the T1 and T2 areas are similar. As the number of GCPs increases, the magnitude (ME
and STD) of the error becomes smaller, and its spatial distribution is also improved, similar
to the random distribution (Figure 8a,b). The STD and ME of the two areas are negatively
correlated with the number of GCPs (Figure 8c,d). However, when the GCPs reach a certain
number (about 5 GCPs), the STD and ME tend to be stable. This means that a small number
of GCPs can rapidly improve the overall accuracy of the area, but after reaching a certain
number, the GCPs have minor influence on the magnitude of the errors.
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Figure 8. (a–c) are the error maps with different GCPs, STD and ME of error maps, and Moran’s I of 
error maps in the T1 area, respectively; (d–f) are the error maps with GCPs, STD and ME of error 
maps, and Moran’s I of error maps in the T2 area, respectively. 

We calculated Moran’s I of the errors under different numbers of GCPs (Figure 8c,f) 
for quantifying the spatial structure of errors. When the number of GCPs is small, Moran’s 
I is relatively large; this indicates a positive spatial correlation of the spatial distribution 
of errors, and there are high- and low-value clustering distributions in space. However, 
Moran’s I is negatively correlated with the number of GCPs overall. The more the GCPs, 
the closer Moran’s I is to 0. After the GCPs exceed a certain number (15 GCPs in the T1 
area and 12 GCPs in the T2 area), the Moran’s I becomes stable. The stable number of 
GCPs for Moran’s I is greater than that of ME and STD (about five GCPs in Figure 8). This 
implies that a small number of GCPs can rapidly improve the magnitude of the errors and 
reach a certain level of stability; but, more GCPs are needed for optimizing the spatial 
structure of errors. 

Figure 8. (a–c) are the error maps with different GCPs, STD and ME of error maps, and Moran’s I of
error maps in the T1 area, respectively; (d–f) are the error maps with GCPs, STD and ME of error
maps, and Moran’s I of error maps in the T2 area, respectively.
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We calculated Moran’s I of the errors under different numbers of GCPs (Figure 8c,f)
for quantifying the spatial structure of errors. When the number of GCPs is small, Moran’s
I is relatively large; this indicates a positive spatial correlation of the spatial distribution
of errors, and there are high- and low-value clustering distributions in space. However,
Moran’s I is negatively correlated with the number of GCPs overall. The more the GCPs,
the closer Moran’s I is to 0. After the GCPs exceed a certain number (15 GCPs in the T1 area
and 12 GCPs in the T2 area), the Moran’s I becomes stable. The stable number of GCPs for
Moran’s I is greater than that of ME and STD (about five GCPs in Figure 8). This implies
that a small number of GCPs can rapidly improve the magnitude of the errors and reach a
certain level of stability; but, more GCPs are needed for optimizing the spatial structure
of errors.

3.3.2. The Spatial Distribution of GCPs

Figure 9 shows the effect of the spatial distribution of GCPs on ME, STD, and Moran’s
I. The two study areas show the same trend. The closer the MEDCP is to the average
distance of the study areas (about 125 m and 60 m for the T1 and T2 area, respectively),
the smaller the STD is, and the closer to zero ME and Moran’s I are. This means that the
even distribution of GCPs is better for improving both the magnitude and spatial structure
of errors. Meanwhile, the results of CI show that the closer the convex hull area of GCPs
is to a circle, the smaller the ME, STD, and Moran’s I. This implies that GCPs should be
discretely distributed at the edge of the study area as much as possible, which could be
more important than even distribution.

To validate the findings in Figure 9, the edge layout, center layout, and edge combined
with the center layout are used to reveal the error maps with different GCP distributions.
Figure 10 shows the error maps of the three layouts of GCPs. With the center layout, the
MEDCP is the smallest among the three layouts. Obvious spatial autocorrelation exists
in the error maps regardless of high or low CI value, indicating systematic errors to some
extent. With the edge layout, the MEDCP is the largest among the three layouts. The spatial
autocorrelation (Moran’s I) is reduced but still exists, especially in the central area. For the
edge combined with the center layout, the MEDCP is the median among the three layouts.
The spatial autocorrelation is optimized as much as possible; the ME, STD, and Moran’s
I are the lowest. Notably, compared with the edge layout, the edge combined with the
center layout only has a slight improvement although more GCPs were used; this suggests
that the discrete distribution at the edge of the study area is more important than the even
distribution of the whole area.
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4. Discussion
4.1. Camera Angle, Flying Height, and Combination Strategies

