
Citation: Yao, C.; Zheng, L.; Feng, L.;

Yang, F.; Guo, Z.; Ma, M. A

Collaborative Superpixelwise

Autoencoder for Unsupervised

Dimension Reduction in

Hyperspectral Images. Remote Sens.

2023, 15, 4211. https://doi.org/

10.3390/rs15174211

Academic Editors: Benoit Vozel,

Xiangtao Zheng, Yanfeng Gu

and Geng Zhang

Received: 21 July 2023

Revised: 23 August 2023

Accepted: 24 August 2023

Published: 27 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

A Collaborative Superpixelwise Autoencoder for Unsupervised
Dimension Reduction in Hyperspectral Images
Chao Yao 1 , Lingfeng Zheng 1, Longchao Feng 1, Fan Yang 2 , Zehua Guo 3 and Miao Ma 1,*

1 School of Computer Science, Shaanxi Normal University, Xi’an 710062, China; yaochao@snnu.edu.cn (C.Y.)
2 Space Engineering University, Beijing 101416, China
3 School of Automation, Beijing Institute of Technology, Beijing 100811, China; guo@bit.edu.cn
* Correspondence: mmthp@snnu.edu.cn

Abstract: The dimension reduction (DR) technique plays an important role in hyperspectral image
(HSI) processing. Among various DR methods, superpixel-based approaches offer flexibility in
capturing spectral–spatial information and have shown great potential in HSI tasks. The superpixel-
based methods divide the samples into groups and apply the DR technique to the small groups.
Nevertheless, we find these methods would increase the intra-class disparity by neglecting the
fact the samples from the same class may reside on different superpixels, resulting in performance
decay. To address this problem, a novel unsupervised DR named the Collaborative superpixelwise
Auto-Encoder (ColAE) is proposed in this paper. The ColAE begins by segmenting the HSI into
different homogeneous regions using a superpixel-based method. Then, a set of Auto-Encoders (AEs)
is applied to the samples within each superpixel. To reduce the intra-class disparity, a manifold loss
is introduced to restrict the samples from the same class, even if located in different superpixels, to
have similar representations in the code space. In this way, the compact and discriminative spectral–
spatial feature is obtained. Experimental results on three HSI data sets demonstrate the promising
performance of ColAE compared to existing state-of-the-art methods.

Keywords: graph regularized auto-encoder; superpixel; spectral–spatial feature

1. Introduction

A hyperspectral image (HSI) consists of hundreds of lights that are reflected from
an object’s surface at different wavelengths, enabling the detection of subtle variations in
color, texture, and shape of objects within a scene. It provides valuable information about
specific materials and their properties. Due to the powerful ability to capture both spectral
and spatial information, HSI has been widely used in many fields, such as agriculture and
environmental monitoring. The HSI classification, which involves accurately assigning
labels to each pixel to identify ground classes, such as trees, buildings, or grassland, is a
crucial task in hyperspectral technology applications and a highly active research area in
remote sensing.

The abundance of spectral information in HSI enables accurate classification based
on spectral signatures. However, it also introduces challenges due to the high dimen-
sionality of each pixel. These challenges include (1) redundant and noisy information in
high-dimensional data, (2) the “curse-of-dimensionality” problem in machine learning,
which arises with an increasing number of features, and (3) the higher computational
and storage requirements associated with high-dimensional data. These challenges can
degrade the performance of subsequent HSI processing steps. To address these issues,
dimension reduction (DR) techniques are employed to obtain a compact representation
with significantly fewer dimensions, which is beneficial for subsequent procedures.

Band selection [1] and feature extraction [2] are two families of popular DR techniques
for HSI classification. Band selection methods reduce dimensionality by selecting a small

Remote Sens. 2023, 15, 4211. https://doi.org/10.3390/rs15174211 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15174211
https://doi.org/10.3390/rs15174211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0988-6349
https://orcid.org/0000-0001-7965-7184
https://doi.org/10.3390/rs15174211
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15174211?type=check_update&version=1

Remote Sens. 2023, 15, 4211 2 of 21

subset of hyperspectral bands that retain the wavelength information. However, they often
struggle to find the optimal subset of bands, according to [3]. In this paper, our focus
is on feature extraction DR methods for HSI classification. These methods aim to find a
compact representation of the data in a transformed feature space, effectively addressing
the limitations of band selection approaches.

Over the past few decades, numerous feature extraction DR methods have been
developed, which can be categorized into supervised, unsupervised, and semi-supervised.
Supervised DR methods utilize labels of the samples during the training process. For
instance, Schwaller et al. first applied Linear Discriminant Analysis (LDA), a well-known
DR method in machine learning, to HSI classification [4]. Studies [5–7] proposed methods
to address the limited training sample problem in HSIs, studies [8–10] tackled the challenge
of the nonlinearly separated problem in LDA, and studies [11,12] jointly combined LDA
and sparse learning to capture the underlying structure of HSI samples. Unsupervised
DR methods, in contrast, do not require label information during training. Lim et al.,
applied Principal Component Analysis (PCA) to HSI and observed that most energy was
concentrated on a few eigenvalues [13]. Then, studies [14,15] utilized PCA for efficient
features extraction in the HSI classification task. Studies [16–18] employed a local manifold
model to capture the geometric structure relationship within the data. Semi-supervised
methods make use of both labeled and unlabeled samples for model training. Examples
of such methods include studies [19–21]. In recent years, Deep Learning (DL) has gained
popularity in various applications, including HSI classification tasks [22–24]. While DL
methods have shown promise, their performance in unsupervised settings, where label
information is not utilized, may not meet the requirements of real-world applications.
Hence, this paper focuses on the unsupervised scene in the context of HSI classification.

In recent years, there has been a growing interest in utilizing both the spatial and
spectral information of HSI to extract more discriminative features for the HSI, which is
a typical multi-channel image where the spatial domain also contains rich information.
These methods can be broadly categorized into pixel neighbor-based and superpixel-based
approaches. Pixel neighbor-based methods consider local pixel patches to incorporate spa-
tial information. For example, He et al. [25] applied LPNPE to the spatial neighbors of each
pixel to capture spatial relationships, Fang et al. [26] computed the local covariance matrix
for a pixel using its spatial neighbor pixels and used it as a representation for classification,
Li et al. [27] used a spatial window of size s× s to formulate a local neighbor space, and
defined a new distance measure between samples. Chen et al. [22] directly flattened each
sample with its neighbors, and employed a stack Auto-Encoder (AE) to extract spectral–
spatial features. The superpixel-based methods involve dividing the HSI into homogeneous
regions (superpixels) and applying DR methods to each region separately. Studies [28,29]
used PCA to extract features from each superpixel, Zhang et al. [30] re-weighted the pixels
belonging to the same superpixel and evaluated sparse representation for classification,
Zhang et al. [31] employed kernel PCA on samples within a superpixel and boosted the
results from multi-scale segmentation to improve performance. Compared to the pixel
neighbor-based methods, superpixel-based methods follow a “divide-and-conquer” ap-
proach, offering more flexibility. In this paper, we will focus on the superpixel-based
method, due to its flexibility and potential for improved performance from leveraging both
spatial and spectral information in HSI.

The existing superpixel-based methods, such as SuperPCA [28], S3 PCA [29], and
S-RAE [32], extract features from each superpixel region individually. While these methods
can provide feature extractors for each superpixel region, they often neglect the relationship
between samples from different superpixel regions. This can be problematic because
samples from the same category may be located in different regions, leading to a loss of
intra-class structure in the data. To illustrate this issue, an example using samples from
the woods category in the Indian Pines data set is considered. Measuring the disparity of
multi-dimensional data remains a challenging problem that lacks a definitive solution, thus
t-SNE [33] is applied to the samples for visualization to assess the disparity problem. In

Remote Sens. 2023, 15, 4211 3 of 21

the original space (Figure 1a), we can observe that the samples from the woods category are
located close to each other, indicating a high level of intra-class consistency. However, after
applying SuperPCA (Figure 1b), we can see that the intra-class consistency of the data is
completely destroyed. The loss of intra-class structure can have negative consequences
for subsequent tasks in HSI. Therefore, there is a need to develop methods that not only
capture the features that maintain the structure within individual superpixel regions, but
also preserve the relationships between samples from different superpixel regions.

(a) (b) (c)

Figure 1. Visualization of representations in woods of Indian Pines data set. (a) shows the samples in
the original space; (b) shows the representations obtained by SuperPCA; (c) shows the representations
obtained by our proposed ColAE.

To solve the aforementioned problem, we propose a novel unsupervised DR method
that considers the relationship between samples from different superpixels in this paper.
To be more specific, the Entropy Rate Segmentation (ERS) [34] is first adopted to generate
a 2D superpixel map. Then, Locally Linear Embedding (LLE) is applied to capture the
underlying manifold structure of the mean vectors within each superpixel. A collaborative
superpixelwise Auto-Encoder (ColAE) model is proposed to learn the compact representa-
tions, which can preserve the structure of data within each superpixel by minimizing their
reconstruction error, while meanwhile maintaining the learned manifold structure among
superpixels by minimizing the graph loss. The representations are finally fed into Support
Vector Machine (SVM) to determine their categories. To evaluate the effectiveness of the
proposed ColAE, experiments are conducted on three hyperspectral data sets. We compare
our method with state-of-the-art DR techniques; the results validate the proposed ColAE
can improve the classification performance of extracted features.

