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Abstract: Convolutional neural networks (CNNs) and graph convolutional networks (GCNs) have
led to promising advancements in hyperspectral image (HSI) classification; however, traditional
CNNs with fixed square convolution kernels are insufficiently flexible to handle irregular structures.
Similarly, GCNs that employ superpixel nodes instead of pixel nodes may overlook pixel-level fea-
tures; both networks tend to extract features locally and cause loss of multilayer contextual semantic
information during feature extraction due to the fixed kernel. To leverage the strengths of CNNs
and GCNs, we propose a multiscale pixel-level and superpixel-level (MPAS)-based HSI classification
method. The network consists of two sub-networks for extracting multi-level information of HSIs: a
multi-scale hybrid spectral–spatial attention convolution branch (HSSAC) and a parallel multi-hop
graph convolution branch (MGCN). HSSAC comprehensively captures pixel-level features with
different kernel sizes through parallel multi-scale convolution and cross-path fusion to reduce the
semantic information loss caused by fixed convolution kernels during feature extraction and learns
adjustable weights from the adaptive spectral–spatial attention module (SSAM) to capture pixel-level
feature correlations with less computation. MGCN can systematically aggregate multi-hop contex-
tual information to better model HSIs’ spatial background structure using the relationship between
parallel multi-hop graph transformation nodes. The proposed MPAS effectively captures multi-layer
contextual semantic features by leveraging pixel-level and superpixel-level spectral–spatial informa-
tion, which improves the performance of the HSI classification task while ensuring computational
efficiency. Extensive evaluation experiments on three real-world HSI datasets demonstrate that MPAS
outperforms other state-of-the-art networks, demonstrating its superior feature learning capabilities.

Keywords: convolutional neural networks (CNNs); graph convolutional networks (GCNs);
hyperspectral image (HSI) classification; attention mechanism; multi-scale features

1. Introduction

In recent years, research has uncovered extensive applications for hyperspectral im-
ages (HSIs) in diverse fields, such as land management [1–3], resource exploration [4–6],
urban rescues [7,8], military investigations [9,10] and agricultural production [11,12]. This
is mainly attributed to the abundance of spatial and spectral information available in
HSIs [13,14]. Due to its applicability, HSI classification has attracted considerable attention.
HSI classification involves the assignment of class labels to individual image elements,
representing the features within the HSI [15].

Researchers have attempted numerous times to achieve more accurate land cover
classification. In the preceding decades, the field of HSI classification has witnessed the
incorporation of machine learning techniques. Classical machine learning methods, such
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as K-nearest neighbor [16], logistic regression [17], local binary pattern (LBP) [18,19], Gabor
filter [20], and random forest [21], have been extensively applied to HSI classification
and can achieve satisfactory results under ideal conditions; however, these conventional
approaches heavily depend on manual feature design, which is constrained by the expert
knowledge and parameter-setting stage [22,23].

In contrast, deep-learning (DL) methods have become widely used in HSI classification
because they automatically learn deep adaptive features from training data [24,25]. A wide
range of state-of-the-art DL techniques has been successfully employed in HSI classification.
For instance, convolutional neural networks (CNNs), recurrent neural networks (RNNs),
long short-term memory (LSTM) [26], and stacked autoencoders (SAEs) have been proposed
as effective approaches to learning the intricate high-dimensional features of HSIs. Among
such models, CNNs [27–29] have emerged as the predominant method for extracting
spectral–spatial features from HSIs [30].

CNNs can capture spatial and spectral information by leveraging local connectivity
and weight-sharing characteristics, and researchers have proposed CNN variants, such as
1D–3D CNNs and hybrid CNNs, to augment the learning capabilities of spectral–spatial
features. Three-dimensional CNNs, for example, are effective in extracting deep spectral–
spatial combination features [31], while hybrid CNNs can reduce model complexity and
perform well when dealing with noise and limited training samples. In addition, dual-
branch CNNs [32] have demonstrated an effective approach to extracting spectral–spatial
features. Researchers have introduced techniques, including residual and dense connectiv-
ity, to increase the network’s depth and achieve higher performance in HSIs classification.
Liang et al. [33] proposed MDRN (multi-scale DenseNet, bidirectional recurrent Neural
Network and attention mechanism network), a novel classification framework for spectral–
spatial networks. MDRN efficiently extracts multi-scale and intricate spatial structural
features while capturing internal spectral correlations within continuous spectral data.

In spite of this, the high computational complexity of these deformable CNNs de-
mands increased computational power and longer training times. Researchers have also
explored other advanced CNN architectures, such as spectral–spatial attention networks.
For instance, Roy et al. [34] proposed an attention-based adaptive spectral–spatial kernel-
improved residual network (A2S2K-ResNet) capable of capturing discriminative spectral
spatial features for HSI classification in an end-to-end training manner. Sun et al. [35]
introduced a spectral–spatial feature-tagging transformer (SSFTT) method, which effec-
tively enhances the classification performance by capturing spectral–spatial features and
high-level semantic features. Due to the limitations of CNNs’ perceptual fields, significant
challenges remain in processing large-scale semantic information while reducing the loss of
small-scale accuracy information and performing a deep fusion of spectral–spatial features.

While CNN models have shown promising results in HSI classification using iterative
neural network models based on backpropagation supervised learning methods, they are
still constrained by limitations. For example, CNN models are designed for Euclidean data
and regular spatial structures, often overlooking the inherent correlations between adjacent
land cover [36]. Graph convolutional networks (GCNs) [37] have garnered significant
attention due to their ability to perform convolution operations on arbitrary graph struc-
tures [38]. By encoding HSIs as a graph, the intrinsic correlations between adjacent land
cover can be explicitly leveraged so that GCNs can better model the spatial context structure
of HSIs. For example, Qin et al. [39] introduced a semi-supervised GCN-based method
that leverages spectral similarity and spatial distance to propagate information between
adjacent pixels; however, due to the large number of pixels in HSIs, the computational costs
associated with treating each pixel as a node in a graph become prohibitive, limiting the
method’s practical applicability. Wan et al. [40] proposed a method that replaces individual
pixels with superpixels as nodes, significantly reducing the node count in the graph and
rendering GCNs more feasible for practical implementation. Superpixels can effectively
describe land cover (such as shape and size) and facilitate subsequent graph learning. Hong
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et al. [41] proposed a method, miniGCN, which divides the entire graph into smaller blocks
during training, enabling more efficient and effective training.

