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Abstract: The land subsidence occurring over a goaf area after coal mining is a protracted process.
The accurate prediction of long-term land subsidence over goaf areas relies heavily on the availability
of long-term land subsidence monitoring data. However, the scarcity of continuous long-term land
subsidence monitoring data subsequent to the cessation of mining significantly hinders the accurate
prediction of long-term land subsidence in goafs. To address this challenge, this study proposes
an innovative method based on interferometric synthetic aperture radar (InSAR) for predicting
long-term land subsidence of goafs following coal mining. The proposed method employs a concate-
nation approach that integrates multiple short-term monitoring data from different coal faces, each
with distinct cessation times, into a cohesive and uniform long-term sequence by normalizing the
subsidence rates. The method was verified using actual monitoring data from the Yangquan No. 2
mine in Shanxi Province, China. Initially, coal faces with the same shapes but varying cessation times
were selected for analysis. Using InSAR monitoring data collected between June and December of
2016, the average subsidence rate corresponding to the duration after coal mining cessation on each
coal face was back-calculated. Subsequently, a function relating subsidence rate to the duration after
coal mining cessation was fitted to the data. Finally, the relationship between cumulative subsidence
and the duration after coal mining cessation was derived by integrating the function. The results
indicated that the relationship between subsidence rate and duration after coal mining cessation
followed an exponential function for a given coal face, whereas the relationship between cumulative
subsidence and duration after coal mining cessation conformed to the Knothe time function. Notably,
after the cessation of coal mining, significant land subsidence persisted in the goaf of the Yangquan
No. 2 mine for a duration ranging from 5 to 10 years. The cumulative subsidence curve along the
long axis of the coal face ultimately exhibited an inclined W-shape. The proposed method enables
the quantitative prediction of residual land subsidence in goafs, even in cases where continuous
long-term land subsidence monitoring data are insufficient, thus providing valuable guidance for
construction decisions above the goaf.

Keywords: InSAR-based method; coal mine goaf; prediction of long-term land subsidence;
concatenation of multiple short-term monitoring data
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1. Introduction

Coal resources are the bases for economic development and social progress, but
coal mining often creates large underground cavities that then induce significant land
subsidence [1–3], which is a long-term process that poses a great harm to ground structures.
The accurate prediction of long-term land subsidence in the goaf is critical to ensuring the
stability of the goaf site’s engineering construction [4,5].

Methods for predicting residual land subsidence have been proposed since the 1990s [6].
There are two main types of methods to predict residual land subsidence in mining areas.
First, a mathematical or mechanical method can derive the formula of residual subsidence
factors based on the stress–strain relationship of collapsed rocks, including the limit subsi-
dence prediction method [7,8], the numerical simulation prediction method [9], and the
nonlinear prediction method [10,11]. Subsequently, a time function or a creep model can
be employed to establish the long-term subsidence prediction model [12–14]. Second, the
inversion method can predict long-term subsidence based on the analysis of a period of
monitoring data [15–17]. As rock movement and land subsidence in mining areas are
complex problems with many factors implicated, mathematical and mechanical methods
frequently encounter difficulties in selecting calculation parameters during the residual
land subsidence prediction [18,19]. The problem becomes more serious when the time fac-
tor is considered, but this complication can be avoided by using inversion methods through
the analysis of monitoring data which allow for a more direct analysis and prediction of
long-term land subsidence at a specific site, as well as more reliable results derived from
actual monitoring data [20,21]. Site investigations such as leveling surveys and use of the
Global Position System (GPS) are earlier methods to monitor the land subsidence [22,23].
However, high costs, long observation periods, and complex terrains limit the application
of such conventional monitoring methods in large areas and long periods of time [24,25].
In recent years, a new technology, interferometric synthetic aperture radar (InSAR), has
been widely used to predict long-term land subsidence in mining areas, manifesting the
advantages of all-weather measurement, short monitoring periods, large monitoring areas,
and intuitive and reliable data [26–28]. Gabriel et al. first demonstrated the possibility
of using the differential InSAR (D-InSAR) technique for detecting land subsidence at the
centimeter scale [29]. Subsequently, a series of comprehensive experiments was carried out
to monitor land subsidence over a goaf with SAR images, laying the groundwork for future
research on land subsidence in mining areas using InSAR data [30–33]. The small-baseline
subset (SBAS) technique, a kind of InSAR monitoring technique, is considered effective
for monitoring land micro-subsidence in large mining areas [34]. SBAS-InSAR technology
selects interferograms with small spatial and temporal baselines that are substantially
coherent. Such interferograms are easy to unwrap, and it is possible to perform time series
analysis for pixels that are coherent above a selected threshold on all interferograms. The
advantages of the SBAS methodology increase the spatial coverage, especially outside ur-
ban areas, by taking the speckle properties of most targets in SAR images into account [35].
Currently, SBAS-InSAR technology has been widely used to monitor land subsidence.
Solaro et al. used this technique to monitor the land subsidence of a Hawaiian volcano. In
their study, the SBAS-InSAR technique was first applied to the interference processing of
SAR data in different modes [36]. Pawluszek-Filipiak et al. proposed an approach integrat-
ing D-InSAR and SBAS techniques to effectively monitor ground subsidence induced by
underground coal exploitation. The results demonstrated high reliability and suitability
of this method for the efficient monitoring of rapid mining-induced subsidence [37]. Liu
et al. used the same technique to study the land subsidence induced by coal mining in
Yangquan, Shanxi Province, China, and assessed its potential damage to ground facili-
ties [38]. Some scholars use the short-term monitoring data obtained by InSAR technology
for parameter inversion and then employ other mathematical methods to carry out predic-
tion studies on long-term land subsidence in the goaf. Fan et al. used a probabilistic integral
method model in conjunction with InSAR to predict land subsidence in mining areas [39].
Yang et al. established a functional model between all parameters of the probabilistic inte-
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gral method and InSAR line-oriented simulation (LOS) directional strain, and introduced a
Boltzmann function to improve the functional model to realize the prediction of full basin
subsidence of the mine area under various mining degrees [40,41].

