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Abstract: Quantifying carotenoid content in agriculture is essential for assessing crop nutritional
value, improving crop quality, promoting human health, understanding plant stress responses,
and facilitating breeding and genetic improvement efforts. Hyperspectral reflectance imaging is a
nondestructive and rapid tool for estimating the carotenoid content. In spectrometer reflectance
measurements, there are various sources of noise that can compromise the accuracy of carotenoid
content estimations. Recently, various machine learning algorithms have been identified as robust
against various types of noise, eliminating the need for denoising processes. Specifically, Cubist
and the one-dimensional convolutional neural network (1D-CNN) have been used in evaluating
vegetation properties based on reflectance data. We used regression models based on Cubist and
1D-CNN to estimate carotenoid content from reflectance data (the spectral resolution was resampled
in 5 nm bands across the entire wavelength domain from 400 to 850 nm) with various degrees of
Gaussian and spike noise added. The Cubist-based model was the most robust for this purpose: it
achieved a ratio of performance to deviation of 1.41, a root mean square error of 1.11 µg/cm2, and
a coefficient of determination (R2) of 0.496 when applied to reflectance data with a combination of
Gaussian (mean: 0; variance: 0.04) and spike noise (density: 0.05; amplitude: 0.05).

Keywords: Cubist; Gaussian noise; one-dimensional convolutional neural network; spike noise;
tea leaves

1. Introduction

Carotenoids, a class of pigments found in plants, serve as precursors to vitamin A and
have antioxidant properties [1,2]. Furthermore, carotenoids contribute to the nutritional
value of fruits, vegetables, and plant-based food products [3,4]. Furthermore, carotenoids
play roles in plant stress responses and environmental adaptations [5]. Functioning as
photoprotective pigments, carotenoids absorb excess light energy and dissipate it as heat,
effectively shielding plants from damage caused by high-intensity light [6]. In tea plants,
carotenoid content is a heritable trait, and by monitoring carotenoid levels in various tea
cultivars and varieties, breeders can identify plants with desirable carotenoid profiles and
use this information for selective breeding [7,8]. This process can lead to the development
of tea cultivars with improved nutritional quality, stress tolerance, and overall performance.
Furthermore, carotenoid-rich teas are often preferred by consumers due to their enhanced
appearance, flavor, and health benefits [9].

Carotenoid content quantification has traditionally been performed using ultraviolet and
visible (UV–VIS) spectroscopy or high-performance liquid chromatography (HPLC) [10–12].
However, these approaches are both time-consuming and expensive, making them ill suited
for tracing temporal changes in carotenoid content. In contrast, the use of hyperspectral
reflectance offers a nondestructive approach for measuring carotenoid content that has
been applied in forestry, vegetation, and environmental monitoring [13–20]. However,
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while field-portable spectroradiometers have been developed to obtain hyperspectral data,
their high cost renders them impractical for use at the consumer level [21,22]. Recently,
affordable, compact, fingertip-sized spectrometers (such as the C12880MA [Hamamatsu
Photonics]) have been developed. These small devices can be attached to unmanned aerial
vehicles for conducting measurements over large areas [23,24]. However, the measurements
from these sensors contain various degrees of noise and may exhibit shifts. To modify
baselines and slope shifts, studies have shown that detrending can be achieved using the
standard normal variate (SNV) and multiplicative scatter correction (MSC) methods [25–27].
Similarly, Savitzky–Golay smoothing and median filtering have been reported as effective
for denoising small signal-independent noises, ranging from low-level Gaussian noise
to high-level mixed noise, which includes Gaussian and spike noise [28,29]. However,
corrections with these methods lead to reductions in spectral resolution [28,30,31] and
sometimes compromise information related to vegetation properties. Therefore, alternative
approaches are required for estimating vegetation properties from reflectance data with
Gaussian and spike noise. This is particularly the case for measurements from sensors with
a wide full-width at half-maximum (FWHM), which are subject to correction methods and
the potential loss of spectral resolution.

Various spectral indices, such as the Carotenoid Reflectance Index (CRI) [32], the
Photochemical Reflectance Index (PRI) [33], and the Structure-Insensitive Pigment Index
(SIPI) [34], have been proposed for evaluating carotenoid content based on reflectance
data. These indices exploit the specific absorption features of carotenoids in the visible and
near-infrared spectra. Additionally, the inversion of radiative transfer models has been
used to estimate carotenoid content [35,36]. However, different remote sensing sensors may
vary in their spectral bands, calibration, and/or radiometric characteristics. Consequently,
the techniques developed for one sensor may not be directly applicable or yield the same
results when used with data from another sensor. Indeed, these techniques, designed to
address specific types of noise from specific sensors, may not effectively extract the actual
differences or variability from noisy reflectance data from a different sensor. If applied
incorrectly, these limitations can lead to misinterpretations of data and invalid conclusions.