GCN and CNN effectively extract pixel-level and superpixel-level features, respec-
tively, and are DL methods that excel at capturing deep features. Devising an effective
fusion scheme to integrate these two methods is crucial; however, directly incorporating
existing fusion schemes into a hybrid network can lead to issues with incompatible data
structures. Additionally, the fusion network must strike a balance between the CNN and
GCN subnetworks during the training process; insufficient training of either subnetwork
can impede the classification performance. To address these challenges, Liu et al. [42] intro-
duced a unified network, a CNN-enhanced GCN (CEGCN), which seamlessly integrates
CNN and GCN by incorporating graph structure encoding and decoding mechanisms.
Similarly, Dong et al. [43] empirically studied hybrid networks and proposed a weighted
feature fusion network (WFCG). The WFCG effectively combines the advantages of graph
attention networks and CNNs in capturing spectral–spatial information.

In CNNs and GCNs, the constrained receptive field of an individual convolutional
layer limits its efficiency in capturing information. Researchers have proposed various
approaches to overcome these limitations. For example, Sharifi et al. [44] proposed multi-
scale CNNs that use patches of varying sizes to capture intricate spatial features. Sun
et al. [45] proposed a novel multi-scale weighted kernel network (MSWKNet) based on
adaptive receptive fields to fully and adaptively explore multi-scale information in the
spectral and spatial domains of HSI. Xue et al. [46] introduced a network incorporating a
multi-hop hierarchical GCN, which employs small kernels to extract node representations
from k-hop graphs; the multi-hop graph is designed to systematically aggregate contextual
information at multiple scales while avoiding the inclusion of redundant information. Yang
et al. [47] proposed a dynamic multi-scale graph dialogue network (DMSGer) classifier
that learns pixel representations using a superpixel segmentation algorithm and metric
learning. Although researchers have attempted to extract multi-scale information, such
attempts are often limited to a single type of network, emphasizing either CNNs or GCNs;
thus, clarifying the correlation between distant features in HSIs classification tasks and
enhancing the capacity to extract multi-scale information while preserving the benefits
of hybrid networks in extracting features at the pixel-level and superpixel-level, and
avoiding the loss of spectral-spatial features caused by extracting multilayered contextual
information, remain crucial tasks for research.

Based on CNNs and GCNs, this paper proposes a multiscale pixel-level and superpixel-
level method for HSI classification, abbreviated as MPAS. At the technical implementation
level, we first designed two 1×1 convolutional layers to process the original HSI data. The
processed data is then separately fed into branches one and two. In addition, branch one
adopts a parallel multi-hop GCN (MGCN) and a normalization layer to extract multi-scale
superpixel-level features. The second branch is the multiscale hybrid spectral–spatial
attention convolution branch (HSSAC), in which the multiscale spectral–spatial CNN
module (MSSC) is utilized to extract the multiscale spectral–spatial information and cross-
path fusion to reduce the semantic information loss caused by fixed convolution kernels
during feature extraction. Subsequently, this information is transmitted to the spectral–
spatial attention module (SSAM) for adaptive feature weighting. Finally, the features from
both branches are contacted for classification. This paper makes contributions in three
primary aspects, summarized as follows:

1. This study proposes a novel feature extraction framework, MPAS, based on MGCN,
MSSC, and SSAM. It combines multi-scale pixel-level CNN and superpixel-level GCN
features to capture local and long-range contextual relationships effectively. MPAS
ensures high training and inference speed while maintaining excellent classification
performance in HSIs.

2. To overcome the narrow acceptance domain of traditional GCNs, which makes it diffi-
cult to capture the correlation between distant nodes in HSIs, we propose extracting
superpixel features from neighboring nodes in large regions using multi-hop graphs.



Remote Sens. 2023, 15, 4235 4 of 23

The network uses parallel multi-hop GCNs to improve the model’s ability to perceive
global structures.

3. We propose MSSC to build parallel structures and establish cross-path fusion to realize
the extraction, communication, and fusion of pixel-level information from different
scale convolutional kernels, thus reducing unnecessary information loss during the
convolution process. Finally, we utilize the SSAM module to improve the feature
representation of the model while reducing the computational effort.

2. Proposed Method

Figure 1 illustrates the MPAS flowchart. In this study, we performed 1 × 1 spectral
convolution preprocessing on the original HSI data. Then, we fed it into two branches: the
parallel multi-hop GCN (MGCN) and HSSAC. These branches extracted features at the
superpixel and pixel levels. The extracted features were then combined and input into the
softmax layer to obtain the predicted labels for the samples.
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2.1. Data Preprocessing

In this study, inspired by the network-in-network approach [48], the original HSI data,
denoted by X (with dimensions H×W×C representing the spatial dimensions (height and
width) and the number of spectral bands), was preprocessed using spectral transformations.
Specifically, X was sequentially processed through a batch normalization (BN) layer, two
1 × 1 kernel 2D CNN convolutional layers, and a LeakyReLU activation layer, resulting in
the processed data X̂ ∈ RH×W×C1 . This process promoted robustness and discriminative
learning of the spectral features by removing noise and redundant information from the
original data.

2.2. Feature Conversion and MGCN
2.2.1. Conversion of Pixels to Superpixels

GCNs only accept graph data as input, and features generated by CNNs are arranged
in standard rectangular grids. Although considering individual image pixels as nodes
in the graph is possible, this approach would significantly increase the number of nodes
involved, leading to high computational complexity in subsequent adjacency matrix cal-
culations. To overcome this challenge, we employed a simple linear iterative clustering
(SLIC) [49] algorithm to group the pixels into visually meaningful superpixels, which were
then used as nodes in the graph structure. Due to the varying number of pixels in each
superpixel, the segmentation method mentioned above cannot be directly integrated into
our proposed MPAS framework. Drawing inspiration from Liu et al. [42], we applied data
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structure conversion to facilitate feature propagation between the pixels and superpixels,
as illustrated in Figure 2.
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Specifically, let O ∈ R(H W)×Z denote the association matrix between the pixels and
superpixels, where Z represents the number of superpixels[M1]. Z = (H×W)/λ, λ(1 ≤ λ)
is the segment scale of a superpixel.

HSI = ∪Z
j=1Sj, Sj ∩ Sk = ∅, j 6= k; j, k = 1, 2, . . . , λ (1)

The association matrix between the pixels and superpixels was constructed by Equation (2):

Oi,j =

{
1, if Xi ∈ Sj
0, if Xi /∈ Sj

X = Flatten(X̂) (2)

Here, Flatten(·) signifies the operation to flatten the HSI data along the spatial dimen-
sions. The value of O at position (i, j) is denoted by Oi, j; Xi denotes the i-th pixel in X
and Sj denotes the jth superpixel. To implement feature transformation, we can use the
following formula:

V = Encoder(X̂; O) = OT Flatten(X̂) (3)

X̃ = Decoder(V; O) = Reshape(OV) (4)

Here, O represents O normalized by column. V represents nodes composed of su-
perpixels and Reshape(·) denotes the operation of restoring the spatial dimensions of the
flattened data. X̃ represents the features transformed back to the grid. After applying
SLIC segmentation, the features can be considered nodes in an undirected graph, denoted
as G = (V, E), where V refers to the set of nodes and E refers to the set of edges. In this
case, the nodes’ features represent the average values of the pixel features within the
corresponding superpixels.