Despite the growing interest in predicting long-term land subsidence in goafs, chal-
lenges persist and must be addressed. First, the abovementioned applications strongly
depend on continuous and long-term land subsidence monitoring data. However, field
observations generally end when coal mining stops, and it becomes difficult to obtain con-
tinuous and long-term land subsidence monitoring data of the area, limiting the application
of InSAR-based prediction methods for long-term goaf land subsidence [42,43]. Second,
when handling long time series of InSAR monitoring data, the multi-step calculation pro-
cess can introduce an accumulation of errors, leading to reduced accuracy in predicting
long-term land subsidence [44]. The accumulation of these errors can negatively impact the
reliability of the predictions made. Therefore, careful attention must be paid to the error
analysis and mitigation strategies used during the iterative calculation process to ensure
accurate and robust predictions of long-term land subsidence.

The present work introduces a novel approach for predicting long-term land sub-
sidence in goafs. By normalizing short-term InSAR monitoring data into a time-series
subsidence rate curve, this method links land subsidence to the duration of time after
coal mining cessation. This solution addresses the challenges of temporal and spatial
discontinuity in InSAR monitoring data for mining-area subsidence, enhancing accuracy
by minimizing the errors involved in prolonged monitoring. Consequently, it provides
accurate predictions of long-term land subsidence even in cases where monitoring duration
is limited.

This paper describes the site characteristics of the study area in detail, presents a
thorough explanation of the data processing and prediction process, and finally discusses
the results of land subsidence assessment, as well as the applicable conditions of the
proposed method.

2. Methodology

A goaf typically comprises multiple coal faces. As the depth of exploitation, coal
thickness, overburden configuration, and surface topography of each coal face differ, it
is not feasible to arbitrarily correlate the land subsidence monitoring data of various coal
faces. The method proposed in this paper addresses these issues by utilizing short-term
land monitoring data obtained through the SBAS-InSAR technology. Using short-term
monitoring data can overcome the paucity of continuous and long-term land subsidence
monitoring data and reduce the accumulation of errors during the calculation process.
The land subsidence data obtained from remote sensing images cover the entire mining
area. Additionally, through the utilization of InSAR monitoring to acquire data for the
entire mining area in a single event, the potential for uncertainties and inconsistencies that
could arise from separate monitoring efforts using conventional methods, such as leveling
surveys, can be effectively eliminated. Simultaneously, by choosing multiple coal faces
within a close proximity in the mining area as the subject of analysis, it can significantly
ensure that the depth of exploitation, coal seam thickness, overburden configuration, and
surface form are consistent or comparable, thereby avoiding the issue in which multiple
data cannot be correlated due to the confounding effects of various complex conditions.
Figure 1 outlines the procedure for predicting land residual subsidence in goafs. The
proposed approach consists of the following phases.
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above each coal face, the subsidence data obtained can be relatively independent. As a 
result, errors between monitoring data from different positions are inevitable. However, 
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efficiently mitigates phase errors through spatiotemporal filtering and adeptly estimates 
and eliminates them, thereby providing monitoring data with high spatial density and a 
comprehensive wealth of information over a significant observation period. With its wide 
coverage and continuous observation, a single measurement can cover the entire mine 
area, including the surface area above all coal faces. This ability ensures consistency in the 
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(2) Coal seam selection. The selection of the coal seam, a continuous layer of coal 
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Figure 1. Flowchart showing steps involved in predicting long-term land subsidence in a goaf.