The remainder of this paper is organized as follows. Section 2 provides a review of
several related works. In Section 3, the details of our proposed method are presented. The
experimental setup, comparison results, result analysis, and the influence of the parameters
are presented in Section 4. Section 5 finally concludes the paper and discusses potential
future research directions.

2. Related Works

In this section, we briefly review entropy rate superpixel segmentation, locally linear
embedding, and Autoencoder models.

2.1. Entropy Rate Superpixel Segmentation Model

In computer vision, superpixels are defined as compact regions consisting of adjacent
pixels with similar characteristics, such as color, brightness, and texture. In HSI, where each
pixel represents a distinct spectral signature, samples belonging to the same category also
tend to exhibit spatial similarities. Consequently, existing superpixel segmentation methods
can be effectively employed to partition an HSI into a collection of homogeneous regions. By
considering both spectral and spatial characteristics, superpixel segmentation enables the
grouping of pixels with shared properties, facilitating the extraction of meaningful features.

ERS [34] is adopted in our method due to its promising performance in HSI classifi-
cation tasks [28,29], as well as its inherent capabilities in adaptive region generation and
texture preservation. As a graph-based method, with a given graph G = (V, E) for an

Remote Sens. 2023, 15, 4211 4 of 21

HSI, where the vertical set V denotes the pixel set and the edge set E means the pairwise
similarities, ERS tends to choose a subset of edges A ⊆ E, so that the resulting graph
G∗ = (V, A) contains exactly K connected subgraphs. The objective function of ERS is

A∗ = arg max
A

Tr(H(A) + αB(A), s.t.A ⊆ E, (1)

where H(A) is an entropy rate term, which tends to find the homogeneous and compact
cluster, B(A) is a balancing term, which makes the cluster with similar sizes, and α is a
weight term to tune the contributions of H(A) and B(A). A greedy algorithm is used to
solve the problem in (1).

2.2. Locally Linear Embedding Model

Researchers in the machine learning area found that the data in the wild may not follow
Gaussian distribution, but reside on a manifold, and locally linear embedding (LLE) [35],
an algorithm insensitive to global variations and characterized by parameter flexibility,
was proposed to preserve the manifold structure of the data in the low-dimensional space.
Denote n samples in d-dimensional space as X = {x1, x2, . . . , xn}; LLE first finds the
K-nearest neighbors for each sample, where K is the number of nearest neighbors, and
K � n. LLE assumes the samples within a small neighborhood are linearly located, and
the manifold structure of the data is then captured by minimizing the reconstruction error

ε(W) = ∑
i
‖ xi − ∑

xj∈Ni

wijxj ‖2, s.t. ∑
j

wij = 1, (2)

where Ni stands for the K-nearest neighbors set of xi, and the wij = 0 if xj /∈ Ni. A
least-squares problem can be used to solve the Problem (2) [35].

With the weighting matrix W, LLE maps the xi on to a l-dimensional representation yi
by minimizing the cost function as follows:

Φ(Y) = ∑
i
‖ yi −∑

j
wijyj ‖2 . (3)

The problem in (3) is equivalent to

Φ(Y) = Y(I−W)T(I−W)Y, (4)

which can be solved by finding the l eigenvectors of Z = (I−W)T(I−W) corresponding
to the l smallest eigenvalues. Due to fact that the smallest eigenvalue is not stable, LLE
always finds the eigenvectors corresponding to the second smallest eigenvalues.

2.3. Auto-Encoder Model

Auto-Encoder (AE) [36] is a well-known neural network architecture used for various
tasks. It consists of two main parts: an encoder and a decoder. In the context of a shallow
AE, as illustrated in Figure 2a, the encoder takes an input vector ai from the Rd space
and maps it to a lower-dimensional code fi in Rl by fi = f (W(1)ai + b(1)), where f (·)
is an activation function. The decoder then reconstructs the input vector ai from the
code fi by âi = g(W(2)fi + b(2)), where g(·) is also another activation function. The
commonly used activation functions for encoder and decoder are the nonlinear Tanh and
Sigmoid functions.

Remote Sens. 2023, 15, 4211 5 of 21

(a) (b)

Figure 2. Illustration of AE. (a) shows a shallow AE, and (b) presents a deep AE.

The parameters of the AE, denoted as Θ = {W(1), b(1), W(2), b(2)}, are learned during
the training process. These parameters, including the weights {W(1), W(2)} , and biases
{b(1), b(2)}, can be optimized by minimizing the reconstruction error R(Θ), defined as

R(Θ) = ∑
i
‖ ai − âi ‖2, (5)

which sums up the squared differences between the input vectors ai and their reconstruc-
tions âi over all the samples. To perform the optimization, the Backpropagation algorithm
(BP) and stochastic gradient descent are commonly used.

Once the AE is trained, the encoder has learned to map the input vector ai ∈ Rd to a
new, lower-dimensional representation fi ∈ Rl , where l is typically chosen to be smaller
than d.

The shallow AE, with only one encoder and one decode layer, has a limited capacity
to learn complex and high-level representations. To overcome this limitation, deep AEs
are proposed, which have multiple encoder and decoder layers. Increasing the number
of layers in the AE architecture enhances its learning ability, and allows for the extraction
of more intricate features. A deep AE example is presented in Figure 2b. In a deep AE
model, the input passes through a series of hidden layers in the encoder, where each layer
applies a non-linear transformation to capture the different levels of relevant features. The
final hidden layer produces the encoded representation fi. The encoder can be expressed
mathematically as:

fi = f (m)(W(m)(f (m−1)(W(m−1)(· · ·) + b(m−1))) + b(m)), (6)

where m represents the depth of the encoder. By adding more layers, the deep AE can learn
increasingly complex representations of the input data, helping to capture intricate patterns
and structures. This results in improved generalization capabilities and potential efficiency
gains compared to shallow AEs. The additional layers allow for a more hierarchical and
abstract representation of the data, enabling the model to discover more meaningful and
discriminative features.

In a deep AE, the decoder takes the code fi and passes it through a series of hid-
den layers. The final output layer of the decoder produces the reconstructed data âi.
The parameters Θ in deep AE include the weights {W(1), W(2), . . . , W(2m)} and biases
{b(1), b(2), . . . , b(2m)}. To optimize the parameters Θ, the aim is to minimize the reconstruc-
tion error R(Θ) defined in Equation (5). There are two methods to optimize Θ through
R(Θ). The first method trains m shallow AEs individually and then stacks them together
to form a deep AE [36]. Each shallow AE is trained layer by layer, where the output of one
layer is used as the input for the next layer. This approach is also known as Stack AE (SAE).
By pretraining the shallow AEs and fine-tuning the entire deep AE, this method allows
for the gradual learning of increasingly complex representations. The second method is to

Remote Sens. 2023, 15, 4211 6 of 21

initialize the parameters Θ and then use BP and a stochastic gradient descent to iteratively
optimize the parameters. This method is known as end-to-end training. In the early stages
of deep learning, training deep AEs using this method was challenging because gradients
could not propagate effectively to the bottom layer. However, with the development of
more effective initialization strategies, such as He initialization [37], and Xavier initial-
ization [38], this issue has been largely mitigated, and it is now possible to directly train
deep networks.

3. Collaborative Superpixelwise Auto-Encoder

In this section, we present the details of ColAE, a method designed for extracting
spectral–spatial features for HSI. ColAE consists of two key steps: superpixel segmentation
and collaborative AE learning, as depicted in Figure 3. During the superpixel segmentation
step, the ERS-based superpixel method is employed to partition the HSI into homogeneous
regions. This division creates compact and meaningful regions by grouping pixels with
similar characteristics. In the collaborative learning step, LLE is first adopted to learn the
underlying manifold structure among samples from different superpixels. This allows us
to capture the global structure of the HSI. Next, AE models are applied to each superpixel
independently. These models seek representations that minimize the local reconstruc-
tion error for samples within the same superpixel, while simultaneously minimizing the
manifold reconstruction error for samples from different superpixels. In our proposed
ColAE approach, the AE models exchange information among different superpixel regions,
leveraging a collaborative learning approach. This enhances similar samples from different
superpixels to be similar in the code space. In this way, ColAE can alleviate intra-class
disparities. Figure 1c provides empirical evidence supporting this claim.

Figure 3. The stages in ColAE. losswithinAEs is the first term in Equation (11), which sums up the
reconstruction loss within each individual superpixel. lossbetweenAEs denotes the second term in
Equation (11), which maintains the manifold structure between superpixels.

Remote Sens. 2023, 15, 4211 7 of 21

In this paper, HSI data are denoted by X ∈ RB×W×H , where B, W, H represent the
number of spectral bands, width, and height, respectively. To process the 3D data X, we
flatten it into a 2D form, denoted as X2 = [x1, x2, . . . , xN] ∈ RB×N(N = W × H). Each
column xi = [xi1, xi2, . . . , xiB]

T represents a pixel in the HSI.