We used a graph encoder to convert the grid features to node features, and a graph
decoder to assign the node features back to pixels. The network could integrate the graph
encoder and decoder, thus leveraging the strengths of CNNs and GCNs.

2.2.2. MGCN

In a single-layer GCN, the nodes aggregate features from their nearest-neighbor nodes
and update their information through the adjacency matrix A. In addition, the improved
GCNs are constructed by expanding the network layers, leading to a significant increase
in the convolutional operations’ complexity and parameters as the network depth grows,
which may lead to overfitting or degradation of the network performance; therefore,
constructing parallel multi-hop graphs is an effective strategy to enhance the discriminative
capacity of features and capture a broader range of receptive fields, leading to improved
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performance of the graph convolution. Figure 3 depicts the construction process of the
parallel multi-hop graph structure.
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For a given graph G = (V, E, A), the adjacency matrix Aij ∈ RN×N can be expressed as

Aij =

{
e−γVi−V2

j , if Vi ∈ Nk(Vj) or Vj ∈ Nk(Vi)
0 otherwise

(5)

where Vi and Vj denote the features of the node i, j, and Nk(Vj) is the k-hop neighbor of the
node Vj.

The parameter γ = 0.2 is an empirical set. In our approach, we can achieve multi-scale
operations by aggregating different hops of neighbors. In MGCN, the lth layer of the 1-hop
graph convolution can be calculated as follows:

Fl
1 = σ(D̃1

− 1
2 Ã1D̃1

− 1
2 F1

l−1W1
l) (6)

F1
l−1 is the normalized layer l− 1 output, Ã1 is the adjacency matrix of the aggregated

1-hop neighbors, D̃1 is the degree matrix of Ã1, W1
l is the trainable weight matrix of lth

layer of the one-hop graph convolution, and σ(·) denotes the activation function.
Similar to the equation above, the output of the lth layer of the k-hop graph convolution

can be expressed as:
Fl

k = σ(D̃k
− 1

2 ÃkD̃k
− 1

2 Fk
l−1Wk

l) (7)

In summary, we utilized an encoder module to transform the grid features into node
features, facilitating the seamless integration of GCNs into the CNNs framework. Multi-hop
graphs enabled the extraction of multi-scale superpixel-level features from large adjacent
regions. Subsequently, the decoder module performed an inverse transformation on the
node features to accomplish pixel-level classification tasks. We applied a normalization
layer to normalize the output features to ensure stable final outputs. Consequently, the
proposed approach effectively integrates GCNs and CNNs for HSI classification, leveraging
the strengths of each method to achieve improved performance.

2.3. HSSAC
2.3.1. MSSC

The 2D CNN has a powerful contextual information acquisition capability, formu-
lated [50] as:

Ml(x, y) = σ(
H−1

∑
h=0

W−1

∑
w=0

ml(h, w)Ml−1(x + h, y + w) + bl) (8)

In the proposed model, Ml(x, y) represents the location (x, y) of the output data
layer of the HSI. M l−1 (x + h, y + w) denotes the specific value of the feature mapping
at the (l − 1) layer for the position (x + h, y + w). ml(h, w) represents the value of the
convolution kernel at position (h, w) at the lth layer; here, H represents the height and W
represents the width of the kernel. bl indicates the bias of the lth layer and σ(·) denotes the
activation function used in MPAS, LeakyReLU.
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To enhance the capability of CNN-based networks to capture features and overcome
the limitation of a single fixed kernel with a limited receptive field, we proposed the MSSC
module. The MSSC module was crucial in expanding the network’s capacity to capture
diverse multi-scale features.

Upon entering the MSSC module, the HSI data underwent BN to adjust the distribution
at each convolutional layer unit. This step prevented overfitting and accelerated the
network training. We devised a parallel multi-scale spectral–spatial information extraction
network with kernels of different sizes to enhance the feature acquisition capabilities of
CNN-based networks and overcome the limitations of a single fixed kernel’s receptive
field. Specifically, the two parallel paths in this network employed convolutional kernels
with sizes of m = 5 and 3, respectively. Since HSI are rich in spectral information, directly
applying 2D CNNs with different kernels to HSIs will result in 2D CNNs with different
kernels, which may not be flexible in weighting and adjusting the features of different
bands. Then, the importance of specific bands may be underestimated or overestimated,
resulting in the degradation of the model’s handling of HSIs, which weakens the network’s
classification performance. The MSSC module thus employed independent convolutional
layers, including 1 × 1 pointwise convolutional layers and parallel m ×m convolutional
layers. After 1 × 1 pointwise convolution layers, the features were obtained:

Tk
l(x, y) = σ(Wk

lTk
l−1(x, y) + ql) (9)

where Tk
l(x, y) denotes the value of channel k at position (x, y) in the output feature map

(layer l), Tk
l−1 denotes the value of channel k at position (x, y) in the input feature map

(layer l − 1), Wk
l denotes the weight of the kth channel in the pointwise convolution kernel

(layer l), ql denotes the bias of the lth layer, and σ(·) denotes the activation function.
In MSSC, we employed cross-path fusion to integrate the features extracted by different-

scale convolutional kernels for the input of the subsequent convolutional layer. Traditional
multi-path multi-scale CNN networks treat each branch as relatively independent and
merge the features captured by each branch at the final stage; however, an information
disparity exists between the information at large and small scales, restricting the network’s
feature fusion capability. In contrast, for the input Ml−1, we iteratively introduced cross-
path connections between the two convolutional paths with kernel sizes of m, facilitating
comprehensive integration of the convolutional modules that captured large-scale and
small-scale information before advancing to the subsequent layer.

Ml−1 = M
l−1

1 + M
l−1

2 (10)

where M
l−1

1 and M
l−1

2 denote the convolution kernel sizes m = 3 and 5, respectively.
We facilitated the subsequent cross-path fusion and output by employing convo-

lutional kernels of different sizes and utilizing padding operations to match the spatial
resolution of the features. The cross-path connections allowed for integrating large-scale
semantic information and small-scale precision information. The higher-level information
influenced and directed the feature extraction process of the lower-level paths, while the
lower-level information complemented the higher-level path’s semantic representation, re-
ducing information discrepancies that exist between large-scale and small-scale information
caused by the feature extraction process.

Following the three-stage convolution using MSSC, the features obtained from the
three branches, M1, M2, and T, were concatenated for subsequent fusion in the succeed-
ing modules.