Recently, machine learning techniques such as Cubist, support vector machines (SVM),
random forests, and artificial neural networks have been used to develop models for
carotenoid content estimation. These algorithms are becoming increasingly utilized be-
cause they can learn features from training datasets that contain both hyperspectral and
carotenoid content data. The benefits of machine learning algorithms for characterizing
vegetation have been widely demonstrated, with some algorithms even proving robust
against various types of noise. In studies examining machine learning techniques, the
Cubist algorithm has been shown globally to perform the best [37]. This excellent record
of performance was also observed in the evaluation of vegetation properties based on
reflectance data [23,24]. More recently still, deep-learning-based regression methods have
gained in popularity for use in modeling complex relationships and making accurate pre-
dictions across various domains. Deep learning methods are built upon feedforward neural
networks, which consist of an input layer, one or more hidden layers, and an output layer,
where each layer contains multiple neurons (nodes) with weighted connections. One type
of FNN-based method is autoencoders, which are unsupervised learning models consisting
of an encoder and a decoder. These models are used for feature learning and dimension-
ality reduction with the objective of reconstructing input data [38,39]. However, when
compared with the Cubist algorithm across various datasets, autoencoders have typically
shown inferior performance [37]. Convolutional neural networks (CNN), on the other hand,
excel at automatically learning relevant features from raw data, and the one-dimensional
convolutional neural network (1D-CNN) is one of the most effective architectures based
on deep learning. It has been successfully used to evaluate soil properties and chlorophyll
content based on reflectance data [40,41].

The specific objectives of this study were as follows: (1) to assess the potential of a
compact spectrometer for evaluating carotenoid content; and (2) to compare the abilities of
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regression models based on the Cubist algorithm or on 1D-CNN in estimating carotenoid
content using noisy reflectance data.

2. Materials and Methods
2.1. Measurements

The reflectance of tea plants was measured at the Institute of Fruit Tree and Tea Science,
National Agriculture and Food Research Organization in Shimada, Japan. During the measure-
ment period, the daily temperature ranged from 12.5 to 19.2 ◦C and daily precipitation was
0.0–17.5 mm. The tea field comprised 39 ridges with different cultivars on each ridge, except for
the Yabukita cultivar, which was cultivated on two ridges (Figure 1). Most cultivars belonged
to Camellia sinensis, except for Sunrouge (Camellia taliensis × C. sinensis). Yabukita is a well-
known and widely cultivated tea cultivar in Japan and is used particularly for producing
sencha. Many cultivars, including Fukumidori, Harumi-dori, Hokumei, Kanayamidori,
Meiryoku, Minekaori, Okumidori, Ryoufuu, Saemidori, Sayamakaori, Soufuu, and Yume-
wakaba, are produced through crosses with Yabukita. From these, second filial generation
cultivars such as Fuushun, Saeakari, Sainomidori, Seimei, Harumoegi, Kanaemaru, and
Yumekaori are produced. While most of these cultivars are sencha-oriented, Sunrouge
yields a pink tea and Benifuuki, Benihikari, and Benihomare are often used for black teas.
We collected leaf samples from 38 tea cultivars at 78 different collection points on 10 May,
20 June, and 28 June. On each sampling date, 234 leaves were collected from the third leaf
of the tea trees (three samples from each sampling point) to quantify carotenoid content
and measure reflectance.
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Figure 1. Experimental tea field.

A spectrometer with a complementary metal-oxide semiconductor (CMOS) sensor
(C12880MA, Hamamatsu Photonics) was used to measure reflectance. A shape-memory
alloy (SMA)–SMA fiber patch cable (M25L05, Thorlabs) and a plant probe, which included
a halogen light source, were connected to the spectrometer for direct measurements of indi-
vidual leaves. This plant probe was created using the ASD Plant Probe as a reference [42].
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The grating equations provided by Hamamatsu Photonics were applied and then the
spectral resolution was resampled in 5 nm bands across the wavelength domain 400–850 nm.
The reflectance of the target leaf was calculated using the following equation:

ρλ =
Sλ − Dλ

Wλ − Dλ
(1)

where S, W, and D are the target, diffuse reflectance standard, and dark current, respectively,
at wavelength λ (in nm). All calculations were conducted using R version 4.2.2 [43].