3.1. Superpixel Segmentation

Traditional spectral–spatial methods often use fix-sized spatial windows to incorporate
spectral and spatial information. However, these methods do not fully explore the spatial
information available in the image. Superpixel segmentation, on the other hand, offers a
more effective way to divide the image into homogeneous regions based on appearance
information, thereby considering spatial structures more effectively. This is why we have
chosen to employ superpixel segmentation in our proposed work.

The Entropy Rate Segmentation (ERS) algorithm is capable of efficiently segmenting
the grayscale (1 channel) or color (3 channels) images into superpixel regions. However,
the HSI typically consists of hundreds of spectral bands. To address this, we first reduce
the dimensionality of the HSI data to one channel using PCA before applying ERS.

PCA allows us to reduce an HSI, denoted as X, to its 2D form X2. The covariance
matrix of the data can be calculated using the formula C = 1

N ∑(xi − µ)(xi − µ)T , where
µ = 1

N ∑ xi is the mean vector of all samples. The eigenvectors v1 corresponding to the
largest eigenvalue of C form the projection matrix V = [v1] for the grayscale image. Next,
the 1-dimensional 2D data Y2 can is obtained by performing the transformation Y2 = VTX2.
Finally, Y2 can be reshaped into a grayscale image, upon which ERS can be performed on
the obtained superpixel segmentation.

3.2. Collaborative AEs

After performing superpixel segmentation on the HSI, the resulting 2D representation
can be expressed as X2 = {X1, X2, . . . , XJ}, where Xi = {xi

1, xi
2, . . . , xi

Ni
} represents the

samples in the i-th superpixel, and Ni indicates the number of samples in that particular su-
perpixel.

To capture the underlying manifold structure of the data, samples from different
superpixels are used. Then, an AE model is proposed to preserve this manifold structure
among superpixels while simultaneously minimizing the reconstruction error within each
superpixel. By jointly considering the manifold structure and the within-superpixel recon-
struction, our proposed ColAE allows for the efficient extraction of spectral–spatial features
while ensuring the preservation of important relationships between superpixels.

3.2.1. Learning the Manifold Structure among Superpixels

In order to preserve the relations among samples from different superpixels, it is
crucial to define and obtain such relations. The manifold structure is commonly employed
to model the underlying geometric structure of high-dimensional data, which aligns with
our requirements. In our method, we adopt LLE, a classical and efficient manifold learning
technique, to capture the manifold structure.

Samples within the same superpixel exhibit similarity; hence, the manifold structure is
measured using only the mean vectors of each superpixel. The mean vector is calculated by

µi =
1
Ni

∑
j

xi
j. (7)

With the mean vectors {µ1, µ2, . . . , µJ}, the weighting matrix W can be obtained by
minimizing the reconstruction error in Equation (2), where J is the number of superpixels.
Denoting the representations in the i-th superpixel in code space as Yi = {yi

1, yi
2, . . . , yi

Ni
},

the manifold loss over current code is

L(Y) = ∑
i
‖∑

j

1
Nj

yi
j −∑

k
wik ∑

j

1
Nk

yk
j ‖2, (8)

Remote Sens. 2023, 15, 4211 8 of 21

where MY = [1
N1

∑j y1
j , 1

N2
∑j y2

j , . . . , 1
NJ

∑j yJ
j] represents the mean vectors in the code

space. The lower the value of L(Y), the better the preserving ability of the code.
It should be noted that the number of K, representing the number of nearest neighbors

in the LLE algorithm, needs to be predefined when calculating the weighting matrix W,
and it is commonly chosen such that K � J.

3.2.2. AE Model with Manifold Constraints

Based on previous works [28,29,32], we adopt a similar approach and employ a single
AE for each superpixel. In this way, multiple AEs are used to efficiently capture the local
structure within a superpixel and low-dimensional representations of a given HSI can be
obtained. The loss function for the i-th AE is defined as

R(Θi) = ∑
j
‖ xi

j − x̂i
j ‖2 . (9)

were x̂i
j is the output of the i-th deep AE for the j-th sample xi

j in the i-th superpixel. The

parameters in this AE are denoted as Θi = {W
(1)
i , b(1)

i , . . . , b(m)
i , W(m)

i , . . . , W(2m)
i , b(2m)

i },
where m is the number of layers in encoder. The reconstruction error for all the samples
can be expressed as

R(Θ) = ∑
i

∑
j
‖ xi

j − x̂i
j ‖2, (10)

where Θ = {Θ1, Θ2, . . . , ΘJ} represents the parameters for all AEs.
To preserve the relations among superpixels, the manifold loss in Equation (8) can be

added to Equation (10). This results in the following loss function:

R(Θ) = ∑
i

∑
j
‖ xi

j − x̂i
j ‖2 +η ∑

i
‖∑

j

1
Nj

yi
j −∑

k
wik ∑

j

1
Nk

yk
j ‖2 . (11)

In Equation (11), the first term preserves the structure within each superpixel, while
the second term maintains the structure between superpixels. The parameter η balances
the two terms. By incorporating two terms in Equation (11), the proposed ColAE ensures
each AE can preserve the structure of data within its assigned superpixel, while exchange
information between superpixel by considering the manifold structure. In this way, the AEs
from each superpixel are collaboratively learned. It should be noted that, in Equation (11),
the first term relates to all the parameters in Θ, while the second term only relates to the
parameters in the encoder part.

To find the parameters that best fit the data, we first initial each AE using the Xavier
method [38]. Then, we backpropagate the gradient of Θ to each layer according to
Equation (10). Since the number of samples in a superpixel is not large, we feed all
the samples in each superpixel once to calculate the loss. After hundreds of iterations, the
value of R(Θ) can converge to a small value.

3.3. Computational Analysis of ColAE

The procedure of the proposed ColAE is outlined in Algorithm 1. The time complexity
of the proposed ColAE can be analyzed as follows. The superpixel segmentation step
has a time complexity of O(max(B3, B2N) + N log N). The manifold structure modeling
procedure has a time complexity of O(KJ), and the calculation of loss in Equation (10)
has a time complexity of O(NBd1), where d1 is the dimensionality of the first hidden
representation h(1). The gradient descent method used to optimize the parameters Θ
has a time complexity of O(TNBd1). In HSI, the number of bands B is typically much
smaller than the number of samples N. Additionally, K and J are also much smaller than N.
Therefore, the overall time complexity of ColAE is O(TNBd1).

Remote Sens. 2023, 15, 4211 9 of 21

Algorithm 1 Procedures of ColAE.

Input: An HSI X ∈ RB×W×H , the number of superpixels J, the number of nearest neighbors
K in LLE, the balancing weight η, the dimensionality L for the code, the number of
iteration T.

Output: The output Y ∈ RL×W×H .
1: Reshape X into 2D form, which is X2 ∈ RB×N . Use PCA to reduce the dimensionality

of X2 to 1 , and reshape it into the image with three channels;
2: Apply ERS algorithm to segment the image into J non-overlapped regions;
3: Use Equation (7) to compute the mean vector µi for each superpixel. Then, calculate

the weights for each mean vector according to Equation (2);
4: Use Xavier initialization to initial the parameters in Θ(0);
5: for t = 0 to T do
6: Calculate the loss R(Θ(t)) by Equation (11);
7: Calculate the gradient of g(t) using existing optimizer, and update the parameters by

Θ(t+1) = Θ(t) + αg(t);
8: end for
9: Compute the code by Θ(T), then reshape the code into Y ∈ RL×W×H .

10: return Y.

4. Experimental Results

In this section, to validate the performance of the proposed ColAE, we carry out
extensive experiments on several HSIs in comparison with state-of-the-art methods.

4.1. Data Sets

Three HSI data sets are used to evaluate the ColAE in our experiments, which are
Indian Pines, the University of Pavia, and Salinas. The details of each data set are as follows.

(1) Indian Pines. The Indian Pines data set was collected by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor over an agricultural area in Indiana, USA.
It consists of 145 × 145 pixels and 224 spectral bands, covering a wide range of
wavelengths from 400 to 2500 nm. In this paper, 24 bands covering the region of water
absorption are removed, and a total of 200 bands are used. The data set contains
16 different classes, including various crops, bare soil, and human-made structures.
Approximately 10,249 samples with labels are from the ground-truth map.

(2) University of Pavia. The University of Pavia data set was acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor over an agricultural area in Pavia,
Italy. It consists of 610× 340 pixels and 115 spectral bands, covering wavelengths
from 430 to 860 nm. A total of 12 noisy and water bands are removed, and a total
of 103 bands are preserved. The data set contains nine different classes, including
various crops, bare soil, and meadows. Approximately 42,776 samples with labels are
from the ground-truth map.

(3) Salinas. The Salinas data set was collected by the AVIRIS sensor over an agricultural
area in Salinas Valley, California, USA. It consists of 512× 217 pixels and 224 spectral
bands, covering wavelengths from 400 to 2500 nm. A total of 20 bands are removed
for noisy and water bands, and 204 bands are used in our experiments. The data set
contains 16 different classes, including various crops, bare soil, and human-made
structures. A total of 53,129 labeled samples are used in our experiments.

Table 1 lists the number of samples per class for the three datasets. All these datasets
are available (https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes, accessed on 12 July 2021) from the Internet.

https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes

Remote Sens. 2023, 15, 4211 10 of 21

Table 1. Number of samples in the Indian Pines, University of Pavia, and Salinas images.