Mout = M1 ⊕M2 ⊕ T (11)

where ⊕ denotes the operation of contact. M1 and M2 denote the output of parallel m × m
convolution, respectively, and T denotes the output of 1 × 1 pointwise convolution.
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2.3.2. SSAM

In order to improve the performance and accuracy of the model and reduce the
interference of useless features, we drew inspiration from the CBAM attention mechanism
and designed SSAM to optimize the feature extraction and classification performance of
the model while reducing the amount of computation [51]. The SSAM module performed
a weighted fusion of HSIs’ spatial and spectral features, which adaptively selects useful
features while reducing the amount of computation, improves the model’s attention to
informative features, and captures finer spectral–spatial information.

The SSAM model works as shown in Figure 4:

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 24 
 

 

where 
1

1
l

M
−

 and 
1

2
l

M
−

 denote the convolution kernel sizes m = 3 and 5, respectively. 
We facilitated the subsequent cross-path fusion and output by employing convolu-

tional kernels of different sizes and utilizing padding operations to match the spatial res-
olution of the features. The cross-path connections allowed for integrating large-scale se-
mantic information and small-scale precision information. The higher-level information 
influenced and directed the feature extraction process of the lower-level paths, while the 
lower-level information complemented the higher-level path’s semantic representation, 
reducing information discrepancies that exist between large-scale and small-scale infor-
mation caused by the feature extraction process. 

Following the three-stage convolution using MSSC, the features obtained from the 
three branches, 1M  , 2M  , and T  , were concatenated for subsequent fusion in the suc-
ceeding modules. 

1 2outM M M T= ⊕ ⊕  (11)

where ⊕ denotes the operation of contact. 1M  and 2M  denote the output of parallel m 
× m convolution, respectively, and T denotes the output of 1 × 1 pointwise convolution. 

2.3.2. SSAM 
In order to improve the performance and accuracy of the model and reduce the in-

terference of useless features, we drew inspiration from the CBAM attention mechanism 
and designed SSAM to optimize the feature extraction and classification performance of 
the model while reducing the amount of computation [51]. The SSAM module performed 
a weighted fusion of HSIs’ spatial and spectral features, which adaptively selects useful 
features while reducing the amount of computation, improves the model’s attention to 
informative features, and captures finer spectral–spatial information. 

The SSAM model works as shown in Figure 4: 

 
Figure 4. Spectral–spatial attention mechanism structure diagram. 

1. Channel attention 
Given a feature map M with a shape of H × W × C, we applied global average pooling 

to obtain a channel description of shape 1 × 1 × C, capturing the global information of each 
channel. Subsequently, the channel descriptions were input into a 1 × 1 convolutional layer 
for further processing, resulting in a feature vector of shape 1 × 1 × (C/r), where r repre-
sented the scaling factor. We utilized the ReLU activation function to activate the feature 
vector. 

Next, the feature vector underwent another 1 × 1 convolutional layer, followed by an 
activation function to adjust the weights further. Through this process, we obtained chan-
nel weight coefficients of shape 1 × 1 × C. Finally, we multiplied the weight coefficients 
element-wise with the original input feature map M to obtain the final output feature map. 
The formula was 

1 1 1 1( (Re ( ( ( )))))M sigmoid Conv LU Conv Avgpool M M× ×= ⊗


 (12)

Figure 4. Spectral–spatial attention mechanism structure diagram.

1. Channel attention

Given a feature map M with a shape of H×W× C, we applied global average pooling
to obtain a channel description of shape 1 × 1 × C, capturing the global information of
each channel. Subsequently, the channel descriptions were input into a 1 × 1 convolutional
layer for further processing, resulting in a feature vector of shape 1 × 1 × (C/r), where
r represented the scaling factor. We utilized the ReLU activation function to activate the
feature vector.

Next, the feature vector underwent another 1 × 1 convolutional layer, followed by
an activation function to adjust the weights further. Through this process, we obtained
channel weight coefficients of shape 1× 1× C. Finally, we multiplied the weight coefficients
element-wise with the original input feature map M to obtain the final output feature map.
The formula was

_
M = sigmoid(Conv1×1(ReLU(Conv1×1(Avgpool(M)))))⊗M (12)

The output features of the channel attention are represented by the variable
_
M; Avg-

pool(·) denotes the average pooling; and Conv1×1 denotes the convolutional layer with
kernel 1 × 1. ReLU(·) and Sigmoid(·) denote the activation function.

By employing the operations above, we effectively implemented a channel attention
mechanism to learn and adjust each channel’s importance weights in the feature map. This
mechanism enhanced crucial channel representations, emphasizing their contribution to
the overall feature expression.

2. Spatial attention

The feature extracted from the channel attention mechanism (12) had a shape of
H ×W × C. We employed channel-wise global average pooling to convert it into a spatial
description of shape H×W× 1, enabling the capture of global information for each channel
across the entire spatial domain. Subsequently, the spatial description was fed into a k × k
convolutional layer to learn the pixel-wise weights, which were further adjusted using an
activation function. The obtained spatial weights were then multiplied element-wise with
the original input feature map, resulting in the final output feature map.

_
Mout = sigmoid(Convk×k(Avgpool(

_
M)))⊗

_
M (13)
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where
_
Mout denotes the output features of the spatial attention mechanism; Avgpool(·)

denotes the average pooling; Convk×k denotes the convolutional layer with a kernel size of
k × k, where we set k to 5; and Sigmoid(·) denotes the activation function.

The SSAM module effectively integrates global channel information and pixel weight-
ing, which enhances the feature representation. It captures the significance of each channel
in the entire spatial range, effectively extracting and enhancing key features in HSIs while
reducing unnecessary computational complexity and ensuring the accuracy and robustness
of HSI classification.

2.4. Feature Fusion and Classification (FFAC)

Our methodology utilized a dual-branch network architecture: MGCN and HSSAC.
The MGCN branch employed a multi-hop graph to efficiently extract multi-scale super-
pixel information by aggregating features of distant neighbor nodes to capture structural
information in HSIs. HSSAC extracted multi-scale pixel-level features to compensate for
the superpixel-based methods, further improving classification accuracy by considering
pixel-level detail information. Owing to the distinct neural network models employed
in the two branches, there were noticeable differences in the feature distributions. Con-
sequently, we performed a concatenation operation to fuse the features derived from the
dual branches.

Y = Cat(
...
Mout,

_
Mout) (14)

Here, Y represents the output of multi-feature fusion and Cat(·) represents the concatenation

operation.
...
Mout and

_
Mout represent the output of the MGCN and HSSAC branches, respectively.

For network training, the loss function can be formulated using cross-entropy.

L(R, P) = − 1
U

U

∑
i=1

D

∑
d=1

ri,d log(pi,d) (15)

In the equation, R represents the ground-truth labels, P represents the predicted values
for each pixel, ri,d denotes the d-th element of the label R, and pi,d represents the probability
that pixel i belongs to class d, obtained using the softmax function. D represents the total
number of classes and U represents the total number of samples in the training dataset.