This study estimated error maps of UAV-SfM photogrammetry. We provide more
insights into image collection strategies than traditional overall accuracy indexes, such as
RMSE. Previous studies have confirmed that oblique photography with a larger angle can
effectively reduce elevation error [24,25]. The experimental results presented in this paper
support this finding. Furthermore, we discovered that oblique photography with larger
angles improves the spatial distribution of errors. The improvement achieved through
higher camera inclination can be attributed to the increased intersection angles of tie point
rays, which enhance bundle adjustment, leading to improved camera calibration and
error mitigation.

Theoretically, as the flying height increases, the ground resolution becomes coarser and
increases errors [40]. A previous study showed the effect of flight altitude on topographic
accuracy is nonlinear [3]. Our study also supported this finding. We found that the effect
of flying height is relative to camera angle, which means there could be an interactive
effect of camera angle, flying height, and other image collection strategies. With oblique
photography, the errors decrease by an order of magnitude and the effect of the flying
height variation on errors is obvious (Figure 6). Whilst, with vertical photography, the error
is relatively large and the flying height seems to have no effect on errors (Figure 6). Then, a
possible reason is that error is still dominated by camera calibration effects and not flying
height, and the error caused by flying height variation could not be reflected. Moreover, we
found that the flying height marginally affected the spatial pattern of errors (Figure 6a,d).
By contrast, the camera angle is more important than flying height for improving the spatial
pattern of errors (Figure 6c,f).
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A combination of datasets was proposed for improving UAV-SfM photogrammetry in
previous studies [24,38]. Our study shows that such combinations of datasets may not be
necessary if the main block has imageries with a relatively high inclination. Thus, compared
to the camera angle, the supplemented convergent images and combined multiple flying
height images seem to be unimportant although extra effort has been made.

4.2. The Quantity and Spatial Distribution of GCPs

The quantity and spatial distribution of GCPs is important to improve UAV pho-
togrammetry. GCPs define the absolute orientation and scale of the external coordinate
system and provide constraints for the bundle adjustment [24,29,38,41]. Our results show
that a small number of GCPs can rapidly improve photogrammetric errors. After more
than 5 GCPs, the magnitude of errors tends to be stable, which means a large number of
GCPs is unnecessary. However, the spatial structure of errors can be further improved
although the magnitude of GCPs is stable. Relatively, more GCPs are required to optimize
the spatial structure of errors.

In the two study areas, a range of five to nine GCPs (equivalent to 1.39 to 1.76 GCPs
per hectare) is sufficient for improving the bundle adjustment. The appropriate number
of GCPs may be influenced by the size of the study sites. In this study, since the study
area was relatively small (3.6 to 5.1 hectares), fewer GCPs were required. However, the
study [27] reported that a study area of 1220 hectares necessitated 50 GCPs (approximately
0.041 GCPs per hectare). Thus, the average GCP density is more useful than the optimal
GCP number in practice. Furthermore, the average GCP density varies across different
studies [22,42], indicating that it is dependent on various factors, such as terrain relief,
surface texture, and image quality. Hence, there is no universal recommendation for the
average GCP density or the optimal number of GCPs in different areas.

In addition to the number of GCPs, the spatial distribution of GCPs should be ad-
dressed [27,29]. With the fixed number of GCPs, the different selections of GCPs have
different ME, STD, and Moran’s I (Figure 10). There is a general consensus that GCPs
should be evenly distributed in study areas [27,29,43]. Our results confirmed this rule.
However, we argue that the edge distribution is more important than the even distribution.
With a limited or small number of GCPs, we should first discretely distribute GCPs at the
edge of study areas as much as possible, and then even distribution could be considered.