Indian Pines University of Pavia Salinas

Class Name Numbers Class Name Numbers Class Name Numbers

c1 Alfalfa 46 Asphalt 6631
Broccoli

green weeds
1

2009

c2 Corn-notill 1428 Meadows 18,649
Broccoli

green weeds
2

3726

c3 Corn-mintill 830 Gravel 2099 Fallow 1976

c4 Corn 237 Tress 3064 Fallow
rough plow 1394

c5 Grass-
pasture 483 Mental

sheets 1345 Fallow
smooth 2678

c6 Grass-tress 730 Bare soil 5029 Stubble 3959

c7
Grass-

pasture-
mowed

28 Bitumen 1330 Celery 2579

c8 Hay-
windrowed 478 Bricks 3682 Grapes

untrained 11271

c9 Oats 20 shadow 947
Soil

vineyard
develop

6203

c10 Soybean-
nottill 972

Corn
senesced

green seed
3278

c11 Soybean-
mintill 2455 Lettuce

romaine 4wk 1068

c12 Soybean-
clean 593 Lettuce

romaine 5wk 1927

c13 Wheat 205 Lettuce
romaine 6wk 916

c14 Woods 1265 Lettuce
romaine 7wk 1070

c15
Buildings-
grass-trees-

dirves
386 Vineyard

untrained 7268

c16 Stone-steel-
towers 93

Vineyard
vertical
trellis

1807

Total
number 10,249 Total

number 42,776 Total
number 54,129

4.2. Experimental Setup

In the experiments, we evaluate the learned spectral–spatial feature via its classi-
fication performance. We use several well-known handcraft features, including PCA,
LPP [39], KPCA [40], and their extensions to superpixel-based methods, SuperPCA [28],
SuperLPP [41], SuperKPCA [31]. Deep learning-based features are compared, including
AE [36], its superpixel extension version SuperAE, CAE [42], and ConstrastNet [43].

To test the proposed method, three metrics are used to evaluate the performance
of different dimension reduction methods, which are overall accuracy (OA), average
accuracy (AA), and kappa. The HSIs are used in their original form without any further
preprocessing. We apply the DR algorithms on the HSI, then feed their outputs an SVM to
determine the categories of the samples. The RBF kernel is used to boost the performance of
the SVM for non-linear distributed situations, and the parameters of the RBF are determined
by a grid search, as was performed in [28]. Our experiments are conducted on Windows 10
64-bit platform, with an Intel Core i5-12400F CPU (2.5 GHz), and 32 GB memory. The

Remote Sens. 2023, 15, 4211 11 of 21

proposed approaches are implemented mainly using Python 3.6, Pytorch 1.8.0, Scikit-
learn 1.2.1 (Sklearn), and Shogun (https://github.com/shogun-toolbox/shogun, accessed
on 8 December 2020), which is a well-known machine learning toolbox that provides
interfaces for Matlab, R, Python, and so on. With this feature, Shogun offers a convenient
way to implement various machine learning algorithms easily.

To test the proposed method, the 10 random splits sets in [28] (https://github.com/
junjun-jiang/SuperPCA/tree/master/datasets, accessed on 31 October 2020) are used for
training and testing. For each class in the three data sets, T = 3, 5, 7, 10, 15, 20 samples are
selected to train the SVM, and the rest of the samples are used as testing sets, where T
denotes the number of training samples. For the classes that posses too few samples, such
as Grass-pasture-mowed and Oats in Indian Pines, we select a maximum of half of the total
samples in the them. The PCA, KPCA, and SVM are implemented by the Sklearn library.
KPCA utilized the RBF kernel, and its best parameter is determined through a grid search
based on the reconstruction error of the pre-image [44]. Moreover, LPP is implemented
using the Shogun library, and the optimal number of nearest neighbors (K) and the τ for
heat kernel are also determined using a grid search. The implementations for CAE and Con-
strastNet are available (https://github.com/jjwwczy/ContrastNet-Unsupervised-Feature-
Learning-by-Autoencoder-and-Prototypical-Contrastive-Learning, accessed on 8 March
2034) online. In our experiments, the architectures of AE and ColAE remain consistent,
and are listed in Table 2. For Equation (6), the tanh is used as the activation function when
m = 1, 4, and the linear function is used when m = 2 and m = 3. Furthermore, Xavier
initialization is employed to initial the parameters for both AE and ColAE. The ERS is also
available (https://github.com/mingyuliutw/EntropyRateSuperpixel, accessed on 19 Au-
guest 2015) online. The SuperPCA, SuperNPE, SuperLPP, and SuperAE are applied based
on the superpixel results obtained from ERS, according to their definitions as mentioned.

Table 2. The architecture of AE in the experiments. The shape is defined in Pytorch style, where −1
means batch size in the shape array.

Layer
Output Shape

Indian Pines University of Pavia Salinas

input [−1, 200] [−1, 103] [−1, 203]
Linear [−1, 100] [−1, 75] [−1, 100]
Tanh [−1, 100] [−1, 75] [−1, 100]

Linear [−1, L] [−1, L] [−1, L]
Linear [−1, 100] [−1, 75] [−1, 100]
Tanh [−1, 100] [−1, 75] [−1, 100]

Linear [−1, 200] [−1, 103] [−1, 203]

4.3. Comparisons with Other Algorithms

Table 3 presents the performances of features acquired by 13 methods on the three data
sets with diverse training samples when L = 30, where L is the dimensionality of the low-
dimensional representation. The best classification results in each setting are highlighted in
bold. It is worth noting that KPCA consumes too much memory, making it impossible to
execute in the University of Pavia and Salinas data sets. From the results in Table 3, several
observations can be concluded as follows.

https://github.com/shogun-toolbox/shogun
https://github.com/junjun-jiang/SuperPCA/tree/master/datasets
https://github.com/junjun-jiang/SuperPCA/tree/master/datasets
https://github.com/jjwwczy/ContrastNet-Unsupervised-Feature-Learning-by-Autoencoder-and-Prototypical-Contrastive-Learning
https://github.com/jjwwczy/ContrastNet-Unsupervised-Feature-Learning-by-Autoencoder-and-Prototypical-Contrastive-Learning
https://github.com/mingyuliutw/EntropyRateSuperpixel

Remote Sens. 2023, 15, 4211 12 of 21

Table 3. Classification performance of the 13 methods on Indian Pines, University of Pavia, and
Salinas images. T.N.s/C denotes the number of training samples from each class.

Data Set T.N.s/C Metric Raw PCA LPP KPCA AE
Super
PCA

Super
LPP

Super
KPCA

Contrast
Net CAE SuperAE ColAE

Indian Pines

3
OA(%) 40.89 40.89 45.01 40.81 40.37 54.55 58.28 48.28 55.20 54.50 67.78 68.81
AA(%) 44.30 44.21 45.60 43.97 44.00 74.69 71.32 53.78 55.31 54.06 70.15 66.41
kappa 0.3455 0.3455 0.3870 0.3451 0.3404 0.4837 0.5276 0.4415 0.4977 0.4942 0.6397 0.6518

5
OA(%) 47.41 46.98 53.56 47.52 47.72 69.84 65.86 64.30 67.88 64.28 77.20 77.72
AA(%) 48.60 48.38 52.23 48.43 48.65 80.91 76.43 61.22 60.73 60.81 77.49 74.79
kappa 0.4156 0.4115 0.4818 0.4158 0.4190 0.6560 0.6149 0.6061 0.6364 0.5992 0.7429 0.7493

7
OA(%) 51.38 50.84 58.47 51.46 50.65 77.01 75.00 77.62 73.36 70.20 81.34 82.03
AA(%) 51.53 50.77 55.71 50.92 50.54 86.13 81.14 90.35 66.80 65.16 80.78 80.18
kappa 0.4578 0.4516 0.5351 0.4566 0.4509 0.7378 0.7178 0.7364 0.6995 0.6651 0.7892 0.7969

10
OA(%) 54.68 53.98 61.31 54.44 53.71 83.19 83.80 73.91 76.60 75.83 85.09 85.10
AA(%) 54.00 53.46 58.90 53.66 52.98 85.31 80.25 87.48 70.11 69.57 82.84 81.96
kappa 0.4943 0.4867 0.5669 0.4908 0.4840 0.8084 0.8092 0.7055 0.7369 0.7278 0.8311 0.8312

15
OA(%) 58.83 57.60 64.56 58.29 56.86 87.81 86.23 87.82 80.02 80.96 87.69 88.02
AA(%) 56.67 55.70 60.88 55.80 54.66 86.81 80.64 89.99 70.17 73.07 83.38 82.04
kappa 0.5401 0.5267 0.6034 0.5328 0.5190 0.8611 0.8442 0.8620 0.7803 0.7852 0.8603 0.8640

20
OA(%) 61.57 60.53 67.26 61.26 59.83 89.13 88.24 87.93 84.44 84.46 89.18 89.20
AA(%) 57.39 56.48 60.89 56.98 56.35 85.17 83.61 89.66 75.13 74.89 81.28 80.98
kappa 0.5694 0.5578 0.6326 0.5654 0.5503 0.8765 0.8726 0.8631 0.8237 0.8241 0.8771 0.8773