Carotenoid content was quantified using a dual-beam scanning ultraviolet–visible
spectrophotometer (UV-1280, Shimadzu, Japan). The equations used to quantify the
carotenoids (µg mL−1) in the N, N–dimethyl-formamide extracts were [11]:

Car = (1000.00A480.0 − 1.12Ca − 34.07Cb)/245.00 (2)

Ca = 12A663.8 − 3.11A646.8 (3)

Cb = 20.78A646.8 − 4.88A663.8 (4)

where Car, Ca, and Cb represent the pigment contents of carotenoids, chlorophyll a, and b
and A is the absorbance at the wavelength (nm) indicated by the subscript.

2.2. Adding Noise

Gaussian noise, also known as random noise or white noise, is characterized by a
random distribution of values around the true signal that follows a Gaussian or normal
distribution. Gaussian noise can arise from multiple sources, including noise introduced
by electronic components, such as sensors, amplifiers, and digitizers, during the signal
acquisition process. Electronic noise can also be introduced by external factors like elec-
tromagnetic interference from power lines, radio frequencies, or other nearby electronic
devices, resulting in imperfections or variability in sensor responses over time.

Spike noise, also known as impulse noise or salt-and-pepper noise, manifests as sud-
den, isolated, and extreme outliers in the signal. These can be caused by momentary
electrical disturbances or power surges and appear as spikes or abrupt jumps in the measure-
ment system and data. Similar spikes can be produced during data transmission, resulting
from errors due to faulty cables, connectors, or data corruption. Furthermore, certain sensor
malfunctions or defects can produce sporadic spikes in the measurement data.

In this study, 125 sets of reflectance data with different noise patterns were generated
by adding different amounts of Gaussian (zero mean and 0.01–0.05 variance) and spike
noise (density of 0.01–0.05 and amplitude of 0.01–0.05) to the measured reflectance data.

2.3. Regression Models Based on Machine Learning Algorithms

After generating the noisy reflectance datasets, we divided each dataset into three
groups using a stratified sampling approach: a training dataset (50%), a validation dataset
(25%), and a test dataset (25%) [44]. The training datasets were used to generate regression
models and the validation datasets were used to optimize the hyperparameters of the
machine learning algorithms. Finally, the test datasets were used to evaluate model accuracy.
This entire procedure was repeated 100 times to ensure the results were robust before the
regression models were generated.

We used both Cubist and 1D-CNN to generate the regression models. Cubist employs
a rule-based model tree approach, where leaves are represented by multivariate linear
regression models. To refine the model predictions, we optimized the numbers of committee
models (committee) and neighbors (neighbor) using the “Cubist” package [45]. Adjusting
the committee models can yield a boosting effect, which was achieved here by implementing
an ensemble approach combination where a nearest-neighbor algorithm was applied to
the leaf nodes. A CNN is commonly used to automatically detect features of interest
from a given dataset, and 1D-CNN can extract accurate features from 1D data [40]. We
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used the max-pooling technique and ReLU activation in the 1D-CNN. It has previously
been demonstrated that 1D-CNN can effectively estimate the concentrations of major
and minor pigments based on reflectance and absorption coefficient spectral inputs [40].
The architectural configuration we used consisted of 10 hidden layers, including four
convolutional layers, four max-pooling layers, and two fully connected layers. We used
dropout rates of 0.4 and 0.2, as suggested by the literature [46]. The regression models
based on 1D-CNN were developed using Google Colaboratory [47].

2.4. Performance Assessment

To evaluate the performance of the regression models, we used three metrics: the
ratio of performance to deviation (RPD) calculated using Equation (5) [48,49], where each
method was classified into one of three categories (“A” (RPD > 2.0), “B” (1.4 ≥ RPD ≥ 2.0),
or “C” (RPD < 1.4)) [50]; the root mean square error (RMSE, Equation (6) [51]); and the
coefficient of determination (R2, Equation (7) [52]). The formulae for these metrics are
as follows:

RPD = SD/RMSE, (5)

RMSE =

√
1
n ∑n

i=0(ŷi − yi)
2, (6)

R2 = 1 −
(

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2

)
, (7)

where SD is the standard deviation of the carotenoid content in the test data, n is the number
of samples, yi is the measured carotenoid content, and ŷi is the estimated carotenoid content.