4.3. Other Factors

In addition to the image collection and ground control strategies, the terrain relief
seems to be another variable that influences UAV-SfM photogrammetry accuracy. Previous
studies [3,10–12] investigated different UAV-SfM strategies in plain and forest areas. In
this study, we focused on two hilly areas. UAV-SfM in hilly areas have more inconstant
ground resolution and terrain shadings, and thus suitable image collection and ground
control design are needed. However, the study [22] also showed that terrain modeling
errors in low-relief regions can be complex due to the fewer variations in UAV observation
distance. The image collection and ground control strategies presented in this paper can
also be applied to low-relief (plain) regions because oblique photography can increase the
variation in UAV observation distance and enhance bundle adjustment.

The different flight configurations (image collection and ground control strategies)
affect the critical steps of the SfM algorithm, such as key point extraction, feature matching
and dense matching, and finally their effects are reflected in accuracy. First, oblique images
capture steep slopes that are often not visible in nadir images [44], resulting in a greater
number of potential matching points in both the SfM and MVS processes. This finding
aligns with the results of [24], who reported that oblique images enhance tie-point matching.
Moreover, higher camera inclination can increase intersection angles of tie point rays, which
enhance bundle adjustment, leading to improved camera calibration. Second, lower flying
altitude increased the image quality. The high-quality images lengthen the processing
time because of the smaller pixel size and larger number of pixels. Besides the processing
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time, the larger number of pixels provides potentiality to extract more key points and then
enhance feature matching in the SfM algorithm. Finally, the interactions of camera angle,
flying height, GCPs, and terrain relief can be complex. For example, oblique photography
increases the variation of observation distance and the intersection angles of tie point rays,
which is beneficial for bundle adjustment; but the perspective deformations of oblique
photography may introduce more false key point matches in flats with a similar repetition
of textures [45], leading to an unpredictable result. Thus, the mechanism of interactions of
these factors is still unknown and needs to be investigated in the future.

5. Conclusions

From the perspective of spatial structure of errors, this study designed various UAV-
SfM photogrammetric scenarios and investigated the effects of image collection strategies
(camera inclination, flying height, and combination dataset) and GCPs (the number and
distribution) on terrain modeling. The error maps of different photogrammetric scenarios
were calculated. Then, the error maps were quantitatively analyzed by ME, STD, and
Moran’s I. The results show that:

1. A high camera inclination (20–40◦) enhances UAV-SfM photogrammetry. This not only
decreases the magnitude of errors, but also mitigates its spatial correlation (Moran’s I).
Supplementing convergent images is valuable for reducing errors in a nadir camera
block, but it is unnecessary when the image block is with a high camera angle.

2. Flying height increases the magnitude of errors (ME and STD) but does not affect the
spatial structure (Moran’s I). By contrast, the camera angle is more important than
flying height for improving spatial pattern of errors. Moreover, the effect of flying
height is nonlinear and could interact with the camera angle.

3. A small number of GCPs rapidly improves the magnitude of errors (ME and STD),
and a further increase in GCPs has a marginal effect. However, the structure of errors
(Moran’s I) can be further improved with increasing GCPs.

4. With the same number, the distribution of GCPs is critical for UAV-SfM photogramme-
try. The edge distribution should be first considered, followed by the even distribution.

UAV-SfM photogrammetry is easily accessible for producing high-resolution (centimeter-
level) orthoimages and digital elevation models at low cost and is thus widely used in geoscience
communities. The “best practice” of UAV-SfM photogrammetry is arousing wide concern
in research communities. This study recommended photogrammetric guidelines based on
robust analyses of camera settings and GCPs design. The research findings contribute to
understanding how different image collection scenarios (camera inclination and altitude) and
ground control points can influence subsequent terrain modeling accuracy and precision (ME
and STD). Besides accuracy and precision, this study used a spatial autocorrelation statistic
(Moran’s I) for determining the extent of spatial structure of errors. The results show that the
spatial dependence statistic of error like Moran’s I should be routinely applied in evaluations of
the quality of UAV-SfM photogrammetry.
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20. Štroner, M.; Urban, R.; Seidl, J.; Reindl, T.; Brouček, J. Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing
Strategies without GCPs. Remote Sens. 2021, 13, 1336. [CrossRef]
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