University
of

Pavia

3
OA(%) 60.50 60.55 54.40 - 61.03 78.48 67.41 81.83 79.71 70.52 83.66 84.04
AA(%) 64.73 64.62 56.80 - 65.25 73.94 72.72 73.99 81.67 74.61 83.54 84.01
kappa 0.5154 0.5157 0.4341 - 0.5203 0.7222 0.5736 0.7615 0.7333 0.6239 0.7911 0.7957

5
OA(%) 65.77 65.73 58.22 - 65.03 82.02 71.49 85.06 83.49 78.89 87.21 87.40
AA(%) 68.53 68.49 59.97 - 68.56 78.94 75.25 80.49 85.11 81.10 86.40 86.70
kappa 0.5731 0.5727 0.4788 - 0.5671 0.7675 0.6297 0.8061 0.7813 0.7300 0.8366 0.8390

7
OA(%) 70.36 70.34 60.02 - 69.01 84.40 74.98 86.92 87.81 84.75 88.83 89.43
AA(%) 72.03 71.92 61.92 - 70.70 82.89 79.18 83.32 86.66 84.79 87.24 87.65
kappa 0.6253 0.6247 0.5016 - 0.6107 0.7988 0.6714 0.8305 0.8393 0.8033 0.8564 0.8638

10
OA(%) 72.66 72.48 63.43 - 71.46 89.01 80.24 91.09 91.95 88.83 92.53 92.74
AA(%) 74.12 73.95 64.54 - 72.85 87.22 83.33 89.87 90.37 87.97 90.94 91.10
kappa 0.6553 0.6532 0.5450 - 0.6414 0.8577 0.7387 0.8836 0.8939 0.8545 0.9031 0.9057

15
OA(%) 77.90 78.26 65.48 - 76.26 91.86 81.26 92.30 94.38 92.03 94.76 94.93
AA(%) 77.03 77.13 66.57 - 75.32 89.56 83.74 91.29 92.70 90.55 93.10 93.29
kappa 0.7169 0.7210 0.5734 - 0.6975 0.8938 0.7549 0.8982 0.9257 0.8957 0.9314 0.9337

20
OA(%) 80.57 80.66 70.13 - 79.35 92.60 82.48 91.37 95.01 94.08 95.16 95.39
AA(%) 78.84 78.84 69.32 - 77.40 90.79 85.38 89.52 93.34 92.49 93.29 93.61
kappa 0.7497 0.7512 0.6254 - 0.7346 0.9034 0.7714 0.8865 0.9343 0.9222 0.9365 0.9396

Salinas

3
OA(%) 79.13 79.15 78.22 - 80.86 70.21 75.30 76.84 80.21 80.84 88.14 89.46
AA(%) 83.48 83.48 83.38 - 86.34 73.75 79.16 89.20 81.93 84.38 90.91 92.43
kappa 0.7687 0.7688 0.7598 - 0.7877 0.6729 0.7217 0.7435 0.7808 0.7874 0.8681 0.8828

5
OA(%) 81.13 81.09 82.21 - 82.48 80.67 80.97 80.46 84.98 87.12 90.97 91.97
AA(%) 85.86 85.88 87.55 - 87.96 84.59 87.58 78.96 86.78 89.04 94.29 94.77
kappa 0.7906 0.7901 0.8035 - 0.8056 0.7859 0.7871 0.7835 0.8330 0.8570 0.8997 0.9108

7
OA(%) 83.68 83.66 83.58 - 84.63 88.20 90.21 87.46 87.18 89.92 93.25 94.01
AA(%) 87.79 87.74 88.09 - 89.47 90.75 93.69 90.28 88.62 91.18 95.94 96.21
kappa 0.8188 0.8186 0.8176 - 0.8293 0.8692 0.8906 0.8602 0.8576 0.8883 0.9251 0.9334

10
OA(%) 85.45 85.27 84.71 - 85.94 91.38 90.59 89.58 88.71 91.98 94.53 94.83
AA(%) 89.15 89.09 89.30 - 90.34 94.45 93.99 93.03 90.26 92.91 96.51 96.61
kappa 0.8382 0.8362 0.8305 - 0.8437 0.9036 0.8948 0.8892 0.8747 0.9109 0.9392 0.9426

15
OA(%) 86.89 86.77 86.04 - 87.28 95.26 92.69 92.36 91.59 94.10 96.06 96.14
AA(%) 90.63 90.55 90.68 - 91.45 96.10 94.32 94.66 92.48 94.69 97.18 97.27
kappa 0.8543 0.8530 0.8450 - 0.8587 0.9471 0.9174 0.9146 0.9066 0.9345 0.9562 0.9571

20
OA(%) 88.14 88.16 88.39 - 88.16 97.06 94.62 94.25 92.84 95.52 97.06 97.20
AA(%) 91.44 91.48 91.80 - 92.09 96.89 93.43 94.38 93.70 95.91 97.55 97.63
kappa 0.8680 0.8682 0.8809 - 0.8666 0.9633 0.9403 0.9359 0.9204 0.9503 0.9673 0.9687

1. In nearly all tested scenarios, the efficacy of our proposed ColAE method surpasses
that of the other approaches, highlighting its superior performance. It is important to note
that, in the Indian Pines data set, SuperPCA exhibits better average accuracy (AA) results
than ColAE. However, when evaluated based on overall accuracy (OA) and kappa, ColAE
outperforms SuperPCA. Upon further analysis of the classification outcomes, we present
the observation that ColAE consistently exhibits superior performance on categories with

Remote Sens. 2023, 15, 4211 13 of 21

larger sample sizes, while its performance diminishes on categories with fewer samples, as
illustrated in Tables 4–6. This phenomenon is mainly because the proposed ColAE utilizes
LLE to model the manifold structure between superpixels. LLE employs the concept of
K-nearest neighbors, where K is often set to a value much smaller than the total number of
samples, to capture the local structure of the data. However, categories with only a few
samples tend to be confined within a limited number of superpixels. Consequently, when
modeling the manifold structure, LLE might incorrectly associate these small categories
with others, leading to a lower classification accuracy for categories with a small sample
size. In cases where a category has sufficient samples, these samples are always located in a
set of superpixels, typically surpassing the value of K. Consequently, the inherent structure
can be effectively modeled and preserved by ColAE. In this way, the disparity problem can
be well solved, leading to a higher classification.

Table 4. Classification results for each class in Indian Pines when 15 training samples are used.

Raw PCA LPP KPCA AE
Super
PCA

Super
LPP

Super
KPCA

Contrast
Net CAE SuperAE ColAE

c1 34.70 35.91 40.57 31.72 31.17 100.00 100.00 100.00 53.45 64.65 100.00 98.81
c2 47.50 45.38 54.40 46.80 44.93 78.82 75.48 58.02 78.22 72.38 78.10 78.89
c3 36.87 34.91 42.88 36.10 38.18 91.56 99.53 96.23 68.63 75.18 87.41 83.61
c4 32.52 30.66 40.47 31.64 28.79 82.44 69.10 86.56 48.66 58.29 69.31 65.46
c5 66.76 65.47 67.28 66.76 63.60 98.55 97.01 99.76 91.74 85.49 97.31 96.12
c6 89.97 89.40 88.21 89.38 88.07 99.80 99.43 100.00 93.11 90.27 99.76 99.89
c7 22.17 20.98 23.44 21.52 20.77 50.80 39.39 34.21 26.00 45.89 59.74 51.95
c8 98.39 98.32 96.91 98.33 98.41 98.57 98.72 100.00 97.68 94.95 99.98 100.00
c9 8.25 7.54 14.74 7.51 5.97 45.59 10.20 100.00 22.73 16.52 35.19 21.74

c10 50.52 48.54 59.45 47.62 48.85 90.91 95.05 95.83 79.52 80.00 83.84 85.78
c11 70.36 72.25 80.06 70.02 73.29 87.94 95.61 98.71 87.54 89.22 93.54 94.20
c12 43.09 39.19 54.22 41.98 33.23 85.07 87.76 88.77 68.76 72.79 70.46 76.54
c13 82.80 81.65 83.30 80.81 82.05 100.00 100.00 100.00 81.66 84.36 99.79 100.00
c14 92.84 92.56 93.84 92.36 92.28 92.49 71.27 98.42 93.62 94.81 98.56 98.56
c15 36.92 35.50 42.04 37.32 33.08 97.51 91.96 99.46 66.97 71.13 92.72 92.18
c16 93.10 92.98 92.32 93.00 91.87 88.96 59.69 83.87 64.46 73.20 68.31 68.88

AA 56.67 55.70 60.88 55.80 54.66 86.81 80.64 89.99 70.17 73.07 83.38 82.04
OA 58.83 57.60 64.56 58.29 56.86 87.81 86.23 87.82 80.20 80.96 87.69 88.02

Table 5. Classification results for each class in the University of Pavia when 20 training samples
are used.