3. Experiments

This section details the experimental results, our interpretation of them, and our conclusions.

3.1. Data Description

For our experimental evaluation, we utilized three well-known benchmarks for HSI
datasets: Indian Pines (IP), WHU-Hi-LongKou (LK), and Salinas (SA). These datasets were
chosen to assess the performance of the proposed MPAS.

3.1.1. IP

The IP dataset, acquired in 1992 using the airborne visible/infrared imaging spectrom-
eter (AVIRIS) sensor, is among the pioneering HSI datasets employed for classification
purposes [30]. This dataset comprises an image with a spatial resolution of 20 m × 20 m,
encompassing 145 × 145 pixels. It has a wavelength range from 0.4 µm to 2.5 µm, compris-
ing 220 contiguous spectral bands. Out of 21,025 pixels, approximately half (10,366 pixels)
are assigned labels from a set of 16 different classes. For each class, we performed a random
selection in which 10% of the samples were allocated for training, 1% for validation, and
89% for testing. Table 1 shows a detailed breakdown of the classes and dataset division.
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Table 1. Number of pixels within the training and test sets for all categories of IP.

No. Class Train Val. Test

1 Alfalfa 5 1 41
2 Corn-notill 143 14 1285
3 Corn-mintill 83 8 747
4 Corn 24 2 213
5 Pasture 48 4 435
6 Trees/Grass 73 7 657
7 Pasture-mowed 3 1 25
8 Hay-windrowed 48 4 430
9 Oats 2 1 18
10 Soybeans-notill 97 9 875
11 Soybean-mintill 245 24 2210
12 Soybean-clearn 59 5 534
13 Wheat 20 2 185
14 Woods 126 12 1139
15 Building–Grass 39 3 347
16 Stone–steel towers 9 1 84

Total 1024 99 9225

3.1.2. LK

The LK dataset was collected on 17 July 2018, between 13:49 and 14:37, in Longkou
Town, Hubei Province, China. A DJI Matrice 600 Pro (DJI M600 Pro) drone platform with a
Headwall Nano-Hyperspec image sensor with an 8-mm focal length was used to acquire the
data. Six crops, including corn, cotton, sesame, broad-leaf soybean, narrow-leaf soybean,
and rice, were grown in the research region. The UAV captured an HSI with a resolution
of roughly 0.463 m per pixel and an image size of 550 × 400 pixels. It has 270 bands, with
wavelengths ranging from 400 to 1000 nm. Throughout the data collection, the UAV was in
flight at an altitude of 500 m. We chose 0.1% of the samples at random for training, 0.1% for
validation, and 99.8% for testing for each class. A thorough description of the classifications
and dataset partition is provided in Table 2.

Table 2. Number of pixels within the training and test sets for all categories of LK.

No. Class Train Val. Test

1 Corn 34 34 34,443
2 Cotton 8 8 8358
3 Sesame 3 3 3025
4 Broad-leaf soybean 63 63 63,086
5 Narrow-leaf soybean 4 4 4143
6 Rice 11 11 11,832
7 Water 67 67 66,922
8 Roads and houses 7 7 7110
9 Mixed weed 5 5 5219

Total 202 202 204,138

3.1.3. SA

The SA dataset was obtained using the AVIRIS sensor in the SA Valley, California, the
United States. It consists of an image with dimensions of 512 × 217 pixels and a spatial
resolution of 3.7 m. The dataset comprises 224 spectral bands, covering a wavelength range
of 360 to 2500 nm. The SA dataset includes 16 land cover categories and 54,129 labeled
samples. For each class, we randomly selected 1% of the samples for training, 1% for
validation, and 98% for testing. Table 3 shows a detailed breakdown of the classes and
dataset division.
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Table 3. Number of pixels within the training and test sets for all categories of SA.

No. Class Train Val. Test

1 Brocoli_green_weeds_1 21 21 1979
2 Brocoli_green_weeds_2 38 38 3696
3 Fallow 20 20 1946
4 Fallow_rough_plow 14 14 1364
5 Fallow_smooth 27 27 2648
6 Stubble 40 40 3929
7 Celery 36 36 3549
8 Grapes_untrained 113 113 11,241
9 Soil_vinyard_develop 63 63 6137
10 Corn_senesed_green 33 33 3248
11 Lettuce_romaine_4wk 11 11 1038
12 Lettuce_romaine_5wk 20 20 1897
13 Lettuce_romaine_6wk 10 10 886
14 Lettuce_romaine_7wk 11 11 1040
15 Vineyard_untrained 73 73 7238
16 Vineyard_vertical_trellis 19 19 1777

Total 549 549 53,613

3.2. Experimental Settings and Assessment Criteria

The training and inference stages were performed using Python 3.7 and PyTorch
1.10.0 [52] on a high-performance computer with a GeForce RTX 3060 and an AMD Ryzen
7 3700X 8-Core Processor with 24 GB of memory.

The training samples were collected through random sampling for the IP, LK, and SA
datasets since the labeled data were not pre-divided into training and testing sets. The
remaining data were utilized as test samples. The parameters were randomly initialized in
the training phase, and the MPAS was trained using the Adam optimizer for 300 epochs.
The learning rate was 0.0005.

To evaluate the performance of MPAS, we used three metrics: overall accuracy (OA),
average accuracy (AA), and the kappa coefficient (Kappa). OA is the proportion of accu-
rately predicted testing pixels to the total number of testing pixels, while AA refers to the
average accuracy across all categories. Kappa is a statistical metric to assess the agreement
or consistency between classification results and the ground truth. Greater values of these
metrics indicate improved classification performance.

3.3. Classification Results

We compared our MPAS algorithm with seven advanced DL methods to demonstrate
its effectiveness. These methods included DBDA [53], DBMA [54], FDSSC [55], SSFTT [35],
DMSGer [47], WFCG [43], and CEGCN [42]. WFCG, DMSGer, and CEGCN use graph-
based neural networks for HSI feature extraction. Each experiment was conducted 10 times,
and the average values of the evaluation metrics (OA, AA, and Kappa) were reported.
Tables 4–6 display the algorithms’ classification accuracy and runtime on different datasets.
The classification results of the different methods for the three datasets are listed, and
the highest values in each row are marked in bold to highlight the performance. The
classification plots on the three datasets are shown in Figures 5–7.

3.3.1. IP

Table 4 demonstrate that our MPAS outperformed all other methods regarding the
three evaluation metrics. Notably, it achieved 100% accuracy for three land cover categories
(alfalfa, pasture, and pasture-mowed) and excellent accuracy for the others.