The variance principle can be used to evaluate the sensitivity of spectral wave-
lengths [46,53]. To calculate the sensitivity (Si) for wavelength i (in nm), we used the
following formula:

Si =
Var( f (X400, . . . , Xi, . . . , X850)− f

(
X
)

Var(Y)
, (8)

where Var is the variation, f () is the prediction of spectra resulting from the variation in
wavelength i when other wavelengths are held constant at their mean values, f (X) is the
estimated value based on the mean reflectance, and Y represents the measured carotenoid
content. Once we had calculated Si, we converted the scores to percentages.

3. Results
3.1. Carotenoid Content for Each Cultivar

The carotenoid content per cm2 of leaf area was 6.18–15.63 µg and the averages for
the three observation dates were 11.23, 10.28, and 9.45 µg, respectively. These differed
significantly from each other, based on the Tukey–Kramer test (p < 0.001; Figure 2). Many of
the lowest values were observed in black-tea-oriented cultivars (e.g., the mean carotenoid
content of Benifuuki, Benihikari, and Benihomare was 8.89, 9.10, and 9.39 µg cm−2, respec-
tively), but the lowest value was observed in Hokumei (on 28 June). The cultivars with
high values included matcha- and sencha-oriented cultivars (e.g., the mean carotenoid
content of Kanaemaru, Minamisayaka, and Minekaori was 12.38, 11.99, and 11.70 µg cm−2,
respectively), and the highest value was observed in Minekaori (on 10 May).

3.2. Spectral Reflectance

The mean reflectance of each date is shown in Figure 3. Chlorophyll absorption in
the blue (400–500 nm) and red (600–700 nm) regions and the green peak, which is referred
to as a distinct peak in the reflectance spectrum around 550–570 nm, was confirmed. In
the transition region between the red and near-infrared, the red edge, which is a distinct
feature in the reflectance spectrum of vegetation, was observed. Generally, the reflectance
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acquired on 20 June was the lowest and the reflectance acquired on 28 June was the highest
over the green peak.
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Figure 3. Mean reflectance spectra acquired on 10 May, 20 and 28 June.

After obtaining the original reflectance data, 125 sets of reflectance data with different
noise patterns were generated by adding different amounts of Gaussian (zero mean and
0.01–0.05 variance) and spike noise (density of 0.01–0.05 and amplitude of 0.01–0.05).
Figure 4 shows a sample of the reflectance sets with different amounts of Gaussian and
spike noise.
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3.3. Correlation between Carotenoid Content and Reflectance

Two valleys are apparent in the graph of correlation coefficients for all dates (500–650
and 700–710 nm; r: −0.60 to −0.51; p < 0.001; Figure 5). The correlations were weaker on
the first sampling day than on the other dates.
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Lasso regression analysis revealed that Gaussian noise influenced the correlation
coefficients at 550 nm and that the correlations became weaker as the Gaussian noise
increased. The lowest values on the different sampling dates ranged from −0.49 to −0.56,
−0.41 to −0.50, −0.34 to −0.44, −0.24 to −0.39, and −0.18 to −0.32, respectively, for
Gaussian noise variance values of 0.01, 0.02, 0.03, 0.04, and 0.05.

3.4. Accuracy Assessment

The models based on both algorithms were able to reliably estimate carotenoid content,
although the Cubist-based regression model performed better, achieving an RPD value
greater than 2.0 (Table 1).

Table 1. Estimation accuracies based on actual reflectance measurements from a compact spectrometer.