(1) Site and data requirement. A goaf, the space left behind after coal extraction, with
a single geological condition was selected as the study area. Information regarding the
coal seam mining, a coal face arrangement diagram, and a survey report of the study area
are needed. To ensure the reliability of the monitoring data when applying the method
proposed in this research, it is crucial to maintain their consistency. By employing the same
monitoring method, conditions, and accuracy for the goaf formed by each coal face, we
can guarantee the uniformity of the monitoring data for the goafs formed by different coal
faces. When using traditional on-site monitoring methods to track the land of the goaf
above each coal face, the subsidence data obtained can be relatively independent. As a
result, errors between monitoring data from different positions are inevitable. However,
SBAS-InSAR monitoring data offers a solution to this issue. The SBAS-InSAR technique
efficiently mitigates phase errors through spatiotemporal filtering and adeptly estimates
and eliminates them, thereby providing monitoring data with high spatial density and a
comprehensive wealth of information over a significant observation period. With its wide
coverage and continuous observation, a single measurement can cover the entire mine
area, including the surface area above all coal faces. This ability ensures consistency in the
monitoring data, meeting the abovementioned data requirement.

(2) Coal seam selection. The selection of the coal seam, a continuous layer of coal
deposits found underground, is a critical problem. Based on the available information, the
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coal seam mining situation in the study area was assessed, and the coal seams that had the
most significant impact on the goaf were identified. Specifically, the most recently mined
coal seam was selected as the main focus of the research. The study aimed to investigate
the arrangement of coal faces in the studied seam, and to determine whether the goaf in
the area could be classified as a repeated mining situation if other coal seams had been
excavated above it.

(3) Coal face selection. Previous studies have identified several main factors that
influence the condition of a coal face, the area in a coal mine where mining activities oc-
cur [45]. Therefore, when selecting multiple coal faces under the same seam, it is essential
to consider the thickness of the coal seam, depth of exploitation, seam inclination, over-
burden configuration, mining width, and coal mining method for each face. To ensure the
methodological reliability of the data transformation process, we selected several coal faces
that shared the factors mentioned above. Specifically, if the selected coal faces had similar
shapes and sizes, and were in close proximity, it was possible to unify the above factors
to a certain extent, which helped to minimize their influence on the results. Meanwhile,
each coal face was numbered based on the order in which coal mining ceased, from the
most recently active coal face to the oldest. It is important to note that if other coal faces
are being mined or have recently been stopped near the selected coal faces, their land
subsidence may overlap with the studied subsidence, which could impact the accuracy
of the results. To determine the scope of land subsidence caused by mining coal faces in
this mine, an empirical formula can be used [46]. It is crucial to choose a coal face that is
not near other active or recently stopped mining operations to ensure accurate monitoring
results. It is also essential to ensure that the thickness and number of coal seams mined
in the study area are consistent. The selected series of coal faces should be in the same
coal seam, and the upper mined coal seam should be in a similar condition (e.g., similar
physical characteristics and geological features), as this will help to ensure that the study’s
results are reliable and can be compared accurately.

(4) Layout of sampling lines and points. The sampling line passed through the center
of the selected coal face and was perpendicular to the boundary, with equivalent spacing
between adjacent sampling points. Meanwhile, the sampling points were numbered
sequentially, and those in the same location on each coal face were numbered consistently.

(5) Calculation of subsidence rate. The data from the selected sampling points were
extracted from the short-term InSAR monitoring data of the study area and then used to
calculate the average subsidence rate at each sampling point.

(6) Establishment of the relationship between subsidence rate and duration after coal
mining cessation. The duration of time after coal mining cessation for each coal face was
calculated based on the previous step, and a rectangular plane coordinate system was
established for each point using duration after coal mining cessation as the horizontal
coordinate and average subsidence rate as the vertical coordinate. The data from the
sampling points with same identification number in each coal face were then input into
the corresponding coordinate system. To obtain the curve representing the relationship
between subsidence rate and duration after coal mining cessation, the data points in each
coordinate system were fitted to a time function.