Among the compared methods, FDSSC, DBMA, and DBDA use complex frameworks,
such as 3D CNN, residual connections, and dense connections, to improve the network
performance, resulting in significantly increased computational cost and training time.
Although SSFTT uses a lightweight network architecture, it performed poorly in some
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categories with fewer samples, such as categories 7 and 16. WFCG and CEGCN have
fixed-neighbor graph structures; with those methods, it was challenging to effectively
represent the relationships between the imbalanced nodes. DMSGer uses dynamic graph
convolution to handle information at different scales but is still limited to single-hop
graph convolution, whereas multi-hop graph convolution can further enhance the model’s
ability to perceive node relationships over a wider range of nodes, thus enhancing feature
representation. Additionally, WFCG has a relatively higher computational cost due to
its complex network structure. Compared to DMSGer, WFCG, and CEGCN, our MPAS
improves 0.69%, 1.33%, and 0.92% in OA, 1.32%, 2.62%, and 2.67% in AA, and 0.78%, 1.22%,
and 1.05% in Kappa, respectively. These empirical results demonstrate that MPAS is a
robust and reliable classifier for HSI classification.

Table 4. The classification accuracy (%) of various methods on the IP dataset with the corresponding
class names from Table 1.

Class DBDA DBMA FDSSC SSFTT DMSGer CEGCN WFCG MPAS

1 80.00 91.63 87.90 100 100 88.06 90.48 100
2 96.07 98.01 95.57 95.56 97.76 97.26 97.40 99.05
3 97.73 97.19 97.19 99.19 98.07 99.13 97.51 99.86
4 98.83 98.49 98.89 99.06 99.91 97.91 92.31 96.68
5 97.72 96.38 97.88 98.85 94.25 99.58 98.72 100
6 99.12 98.94 99.23 98.47 99.94 99.60 99.61 99.23
7 65.07 88.37 83.73 96.00 100 97.53 76.19 100
8 97.95 99.46 98.47 100 100 99.34 98.59 99.53
9 69.09 93.79 74.60 50.00 74.45 73.33 97.14 94.44

10 96.46 95.80 96.88 99.20 98.17 97.78 97.58 97.56
11 98.67 96.66 97.43 99.18 99.01 99.30 98.05 99.77
12 97.63 96.56 97.70 99.43 96.33 92.48 96.80 99.81
13 99.94 98.40 99.88 98.36 99.24 99.13 100 97.81
14 98.90 98.79 99.01 99.73 99.93 99.80 99.47 99.82
15 97.40 94.82 97.65 98.84 99.88 97.02 96.50 98.84
16 96.28 94.74 94.91 78.31 99.52 97.57 99.39 95.18

OA (%) 97.79 97.21 97.44 98.45 98.55 98.32 97.91 99.24
AA (%) 92.92 96.13 94.80 94.38 97.28 95.93 95.98 98.60

Kappa (×100) 97.49 96.82 97.07 98.19 98.35 98.08 97.91 99.13
Train time (s) 663.61 596.67 261.8 203.35 64.58 4.85 14.57 9.16
Test time (s) 66.07 98.87 82.09 2.04 4.02 0.97 0.42 0.88

The highest values in each row are marked in bold to highlight the performance.

Table 5. The classification accuracy (%) of various methods on the LK dataset and the corresponding
class names, as listed in Table 2.

Class DBDA DBMA FDSSC SSFTT DMSGer CEGCN WFCG MPAS

1 98.38 97.3 99.64 99.91 99.94 99.52 99.6 99.87
2 59.02 62.13 48.03 96.71 98.00 79.11 93.73 95.17
3 87.42 89.34 98.15 74.9 96.29 84.22 90.24 94.47
4 94.5 93.62 94.26 98.84 99.60 99.78 99.76 99.08
5 65.5 67.93 9.14 90.33 85.75 80.93 88.62 97.20
6 97.11 96.02 97.04 92.88 99.13 99.44 99.92 98.77
7 99.76 99.73 99.54 99.78 99.95 99.97 99.98 99.97
8 91.09 81.99 92.11 81.94 74.97 92.63 95.67 91.33
9 84.66 83.14 81.04 71.63 87.23 43.14 40.49 96.68

OA (%) 93.63 93.67 93.09 97.08 98.17 96.62 97.54 98.89
AA (%) 86.44 85.69 79.88 89.65 93.43 86.53 89.78 96.95

Kappa (×100) 91.63 91.65 90.9 96.16 97.6 95.52 96.75 98.54
Train time (s) 674.23 688.56 450.92 16.56 96.83 57.81 195.37 82.66
Test time (s) 165.44 197.21 253.97 13.15 14.36 5.00 36.14 4.23

The highest values in each row are marked in bold to highlight the performance.
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Table 6. The classification accuracy (%) of various methods on the SA dataset and the corresponding
class names from Table 3.

Class DBDA DBMA FDSSC SSFTT DMSGer CEGCN WFCG MPAS

1 99.94 100 100 99.65 99.24 99.98 100 99.81
2 98.19 97.32 99.67 99.76 100 100 100 100
3 98.09 97.48 97.97 99.54 100 99.75 100 99.99
4 97.17 95.11 97.7 98.38 100 99.63 99.05 99.53
5 92.39 98.31 97.87 97.6 97.08 98.52 100 98.22
6 100 99.8 99.97 99.57 100 99.97 100 99.94
7 99.38 99.8 99.99 99.63 99.87 100 100 99.99
8 94.02 92.99 93.51 96.94 98.16 98.75 96.75 99.46
9 99.08 99.73 99.65 99.85 100 100 100 100

10 96.14 96.68 95.97 98.52 95.39 98.65 98.44 99.48
11 96.3 96.56 86.73 98.35 99.90 99.64 100 99.89
12 98.61 99.55 98.79 97.07 100 100 100 100
13 99.8 98.98 98.88 93.28 100 99.89 99.44 100
14 97.82 97.9 98.62 96.81 97.52 98.84 99.33 98.13
15 79.08 88.28 92.19 95.17 99.90 98.88 97.22 99.72
16 99.57 95.93 99.73 99.25 99.44 99 98.65 99.80

OA (%) 93.6 95.48 96.72 98.01 99.07 99.35 98.76 99.66
AA (%) 96.6 97.15 97.33 98.05 99.15 99.45 99.31 99.62

Kappa (×100) 92.89 94.97 96.34 97.79 98.96 99.27 98.62 99.62
Train time (s) 237.16 237.16 215.42 215.26 200.38 43.25 178.51 54.77
Test time (s) 103.83 186.49 53.21 15.35 10.24 2.47 39.5 2.49