RPD RMSE (µg/cm2) R2

1D-CNN Cubist 1D-CNN Cubist 1D-CNN Cubist

1.50 2.05 1.03 0.76 0.56 0.76

Although both machine learning algorithms had low estimation accuracies for culti-
vars with a high carotenoid content (e.g., Kanaemaru and Minekaori), Cubist had a higher
accuracy for cultivars with a low carotenoid content (e.g., Benifuuki and Benihomare)
(Figure 6). However, the estimation abilities of Cubist and 1D-CNN were more similar
for cultivars with a high carotenoid content when high levels of noise were added to the
reflectance data (Figure 7).
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reflectance data.
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Figure 7. Relationships between measured carotenoid content and that estimated from reflectance
data with added Gaussian (0.03 variance) and spike noise (density of 0.05 and amplitude of 0.05).
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The calculated RPD, RMSE, and R2 values for the regression models applied to datasets
with different each noise levels are shown in Figures 8–10, respectively. The 1D-CNN-based
model performed better than the Cubist-based model when the Gaussian noise variance
values were less than 0.01, and it even achieved an RPD of 1.50 for the dataset with Gaussian
noise variance of 0.02 and a spike noise amplitude of 0.02 and density of 0.04 (Figure 8).
This contrasted with the accuracy of the Cubist-based regression model, which decreased
obviously with increased noise levels. However, both algorithms achieved acceptable
estimation results, meeting the threshold of RPD > 1.4 when the Gaussian noise variance
was less than 0.02. Cubist remained effective for datasets with Gaussian noise variance
values as high as 0.03. Generally, the Cubist algorithm produced higher accuracy; however,
when the Gaussian noise variance exceeded 0.04 and the amplitude and density of the
spike noise were 0.03, the 1D-CNN-based regression models were more accurate.
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Figure 8. The RPD for both regression models when applied to noisy reflectance data. S is the
Gaussian noise variance. A and P are the amplitude and density of spike noise, respectively.
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Figure 9. The RMSE (µg/cm2) values for both regression models when applied to noisy reflectance data.
S is the Gaussian noise variance. A and P are the amplitude and density of spike noise, respectively.

3.5. Sensitivity Analysis

The sensitivity analysis of the regression models using the original reflectance dataset
revealed three peaks around 550, 650, and 715 nm for both machine learning algorithms
(Figure 11). However, for Cubist-based models, the distribution of importance showed
specific wavelength ranges with extremely high values, while the distribution for the
1D-CNN-based model was more even.

When the sensitivity analysis was applied to noisy reflectance data, the peak around
650 nm was not present for either algorithm and the peak around 715 nm was lost for the
1D-CNN-based model, but it persisted for the Cubist-based model (Figure 12).
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Figure 10. The R2 values for both regression models when applied to noisy reflectance data. S is the
Gaussian noise variance. A and P are the amplitude and density of spike noise, respectively.
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Figure 11. Sensitivity analysis of regression models based on the original reflectance data.
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Figure 12. Sensitivity analysis of the regression models when applied to the noisiest reflectance dataset.

4. Discussion
4.1. Accuracy Assessment

Various algorithms have been used to estimate carotenoid content based on reflectance
data, and each algorithm has performed differently (Table 2). Further, although the study
area and species of vegetation in the present study differed from those in these previous
studies, all the reflectance values were measured using commercial spectrometers. Apply-
ing the Cubist algorithm in the proposed system produced carotenoid estimation accuracies
comparable to those of the commercial spectrometer.

Table 2. Literature review summary of algorithm accuracies based on measured reflectance datasets.

Sample Accuracy Algorithm Reference

Forest leaves included in ANGERS (measured with ASD FieldSpec) RMSE = 2.6019 µg/m2

R2 = 0.74 Convolution neural network [54]

Australian eucalypt species (measured with ASD FieldSpec 3) RMSE = 3.83 µg/m2

NRMSE = 30.82%
Inversion of the Fluspect-Cx

Model [55]

Japanese horseradish (measured with ASD FieldSpec 4) RPD = 1.63–3.32
RMSE = 0.31–1.89 µg/m2 SNV and Cubist [56]

Maple and chestnut (measured with Hitachi 150-20 spectrophotometer),
beech (measured with Shimatzu 2101 PC spectrophotometer)

R2 = 0.71
RMSE = 1.86 nmol/cm2 Spectral indices [32]

Noise injection is often used to augment data when applying machine learning and
deep learning techniques [57,58]. Noise acts as a form of regularization in regression
models, aiding in the prevention of overfitting. Overfitting occurs when a model becomes
overly specialized to the training data and can no longer effectively generalize to unseen
data [59]. By introducing noise during training, noisy or irrelevant patterns in the data
can be obscured, forcing the model to generalize and capture the more robust features. In
addition, machine learning models are vulnerable to adversarial attacks, where intentionally
designed perturbations in the input data can mislead the model and lead to incorrect
predictions [60,61]. Normally, the carotenoid content is low relative to chlorophyll content,
so the RPD values of carotenoid estimation models have generally been worse than those
of chlorophyll estimation models. By training the model with noisy samples, it becomes
more resilient to adversarial perturbations, making model outputs more reliable. Indeed,
1D-CNN-based models have performed better than least-squares support vector machine,
artificial neural network, long short-term memory, and gated recurrent unit models [62,63].
In this study, the Cubist-based model was also robust when estimating carotenoid content
from reflectance data, even though Cubist-based models are generally most accurate when
applied to denoised reflectance data [56,64].
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4.2. Sensitivity Analysis