Raw PCA LPP AE
Super
PCA

Super
LPP

Super
KPCA

Contrast
Net CAE SuperAE ColAE

c1 93.94 93.93 92.52 93.55 92.42 93.51 89.13 96.12 95.21 97.53 97.68
c2 91.48 90.93 88.97 91.67 98.33 86.62 97.58 99.08 98.87 98.88 98.85
c3 59.62 59.37 46.08 55.17 94.71 89.98 98.53 93.16 90.39 93.60 93.63
c4 70.22 69.52 65.85 69.50 69.54 80.28 76.85 84.02 81.28 77.95 78.38
c5 95.80 96.01 74.25 96.43 98.00 96.95 96.61 99.98 98.94 99.86 99.86
c6 62.08 63.36 44.53 62.07 99.02 54.54 98.56 96.53 95.06 98.00 99.16
c7 57.60 57.69 45.10 51.67 78.53 75.68 77.10 89.19 90.38 80.96 82.28
c8 57.60 57.69 45.10 51.67 78.53 75.68 71.89 83.61 84.28 80.96 82.28
c9 99.94 99.95 99.99 99.95 99.81 99.46 99.43 98.30 97.98 99.84 99.88

AA 78.84 78.84 69.32 77.40 90.79 85.38 89.52 93.34 92.49 93.30 93.61
OA 80.57 80.66 70.13 79.35 92.60 82.48 91.37 95.02 94.08 95.16 95.39

2. ColAE consistently outperforms SuperAE, which proves that the proposed regu-
larization term in Equation (11) can efficiently solve the class disparity problem caused
by the superpixel-based method. To validate our findings, we randomly select one split
from each data set and map the classification results onto the corresponding images, as
shown in Figures 4–6. A comparison between Figure 4n,o reveals that ColAE improves the
accuracy by mainly relying on correctly classifying the large regions of Soybean-min-till,
indicated in pink. Remarkably, based on the superpixel segmentation, it is observed that
SuperAE misclassifies samples belonging to the Soybean-min-till class within a superpixel
into Soybean-not-till (indicated in blue). In contrast, ColAE successfully minimizes the
misclassification rate within the same region, highlighting the efficiency of the proposed
graph-regularization term in Equation (11).

Remote Sens. 2023, 15, 4211 14 of 21

Table 6. Classification results for each class in Salinas when 20 training samples are used.

Raw PCA LPP AE
Super
PCA

Super
LPP

Super
KPCA

Contrast
Net CAE SuperAE ColAE

c1 97.70 97.70 99.38 98.74 99.97 100.00 100.00 97.07 98.84 100.00 100.00
c2 98.46 98.43 98.37 99.07 99.85 99.17 100.00 96.31 99.00 99.88 99.88
c3 91.23 91.16 89.20 91.73 98.52 98.23 96.05 95.95 96.08 99.99 99.79
c4 96.92 96.93 98.76 97.25 96.70 95.86 97.23 93.71 82.88 96.57 96.57
c5 96.71 96.69 95.07 96.58 95.67 77.29 95.76 91.82 98.68 98.29 98.14
c6 99.78 99.78 99.72 99.95 99.18 100.00 99.82 99.68 99.72 100.00 100.00
c7 98.41 98.35 98.66 99.03 99.70 99.68 99.83 94.04 99.39 99.76 99.80
c8 78.45 77.98 78.25 78.54 98.33 99.92 91.29 90.08 95.41 98.04 97.18
c9 98.89 98.84 99.24 99.23 98.05 98.04 90.32 98.61 99.67 99.13 99.12

c10 84.89 85.56 81.05 86.07 94.58 88.31 88.43 95.29 95.48 91.68 91.85
c11 78.10 77.99 75.48 80.91 88.41 62.57 89.76 77.67 89.15 98.79 98.68
c12 95.79 95.82 96.70 96.69 94.39 97.79 83.71 96.75 97.50 98.79 98.82
c13 94.76 94.65 98.99 96.43 98.21 99.55 96.10 93.98 98.56 98.63 98.12
c14 86.24 86.06 92.66 89.05 90.93 88.71 85.20 97.68 97.78 91.63 92.63
c15 68.46 69.54 69.06 66.18 98.57 90.82 99.87 84.75 87.41 90.34 92.32
c16 98.22 98.28 98.16 98.01 99.15 98.99 96.77 95.85 98.99 99.29 99.25

AA 91.44 91.48 91.80 92.09 96.89 93.43 94.38 93.70 95.91 97.55 97.63
OA 88.14 88.16 88.39 88.16 97.06 94.62 94.25 92.84 95.52 97.06 97.20

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4. Classification maps produced by different algorithms for the Indian Pines data set. (a) False
color map by band 29, 19, 9. (b) Ground truth map. The black area denotes the background pixels.
(c) The segmentation with 100 superpixels. (d) Raw feature (OA = 57.72%). (e) PCA (OA = 57.20%).
(f) LPP (OA = 69.04%). (g) KPCA (OA = 57.27%). (h) AE (OA = 56.71%). (i) SuperPCA (OA = 83.65%).
(j) SuperLPP (OA = 83.34%). (k) SuperKPCA (OA = 85.22%). (l) ContrastNet (OA = 79.98%). (m) CAE
(OA = 82.15%). (n) SuperAE (OA = 84.68%). (o) ColAE (OA = 87.24%).

Remote Sens. 2023, 15, 4211 15 of 21

Figure 5. Classification maps produced by different algorithms for the University of Pavia campus
data set. (a) False color map by band 60, 30, 2. (b) Ground truth map. The black area denotes
the background pixels. (c) The segmentation with 20 superpixels. (d) Raw feature (OA = 82.66%).
(e) PCA (OA = 82.81%). (f) LPP (OA = 68.70%). (g) AE (OA = 81.81%). (h) SuperPCA (OA = 95.83%).
(i) SuperLPP (OA = 87.70%). (j) SuperKPCA (OA = 94.22%). (k) ContrastNet (OA = 95.32%). (l) CAE
(OA = 94.36%). (m) SuperAE (OA = 96.73%). (n) ColAE (OA = 96.78%).

3. The performances of features obtained solely from the spectral domain are sig-
nificantly inferior to those obtained from the spectral–spatial domain, substantiating the
importance of incorporating information from the spatial domain for classification pur-
poses. Both SuperAE and ColAE outperform ContrastNet and CAE, despite the fact that
the architecture of the network is more complex in ContrastNet and CAE compared to
SuperAE and ColAE. This outcome validates the superiority of superpixel-based methods.
Additionally, the superpixel-based method consumes much fewer computational resources.
Because the unsupervised method process all the data by DR models, then splits the data
into training and testing sets, KPCA consumes 207,400 × 207,400 × 4 ≈ 160 GB memory
for the University of Pavia and 111,104 × 111,104 × 4 ≈ 46 GB memory for Salinas, with
a single-precious point floating point when constructing the kernel matrix. SuperKPCA
consumes significantly less memory compared to traditional KPCA, further emphasizing
the flexibility of superpixel-based approaches.

4. SuperPCA demonstrates surprisingly strong performance across all settings, which
indicates the underlying data structure within a superpixel is relatively simple. That finding
justifies our use of an AE with only two layers in both the encoder and decoder. The superior
performance of both SuperAE and ColAE, compared to SuperPCA, further emphasizes
the enhanced generalization ability. Additionally, it is worth noting that SuperKPCA and
SuperLPP do not consistently outperform SuperPCA. We attribute this to the fact that
the grid-search strategy employed in parameter tuning requires the inclusion of the best
parameters within the search space. However, as the data distribution varies from one
superpixel to another, it is challenging to accurately tune the parameters of SuperKPCA
and SuperLPP to achieve optimal performance.

Remote Sens. 2023, 15, 4211 16 of 21

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 6. Classification maps produced by different algorithms for the Salinas data set. (a) False color
map by band 50, 30, 20. (b) Ground truth map. The black area denotes the background pixels. (c) The
segmentation with 100 superpixels. (d) Raw feature (OA = 87.30%). (e) PCA (OA = 86.74%). (f) LPP
(OA = 87.86%). (g) AE (OA = 87.89%). (h) SuperPCA (OA = 94.25%). (i) SuperLPP (OA = 94.12%).
(j) SuperKPCA (OA = 93.89%). (k) ContrastNet (OA = 93.38%). (l) CAE (OA = 95.27%). (m) SuperAE
(OA = 97.43%). (n) ColAE (OA = 97.67%).

5. The performances of PCA on the three data sets are observed to be comparable
to that of the raw feature. The proportion of retained principal components in PCA
is 99.25% for Indian Pines, 99.96% for the University of Pavia, and 99.99% for Salinas.
These results indicate that PCA can remove the components without valuable information,
resulting in little accuracy loss. LPP and KPCA outperform PCA due to the inherent
complexity of the underlying data structure in the HSIs. LPP and KPCA can preserve the
nonlinear structure of the data, thus yielding improved classification performance. It is
interesting that AE performs slightly inferior to raw and PCA. This can be attributed to the
limited capacity of a two-layer encoder with only a single nonlinear function to capture the
intricate data structure. Utilizing neural networks with more complex architectures can
improve the accuracy of the AE. It is important to highlight that we maintained uniform
architecture across AE, SuperAE, and ColAE intentionally, aiming to discern the influence
of the superpixel-based technique and the introduced regularization term specified in
Equation (11). Consequently, we do not design a distinct structure for AE within our
experimental setup.