The highest values in each row are marked in bold to highlight the performance.
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For clarity, we provided the ground truth of the IP dataset and reported the OA values
of different methods. Among the first four DL-based methods (FDSSC, DBMA, DBDA, and
SSFTT), certain areas were still visibly misclassified, even though the classification maps
generated by these methods exhibited overall similarity and accuracy. This misclassification
may be due to the fact that these methods primarily emphasize analyzing local pixel
relationships rather than considering long-range dependencies. The three graph-based
methods’ misclassified areas were smaller than in most DL-based methods. Due to GCNs’
global feature extraction capability, they can effectively capture relevant information over
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lengthier distances within the structure. Compared with DMSGer, CEGCN, and WFCG,
our MPAS provides a more realistic interpretation of HSI, captures relationships between
nodes at longer distances, and improves the performance of the model through multi-scale
feature fusion and cross-layer information transfer.
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3.3.2. LK

The lower classification accuracy of DBDA, DBMA, and FDSSC illustrates the weak-
ness of DL-based methods when handling fewer HSI samples. The classification perfor-
mance of SSFTT can be equal to that of GCN-based methods, which is due to the fact that
the transformer can fully exploit the long-range dependencies of the samples to improve
the classification accuracy. For GCN-based methods (CEGCN, WFCG and DMSGer), it is
difficult to achieve the expected classification performance due to the inability to integrate
the multi-scale pixel-level and superpixel-level fusion information well. MPAS can achieve
the best results of OA, AA, and Kappa at a certain time cost. We can also see from Figure 6
that the MPAS method produced classification maps that closely approximated the ground
truth map.

3.3.3. SA

Similar to the other datasets, MPAS achieved the highest OA, AA, and Kappa values.
Notably, MPAS achieved a maximum accuracy of 100% in the following categories: bro-
coli_green_weeds_2, soil_vineyard_develop, lettuce_romaine_5wk, and lettuce_romaine_6wk.
It also exhibited excellent accuracy for the other land cover classifications. MPAS demon-
strated significant advantages in both performance and stability compared to the existing
four DL-based methods. The finding above highlights MPAS’s efficacy for the HSI classifi-
cation task. Figure 7 displays the ground truth and predicted classification maps obtained
by various methods on the SA dataset. Although the classification maps produced by the
four DL-based methods were of good quality, the limited training samples prevented them
from reaching the expected level of accuracy. For the three graph-based methods (CEGCN,
DMSGer, and WFCG), there were scattered errors in some areas in the upper-left corner
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and the middle-right area due to insufficient extraction of edge information. MPAS utilizes
different levels of feature representations to improve the modeling of feature edges.

In comparison, the classification map generated by MPAS demonstrated accuracy and
closely resembled the ground truth map.
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4. Discussion
4.1. Effectiveness of Different Modules in MPAS

Table 7 presents the results of ablation experiments performed on the IP dataset.
The experimental results evidence that every model component functioned to enhance
its overall performance. Specifically, the comparison between (1), (2), and (3) revealed
the positive impact of each module in MPAS on the classification performance. The
combination of MSSC and SSAM in the HSSAC branch, as indicated by (2), (3), and (4),
enhanced and improved the feature extraction of HSI. The performance of the combined
branches (5) and (6) also surpassed that of the individual branches. Although the expected
classification results were not achieved due to insufficient extraction of pixel-level spectral–
spatial features, the collaborative efforts of the four modules in MPAS, as evident from
(7), improved the classification performance, further confirming our proposed method’s
efficacy. Figure 8 demonstrates the classification accuracy of MPAS at the superpixel level
and pixel level. From the illustration, it can be seen that simply extracting pixel-level or
superpixel-level features causes the problem of loss of spatial context information and
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loss of fine-grained information, and combining these two levels of features can better
capture the spatial context information. The experimental results provide strong evidence
supporting each module’s effectiveness in MPAS, as they contributed to generating more
accurate classification maps.

Table 7. Ablation experiments of modules on the IP dataset.

Module (1) (2) (3) (4) (5) (6) (7)

MGCN
√

- -
√ √ √

MSSC -
√

-
√ √

-
√

SSAM - -
√ √

-
√ √

FFAC - - -
√ √ √

OA 94.65 95.94 87.13 96.34 97.29 96.59 99.12
AA 88.65 89.27 83.63 90.14 95.45 90.53 97.11

Kappa 93.89 95.35 85.35 95.83 96.91 96.11 99.00
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4.2. Effectiveness of Attention Mechanisms

In order to verify the effect of the SSAM module in this study, we conducted experi-
ments on each of the three datasets by adding SSAM and the traditional CBAM module
into the framework of this paper, respectively, comparing their OA and training time by
performing each experiment 10 times and averaging them. Figure 9 shows a significant
reduction in the training time and improvement in the classification performance of SSAM
compared to the traditional CBAM attention mechanism. The SSAM module saves training
time and computational resources while maintaining high classification performance.
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4.3. Hyperparameter Selection

In this experiment, in order to investigate the effects of superpixel segmentation scale
λ, the maximum epoch number, the number of hops in the convolution of a multi-hop
graph k, and learning rate Lr on the model performance. The hyperparameters were set
as shown in Table 8. We used a grid search strategy to find the optimal settings. OA was
utilized to show the performance of MPAS with different parameter settings.

Table 8. Hyperparameter settings.

Dataset λ Epoch k Lr

IP 100 300 3 0.0005
LK 100 300 3 0.0005
SA 100 300 3 0.0005

4.3.1. Effectiveness of Splitting Scale

When constructing the graph using the SLIC algorithm, the segmentation scale λ

was crucial in determining the correspondence between the pixels and superpixels. The
choice of λ directly impacted the number of pixels assigned to each superpixel, affecting
the resulting graph’s size and structure. To investigate this, we conducted experiments
using different values of λ (100, 200, 300, 400, and 500) and evaluated the classification
accuracy on each dataset. Each experiment was repeated 10 times. Figure 10 presents the
average values of the metrics.
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On the IP dataset, MPAS demonstrated a more pronounced decline in performance
as the segmentation scale increased, in contrast to the other two datasets. We attributed
this finding to the limited size of the IP dataset, which has a relatively dense distribution
of land cover and similar land cover types. In contrast, the LK dataset displays more
differences in land cover, leading to overall performance stability. Additionally, the SA
dataset’s classification results for similar land cover types are smoother due to the larger
number of pixels in the superpixel nodes.

Consequently, there is a slight improvement in the classification performance from
λ = 100 to λ = 300; however, increasing λ beyond 400 leads to a decrease in OA with each
pixel node’s addition. To prevent MPAS from producing excessively smooth classification
maps, we fixed λ at 100 for all the experiments.