The red edge phenomenon pertains to the rapid increase in reflectance that occurs in
the transitional region between the red and near-infrared wavelengths in the reflectance
spectrum of green vegetation. Carotenoids strongly absorb light in the blue and green
spectral region [65,66], but their absorption diminishes in the red and near-infrared regions,
while chlorophyll strongly absorbs light in the blue and red regions and reflects more
strongly in the green and near-infrared regions [65]. As a result, the presence of carotenoids
affects reflectance at the green peak (around 550 nm), the red edge inflection point (REIP,
around 650 nm), and the peak around 715 nm.

In this study, although the spectrometer measured reflectance data across the entire
wavelength domain from 400 to 850 nm, the relative sensitivity of its sensor was < 0.5 at 700
nm [67]. Despite this, the heightened reflectance around 715 nm was still clearly observable.
Therefore, the plant probe effectively placed the sensor at an appropriate location to receive
the most accurate and representative readings, enabling measurements at wavelengths over
700 nm to be used for estimating carotenoids. However, the heightened reflectance at 650
nm disappeared when noise was injected into the dataset. Figure 13 shows the coefficients
of the correlations between carotenoid content and reflectance at 540, 640, and 715 nm
when injecting different levels of noise. Adding Gaussian noise with a variance of 0.04–0.05
produced uncertainty in the reflectance data over the REIP and reduced the correlation
coefficients to below −0.2. As a result, the importance of 640 nm for estimating carotenoid
content disappeared when using noisy reflectance data.
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Figure 13. Correlation coefficients between carotenoid content and noisy reflectance data. S is the
Gaussian noise variance. A and P are the amplitude and density of the spike noise, respectively.
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The reflectance values at 650 nm ranged from 0.07 (Miyamakaori on 20 June) to 0.19
(Benihikari on 20 June), which was a relatively small range (the smallest difference was
0.08 at 760 nm). Therefore, this domain was quite susceptible to noise injections. Figure 14
shows the importance of reflectance at 650 nm for models based on both algorithms at
different noise intensities. Adding noise reduced the importance of the 650 nm wavelength
and the decrease in importance was quite significant, although the importance sometimes
exceeded 9.0% under low density or low amplitude conditions.
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Figure 14. Importance of reflectance at 650 nm. A and P represent amplitude and density of spike noise.

Carotenoids absorb light at wavelengths from 400 to 700 nm [35]. Specifically, the
green peak has been used for carotenoid contents in previous studies. However, some
reflectance values at 700–780 nm possessed certain importance for estimating carotenoid
content estimation when Cubist-based regression models were applied. This peak is
influenced by the presence of chlorophyll and carotenoids in the leaves. On the contrary,
the red edge is closely related to the absorption characteristics of chlorophyll. Therefore,
the combined use of the green peak and the red edge is effective in mitigating the influence
of chlorophyll for retrieving carotenoid content from reflectance.

Remote sensing utilizing hyperspectral reflectance offers a robust perspective for
estimating carotenoid content in vegetation since carotenoids leave a distinctive imprint
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on spectral signatures. Hyperspectral sensors capture a vast range of narrow, contigu-
ous bands across the electromagnetic spectrum, enabling precise characterization of these
signatures and then spectral indices tailored to carotenoid absorption features. However,
airborne or satellite-based hyperspectral acquisitions facilitate large-scale assessments, their
measurements include some noises [68,69], and employing spectral indices is challenging
to accurately assess carotenoid content. By bridging small-scale measurements with com-
prehensive observations, hyperspectral remote sensing empowers resource-efficient land
management and contributes to sustainable ecosystem stewardship.

5. Conclusions

In this study, we proposed a system to estimate the carotenoid content of tea leaves
based on micro-spectrometer (C12880MA, Hamamatsu Photonics) measurements. The pro-
posed system achieved highly accurate carotenoid content estimations using the carotenoid
measurements and Cubist-based regression models, confirming the effectiveness of the
system. Next, we artificially introduced Gaussian and spike noise, which can result from
factors such as electrical components, faulty data transmission, or environmental conditions,
to the measured reflectance data to evaluate the models’ robustness against noise. When
comparing the Cubist and 1D-CNN-based estimation models, the Cubist model generally pro-
duced better estimation results. However, the accuracy of the Cubist-based model degraded
more rapidly because of increasing noise intensity than that of the 1D-CNN-based model.
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