It is important to highlight that we maintained uniform architecture across AE, Su-
perAE, and ColAE intentionally, aiming to discern the influence of the superpixel-based
technique and the introduced regularization term specified in Equation (11). Consequently,
we refrained from designing a distinct structure for the AE within our experimental setup.

Remote Sens. 2023, 15, 4211 17 of 21

4.4. Parameter Analyses

In the proposed ColAE, several parameters need to be predefined: the number of
superpixels J, the number of nearest neighbors K in the LLE, the balancing weight η, and
the dimensionality L for the code. Actually, J is intertwined with K, where K is usually far
smaller than J.To strengthen the relationships between the parameters, a ratio (R) can be
introduced, which establishes a connection between K and J as K = bJ × Rc, where b·c
denotes the round operator, ensuring that K is an integer value. This approach ensures that
the choice of K is directly proportional to the number of superpixels J by a factor determined
by R. η is also influenced by J and K, since it is impacted by the number of samples within
a superpixel, which in turn affects the loss values of the terms in Equation (11). Therefore,
our analysis starts with a discussion of L, then examines K, J, and η by considering their
interconnected relationship.

4.4.1. The Effect of the Dimensionality of the Code

In our experiments, we set K = 100 for Indian Pines and Salinas, and K = 20 for the
University of Pavia. Additionally, we use a fixed ratio R = 0.2 to determine the value
of K. Furthermore, we choose η = 0.75. To investigate the effect of the dimensionality
of the code L, we vary L from 5 to 50 with an interval of 5, and examine the resulting
overall classification accuracies with T = 20 for SVM. The comprehensive experimentation
yielded significant insights. For instance, in the case of dimensionality L, the highest
Overall Accuracy (OA) of 89.98% was achieved when L = 45 for the Indian Pines data set.
Conversely, the lowest OA of 45.34% was observed at L = 5. Similar trends were discerned
for the University of Pavia dataset, where OA ranged from 84.01% to 95.30%, and for the
Salinas dataset, where OA varied between 86.09% and 98.14%. To provide a more insightful
depiction of these findings, these results are illustrated in Figure 7.

It is evident from the figure that when L = 5, the OAs are low across all three data sets,
which aligns with common sense. A small number of features restricts the ability to carry
sufficient discriminative information for effective classification. However, as L increases,
the OAs steadily improve. A relatively large value of L is reached where the growth of
OAs becomes slow, indicating that the available discriminative information is already well
utilized. A larger L will increase the complexity and computational requirements of the
classifier without yielding significant performance gains. Based on the observations, we
choose L = 30 for all the subsequent experiments.

Figure 7. The OAs vs. L in the Indian Pines, University of Pavia, Salinas data sets.

4.4.2. The Effects of the Number of Superpixels, Number of Nearest Neighbors, and
Balance Weight

We set dimensionality of the code L to be 30, and varied the balance weight η within the
range of [0.5, 0.75, 1, 1.25], as well as the number of superpixels J from the set [20, 50, 70, 100,
120, 150]. Additionally, we examined the ratio R between J and K, considering values from
the set [0.1, 0.2, 0.3, 0.4], to evaluate the performance of the ColAE on three data sets. Across

Remote Sens. 2023, 15, 4211 18 of 21

the above configurations of these parameters, OA spanned from 85.39% to 89.37% for
Indian Pines, from 88.25% to 95.06% for University of Pavia, and from 94.01% to 97.38% for
Salinas. The classification accuracies obtained from these experiments are also presented
in Figure 8.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. The OAs with different parameters. (a–d) illustrate the OAs obtained with different values
for J and eta when R is set to 0.1, 0.2, 0.3, and 0.4, respectively, on the Indian Pines data set. Similarly,
(e–h) illustrate the OAs for the University of Pavia data set under the same parameter settings.
(i–l) illustrate the OAs for the Salinas data set under the same parameter settings.

A notable observation is that the number of superpixels J emerges as the primary factor
influencing the performance of ColAE. On the Indian Pines, the classification accuracy
of ColAE initially increases and then decreases with the increment of J. This may be
attributed to the rich texture information presented in this data set. Too few superpixels
can cause different class samples to be merged together, while an excessive number of
superpixels may result in too few samples in a superpixel, consequently limiting the
learning capabilities of AE within the ColAE framework. Conversely, for the University of
Pavia and Salinas data sets, classification accuracy declines if J is set too large. This trend
could be attributed to the samples being clustered together in these data sets, where a small
number of superpixels is sufficient for effective segmentation. Furthermore, it is worth

Remote Sens. 2023, 15, 4211 19 of 21

noting that ColAE is robust with the number of nearest neighbors K and balance weight η,
making it adaptable for application to other data sets.

4.4.3. Execution Time

In this work, all the experiments are conducted on a desktop. The implemented
codes use the CPU for execution. The running times of nine DR methods on the three
data sets are presented in Table 7. It is worth noting that, compared with the training
time, projecting the samples onto low-dimensional space demands minimal computational
time once the model has been already trained. So we only list the training time in this
section. It is important to note that the implementations of CAE and ContrastNet use
the GPU to accelerate the training process. However, to ensure fairness in comparing the
computational times across different methods, the running times of CAE and ConstrastNet
are not included. The number of samples to be processed is 145 × 145 = 21,025 for
Indian Pines, 610 × 340 = 207,400 for the University of Pavia, and 512 × 217 = 111,104 for
the Salinas.

Table 7. Training time (in seconds) of nine DR methods on three HSI data sets.

PCA LPP KPCA AE SuperPCA SuperLPP SuperKPCA SuperAE ColAE

Indian Pines 0.09 85.12 628.87 53.23 1.03 90.64 524.66 58.34 58.45
University

of Pavia 0.91 104.21 - 214.12 1.22 277.22 1245.12 158.58 160.10

Salinas 0.73 102.12 - 198.72 1.47 232.98 1862.23 132.43 134.22

As indicated in Table 7, PCA exhibits the lowest computational time due to its
parameter-free nature. On the other hand, KPCA and SuperKPCA consume the most
time, since the parameter τ needs to be tuned and both methods construct a dense kernel
matrix of size N × N. The grid search strategy employed for parameter tuning further
increases their computational burden. In contrast, LPP and SuperLPP also use the grid
search for parameter tuning, but they only construct a sparse matrix with K× K entries,
significantly reducing the computational burden. The proposed ColAE requires a similar
computational time to SuperAE, although ColAE involves an additional step of construct-
ing a manifold graph matrix. However, the size of the graph matrix is relatively small,
being J × J. It should be noted that, while all samples within a superpixel are fed into the
optimizer in SuperAE and ColAE, the batch size for AE is set to 256. Hence, the compu-
tational time of AE is longer compared to SuperAE and ColAE. Furthermore, it is worth
mentioning that the computational time of AE, SuperAE, and ColAE can be greatly reduced
when GPU is employed for parallel computation.

5. Conclusions

In this paper, we have discovered that existing superpixel-based DR methods may
disrupt the intra-structure of the data. To solve this problem, an unsupervised spectral–
spatial DR method called ColAE is proposed. In ColAE, the HSI is first segmented into
superpixels, then an LLE graph is constructed to model the similarities between the mean
vectors from each superpixel. A set of AEs is applied to the samples within each superpixel,
with the LLE graph employed to reduce the intra-disparity of the representations in code
space. Experimental results on three HSI data sets can validate the effectiveness of the
proposed ColAE in addressing the challenges of superpixel-based DR methods.

It should be noted that the ColAE can be extended to a multiscale superpixel version,
which is expected to yield higher classification accuracy. Additionally, exploring the
utilization of other manifold learning-based graphs can to model the relationship between
superpixels will be a focal point for future research efforts.

Remote Sens. 2023, 15, 4211 20 of 21

Author Contributions: Conceptualization, C.Y.; methodology, C.Y.; software, C.Y., L.Z. and L.F.; vali-
dation, M.M. and Z.G.; formal analysis, C.Y.; investigation, C.Y.; writing—original draft preparation,
C.Y.; writing—review and editing, M.M., Z.G. and F.Y.; visualization, C.Y.; project administration,
C.Y.; funding acquisition, C.Y. and M.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported in part by the Fundamental Research Funds for Central
Universities under Grant 1301032207; in part by the Regional Innovation Guidance Project of Shaanxi
under grant 2022QFY0105; and in part by the Key Research and Development Program in Shaanxi
Province under grant 2023-YBGY241.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, W.; Du, Q. Hyperspectral band selection: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118–139. [CrossRef]
2. Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature extraction for hyperspectral imagery:

The evolution from shallow to deep: Overview and toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [CrossRef]
3. Jia, X.; Kuo, B.C.; Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101, 676–697. [CrossRef]
4. Schwaller, M.R. A geobotanical investigation based on linear discriminant and profile analyses of airborne thematic mapper

simulator data. Remote Sens. Environ. 1987, 23, 23–34. [CrossRef]
5. Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis.

IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [CrossRef]
6. Du, Q. Modified Fisher’s linear discriminant analysis for hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2007, 4, 503–507.