4.3.2. Effectiveness of Lr and Epoch Selection

The experiment extensively explored the sensitivity of Lr and epoch, examining their
effects on the MPAS model in detail. To analyze the impacts of these two parameters, a
fixed value of 100 was assigned to λ. Lr was set to 0.05, 0.01, 0.005, and 0.0001. The value of
the epoch varied between 100 and 500, and the interval was 100. Figure 11 illustrates the
variations in OA values across different parameter combinations for the three datasets. It
can be seen from the results that the proposed method achieves the best accuracy when
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the epoch is set to 500 on IP. For LK datasets and SA, setting the epoch to 300 is the
best choice; however, increasing the epoch size leads to a proportional increase in the
time required for model training. Regarding Lr, employing a larger value can expedite
the training of the model parameters; however, it may hinder the attainment of optimal
parameters. Conversely, opting for a smaller Lr necessitates a longer training time for
the model but enhances the chances of achieving optimal parameters. With a focus on
achieving optimal classification accuracy and learning efficiency, the method employed in
this paper establishes the Lr value as 0.0005.
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4.3.3. Effectiveness of K Value

To examine the effect of different values of the number of hops (k) on the HSI classifi-
cation performance in the multi-hop graph convolution, we conducted experiments on the
IP dataset with k-values ranging from 1 to 5. This experiment aimed to comprehensively
explore the effect of the k-value selection on the HSI classification performance and provide
guidance for optimizing subsequent algorithms.

As Figure 12 shows, the performance of HSI classification exhibits an initial increase fol-
lowed by a decrease as the k-value increases because smaller k-values allow the multi-hop
graph convolution to capture local spatial information, leading to improved performance
in HSI classification. As k increases, the graph convolution can obtain information from far-
ther nodes, helping to better capture broader contextual information; however, continuing
to increase the number of hops may introduce excessive noise and reduce the classification
performance. Additionally, as the number of hops increases, the number of parameters also
increases, which may cause overfitting of the model to the training data. We chose k = 3 in
this study to reduce overfitting and the computational cost.
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4.4. Effectiveness of Training Samples

Considering the high cost in terms of human and time resources associated with
labeling, an HSI classification model’s ability to learn from small samples is crucial for its
practical applicability. To evaluate the effectiveness of the proposed MPAS method, we
conducted a performance assessment when the training samples were minimal. Specifically,
we studied its classification accuracy and compared it with other competitors at different
labeled sample sizes. The training sample ratios of the IP dataset were set to 1%, 3%, 5%,
7%, and 10% per class, while those of the LK and SA datasets were set to 0.1%, 0.3%, 0.5%,
0.7%, and 1% per class. The experimental results demonstrate that the proposed MPAS
algorithm consistently achieved the highest classification accuracy across all three datasets
and that the OA monotonically rose with the training sample size’s increase, demonstrating
its strong small sample learning ability. Figure 13 depicts the results of the experiments.
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(a) IP; (b) LK; (c) SA.

The same sensor generated the SA and IP datasets, yet their distributions differ
significantly. Specifically, the IP dataset suffers from severe class imbalance, making it a
more challenging source for classification than the SA dataset, especially when the available
labeled data are limited. Fortunately, MPAS exhibits acceptable performance on both
datasets, underscoring its utility for HSIs classification tasks. Nevertheless, mitigating the
impact of class imbalance on classification accuracy remains a crucial research pursuit.

4.5. Effectiveness of Convolutional Kernel

In the MSSC module, we used two parallel m × m convolution kernels to capture
the multi-scale spectral–spatial information of HSIs. We chose the sizes of these two
convolution kernels to be 3 (i.e., 3 × 3), 5 (i.e., 5 × 5), and 7 (i.e., 7 × 7). There are three
combinations: (3,5), (3,7), and (5,7). The numbers in parentheses indicate the respective
kernel sizes used in the first and second layers. Based on the results shown in Figure 14,
the kernel size of (3,7) achieves the highest performance on all three datasets; the average
classification effect is 0.24% and 0.60% higher than that of (3,5) and (5,7) for the IP dataset,
for example. Given the considerations of both the training and inference speed of the
model, we used a convolutional kernel size of (3,5) in our experiments.

4.6. Computational Efficiency

In this section, we verify the computational efficiency by observing the inference
time cost and model size of MPAS using the IP dataset. As shown in Table 9, MPAS
ensures efficient training time and small memory cost while guaranteeing classification
performance. The computation time of MPAS is 9.16 s and the model size is only 0.78 MB.
These observations confirm the efficiency of MPAS. The reason behind this is twofold.
In order to efficiently reduce computational and storage overheads, parallel multi-hop
graph convolution can quickly aggregate context information from various locations. On
the other hand, the HSSAC module’s simplified design reduces the computational com-
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plexity and conserves space; therefore, our MPAS is a lightweight and time-saving HSI
classification model.
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Table 9. Computational complexity analysis on IP datasets.

Methods Train Times (s) Model Size (MB)

DBDA 663.61 14.57
DBMA 596.67 19.82
FDSSC 261.8 27.69
SSFTT 203.35 4.01

DMSGer 64.58 0.79
CEGCN 4.85 0.68
WFCG 15.57 1.63
MPAS 9.16 0.78

The highest values in each column are marked in bold to highlight the performance.

5. Conclusions

This study proposes a multiscale pixel-level and superpixel-level (MPAS)-based clas-
sification method for HSI. The network consists of two sub-networks, namely, HSSAC
and MGCN, and a feature fusion module. HSSAC comprehensively captures pixel-level
features with different kernel sizes through parallel multi-scale convolution and cross-path
fusion to reduce the semantic information loss caused by fixed convolution kernels dur-
ing feature extraction, and learns adjustable weights from the adaptive spectral–spatial
attention module (SSAM) to capture pixel-level feature correlations. MGCN efficiently
captures structural information in HSI data by building cascade networks using parallel
multi-hop GCNs. The proposed MPAS can efficiently aggregate multi-layer contextual
features from spectral–spatial information at the pixel and superpixel levels, enhancing
the HSI classification task. Evaluation experiments on three benchmark HSI datasets show
that the MPAS has robust feature-learning and feature-fusion capabilities compared to
other advanced networks. Our future research will primarily concentrate on enhancing the
network architecture, particularly emphasizing deep-feature fusion to enhance the model’s
training efficiency and classification accuracy.
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Abbreviation

The abbreviations for all key terms in this article are explained below:
CNNs Convolutional neural networks
GCNs Graph convolutional networks
LBP Local binary pattern
MPAS Multiscale pixel-level and superpixel-level method
HSSAC Hybrid spectral–spatial attention convolution branch
MGCN Multi-hop graph convolution branch
SSAM Adaptive spectral–spatial attention module
SSFTT Spectral–spatial feature-tagging transformer
CEGCN CNN-enhanced GCN
WFCG Weighted feature fusion network
DMSGer Dynamic multi-scale graph dialogue network
SLIC Simple linear iterative clustering
IP Indian Pines
LK WHU-Hi-LongKou
SA Salinas
AA Average accuracy
OA Overall accuracy
Kappa Kappa coefficient
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