[CrossRef]
7. Fabiyi, S.D.; Murray, P.; Zabalza, J.; Ren, J. Folded LDA: Extending the linear discriminant analysis algorithm for feature extraction

and data reduction in hyperspectral remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12312–12331.
[CrossRef]

8. Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving discriminant analysis in kernel-induced feature spaces for
hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2011, 8, 894–898. [CrossRef]

9. Chen, M.; Wang, Q.; Li, X. Discriminant analysis with graph learning for hyperspectral image classification. Remote Sens. 2018,
10, 836. [CrossRef]

10. Luo, F.; Zhang, L.; Du, B.; Zhang, L. Dimensionality reduction with enhanced hybrid-graph discriminant learning for hyperspec-
tral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5336–5353. [CrossRef]

11. Ly, N.H.; Du, Q.; Fowler, J.E. Sparse graph-based discriminant analysis for hyperspectral imagery. IEEE Trans. Geosci. Remote
Sens. 2013, 52, 3872–3884.

12. Luo, F.; Zhang, L.; Zhou, X.; Guo, T.; Cheng, Y.; Yin, T. Sparse-adaptive hypergraph discriminant analysis for hyperspectral image
classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1082–1086. [CrossRef]

13. Lim, S.; Sohn, K.H.; Lee, C. Principal component analysis for compression of hyperspectral images. In Proceedings of the IGARSS
2001, Sydney, NSW, Australia, 9–13 July 2001; Volume 1, pp. 97–99.

14. Rodarmel, C.; Shan, J. Principal component analysis for hyperspectral image classification. Surv. Land Inf. Sci. 2002, 62, 115–122.
15. Machidon, A.L.; Del Frate, F.; Picchiani, M.; Machidon, O.M.; Ogrutan, P.L. Geometrical approximated principal component

analysis for hyperspectral image analysis. Remote Sens. 2020, 12, 1698. [CrossRef]
16. Ma, L.; Crawford, M.M.; Tian, J. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE

Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [CrossRef]
17. Hong, D.; Yokoya, N.; Zhu, X.X. Learning a robust local manifold representation for hyperspectral dimensionality reduction.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2960–2975. [CrossRef]
18. Yu, W.; Zhang, M.; Shen, Y. Learning a local manifold representation based on improved neighborhood rough set and LLE for

hyperspectral dimensionality reduction. Signal Process. 2019, 164, 20–29. [CrossRef]
19. Camps-Valls, G.; Marsheva, T.V.B.; Zhou, D. Semi-supervised graph-based hyperspectral image classification. IEEE Trans. Geosci.

Remote Sens. 2007, 45, 3044–3054. [CrossRef]
20. Liao, W.; Pizurica, A.; Scheunders, P.; Philips, W.; Pi, Y. Semisupervised local discriminant analysis for feature extraction in

hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2012, 51, 184–198. [CrossRef]
21. Shao, Z.; Zhang, L. Sparse dimensionality reduction of hyperspectral image based on semi-supervised local Fisher discriminant

analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 122–129. [CrossRef]
22. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth

Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

http://doi.org/10.1109/MGRS.2019.2911100
http://dx.doi.org/10.1109/MGRS.2020.2979764
http://dx.doi.org/10.1109/JPROC.2012.2229082
http://dx.doi.org/10.1016/0034-4257(87)90068-X
http://dx.doi.org/10.1109/TGRS.2008.2005729
http://dx.doi.org/10.1109/LGRS.2007.900751
http://dx.doi.org/10.1109/JSTARS.2021.3129818
http://dx.doi.org/10.1109/LGRS.2011.2128854
http://dx.doi.org/10.3390/rs10060836
http://dx.doi.org/10.1109/TGRS.2020.2963848
http://dx.doi.org/10.1109/LGRS.2019.2936652
http://dx.doi.org/10.3390/rs12111698
http://dx.doi.org/10.1109/TGRS.2010.2055876
http://dx.doi.org/10.1109/JSTARS.2017.2682189
http://dx.doi.org/10.1016/j.sigpro.2019.05.034
http://dx.doi.org/10.1109/TGRS.2007.895416
http://dx.doi.org/10.1109/TGRS.2012.2200106
http://dx.doi.org/10.1016/j.jag.2014.03.015
http://dx.doi.org/10.1109/JSTARS.2014.2329330

Remote Sens. 2023, 15, 4211 21 of 21

23. Zhou, P.; Han, J.; Cheng, G.; Zhang, B. Learning compact and discriminative stacked autoencoder for hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4823–4833. [CrossRef]

24. Chen, Y.; Huang, L.; Zhu, L.; Yokoya, N.; Jia, X. Fine-grained classification of hyperspectral imagery based on deep learning.
Remote Sens. 2019, 11, 2690. [CrossRef]

25. He, N.; Paoletti, M.E.; Haut, J.M.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Feature extraction with multiscale covariance maps for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 755–769. [CrossRef]

26. Fang, L.; He, N.; Li, S.; Plaza, A.J.; Plaza, J. A new spatial–spectral feature extraction method for hyperspectral images using local
covariance matrix representation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3534–3546. [CrossRef]

27. Li, N.; Zhou, D.; Shi, J.; Wu, T.; Gong, M. Spectral-locational-spatial manifold learning for hyperspectral images dimensionality
reduction. Remote Sens. 2021, 13, 2752. [CrossRef]

28. Jiang, J.; Ma, J.; Chen, C.; Wang, Z.; Cai, Z.; Wang, L. SuperPCA: A superpixelwise PCA approach for unsupervised feature
extraction of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4581–4593. [CrossRef]

29. Zhang, X.; Jiang, X.; Jiang, J.; Zhang, Y.; Liu, X.; Cai, Z. Spectral–spatial and superpixelwise PCA for unsupervised feature
extraction of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [CrossRef]

30. Zhang, A.; Pan, Z.; Fu, H.; Sun, G.; Rong, J.; Ren, J.; Jia, X.; Yao, Y. Superpixel nonlocal weighting joint sparse representation for
hyperspectral image classification. Remote Sens. 2022, 14, 2125. [CrossRef]

31. Zhang, L.; Su, H.; Shen, J. Hyperspectral dimensionality reduction based on multiscale superpixelwise kernel principal component
analysis. Remote Sens. 2019, 11, 1219. [CrossRef]

32. Liang, M.; Jiao, L.; Meng, Z. A superpixel-based relational auto-encoder for feature extraction of hyperspectral images. Remote
Sens. 2019, 11, 2454. [CrossRef]

33. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
34. Liu, M.Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the CVPR 2011,

Colorado Springs, CO, USA, 20–25 June 2011; pp. 2097–2104.
35. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]
36. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.

[CrossRef]
37. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the ICCV 2015, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.
38. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256.
39. He, X.; Niyogi, P. Locality preserving projections. Adv. Neural Inf. Process. Syst. 2003, 16, 186–197.
40. Schölkopf, B.; Smola, A.; Müller, K.R. Kernel principal component analysis. In International Conference on Artificial Neural Networks;

Springer: Berlin, Germany, 1997; pp. 583–588.
41. He, L.; Chen, X.; Li, J.; Xie, X. Multiscale superpixelwise locality preserving projection for hyperspectral image classification.

Appl. Sci. 2019, 9, 2161. [CrossRef]
42. Mei, S.; Ji, J.; Geng, Y.; Zhang, Z.; Li, X.; Du, Q. Unsupervised spatial-spectral feature learning by 3D convolutional autoencoder

for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6808–6820. [CrossRef]
43. Cao, Z.; Li, X.; Feng, Y.; Chen, S.; Xia, C.; Zhao, L. ContrastNet: Unsupervised feature learning by autoencoder and prototypical

contrastive learning for hyperspectral imagery classification. Neurocomputing 2021, 460, 71–83. [CrossRef]
44. Bakır, G.H.; Weston, J.; Schölkopf, B. Learning to find pre-images. Adv. Neural Inf. Process. Syst. 2004, 16, 449–456.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TGRS.2019.2893180
http://dx.doi.org/10.3390/rs11222690
http://dx.doi.org/10.1109/TGRS.2018.2860464
http://dx.doi.org/10.1109/TGRS.2018.2801387
http://dx.doi.org/10.3390/rs13142752
http://dx.doi.org/10.1109/TGRS.2018.2828029
http://dx.doi.org/10.1109/TGRS.2021.3057701
http://dx.doi.org/10.3390/rs14092125
http://dx.doi.org/10.3390/rs11101219
http://dx.doi.org/10.3390/rs11202454
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.3390/app9102161
http://dx.doi.org/10.1109/TGRS.2019.2908756
http://dx.doi.org/10.1016/j.neucom.2021.07.015

	Introduction
	Related Works
	Entropy Rate Superpixel Segmentation Model
	Locally Linear Embedding Model
	Auto-Encoder Model

	Collaborative Superpixelwise Auto-Encoder
	Superpixel Segmentation
	Collaborative AEs
	Learning the Manifold Structure among Superpixels
	AE Model with Manifold Constraints

	Computational Analysis of ColAE

	Experimental Results
	Data Sets
	Experimental Setup
	Comparisons with Other Algorithms
	Parameter Analyses
	The Effect of the Dimensionality of the Code
	The Effects of the Number of Superpixels, Number of Nearest Neighbors, and Balance Weight
	Execution Time

	Conclusions
	References