(7) Establishment of the relationship between subsidence and duration after coal
mining cessation. The subsidence rate was then integrated over time to determine the
relationship between subsidence and duration after coal mining cessation. By combining
this information with the position of each sampling point, the cumulative subsidence
change of the profile along sampling line was obtained.

3. Application

In this section, we evaluate the method using an example from the mining area of
Yangquan No. 2 mine, which is situated in the Qinshui coalfield, the largest coal-producing
Carboniferous–Triassic coalfield in China. We performed the following steps to complete
the evaluation process, with each step discussed in detail below.
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3.1. Study Area

The study area is located at the northeastern part of the Qinshui coalfield, approxi-
mately 5 km southwest of Yangquan, eastern Shanxi Province (Figure 2). The study area
is characterized by deeply incised valleys and high mountains, with an elevation rang-
ing from 700 m to 1246.9 m above sea level (Figure 2) and a maximum relative elevation
difference of more than 540 m. The surface is exposed bedrock with little vegetation in
most areas, and buildings are virtually non-existent in the vicinity. Two rivers, the Taohe
river and the Xiaohe river, pass through the Yangquan area, and are distributed as den-
dritic drainages (Figure 3). The annual average precipitation in the study area is less than
500 mm, indicating a relatively arid climate [47].
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The exposed strata in the study area have an age that varies from the Lower Triassic
(T1) to the Lower Permian (P1). These strata include sandy mudstone interspersed with
feldspathic sandstone of the Heshanggou Formation, felsic sandstone intercalated with
sandy mudstone of the Liujiagou Formation, and sandstones, shales, muddy sandstones,
sandy mudstones, and mudstones of the Upper Shihezi and Lower Shihezi formations, as
shown in Figure 3.

We obtained data from a drilled borehole to investigate the stratigraphic profile
from the mining area’s surface to a depth of 413.95 m. The observed strata encompass
various geological ages, ranging from the Upper Permian to the Upper Carboniferous
periods. Specifically, from the surface down to 246.38 m, the strata comprise the Shiqianfeng
Formation, the Upper Shihezi Formation, and the Lower Shihezi Formation. At depths
between 307.48 m and 413.95 m, the strata transition into the Shanxi Formation and the
Taiyuan Formation with increasing depth, as shown in Figure 4.
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According to our previous studies, to study long-term land subsidence in the study
area, we used the SBAS-InSAR technique to process 8 C-band RADARSAT-2 images ac-
quired from a single track with a ground resolution of 5 m and Horizontal–Horizontal
polarization mode. These images covered the study area from 16 June 2016 to 1 December
2016. The differential interferometry was performed using the ENVI-SARscape 5.3 software.
In the step of refinement and re-flattening, to ensure the accuracy of the LOS directional
deformation, we selected over 60 ground control points (GCPs) that had no residual terrain
stripes and no deformation stripes away from the deformation zones. Additionally, the
three-dimensional geometric projection method [48] was employed in the inversion process
to interpret the LOS directional deformation to obtain the time series subsidence and subsi-
dence rate, resulting in accurate and comprehensive deformation data [38]. The average
subsidence rate of the study area is shown in Figure 5a. Within our monitoring period,
the maximum cumulative subsidence of the study area over six months reached 44.3 mm,
resulting in an annual average maximum subsidence rate of 91.8 mm/yr. Furthermore, an
uplifted region is identified in the eastern part of the study area (the blue area in Figure 5a).
The calculated annual average uplift rate for this specific region is 36.7 mm/yr. The uplift
rate in this area is relatively modest and gradually diminishes over time. This can likely be
attributed to a temporary elastic rebound of the land caused by the redistribution of rock
stress following the cessation of mining activities in the surrounding goafs.
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3.2. Selection of Coal Faces and Layout of Sampling Lines and Points

The Yangquan No. 2 mine has three coal seams, #3, #8, and #15, with average thick-
nesses of 1.96 m, 2.26 m, and 6.42 m, respectively. The comprehensive mechanized roof-
release coal mining method is used for these coal seams, which involves a backward coal
mining method toward the long wall, and the full caving method is used for roof manage-
ment. Currently, the #3, #8, and #15 coal seams have been mined in the study area, with the
#8 coal seam only distributed in a small area in the southwestern part of the study area.
Most of the study area is a two-layer mining area. The #15 coal seam was mined later than
the upper #3 coal seam, which meets the requirement of the re-mining condition. Therefore,
we selected coal faces based on the area of the #15 coal seam.

The selected coal faces are rectangles concentrated in the northeast of the study area
(Figure 5a). The long axis of the rectangle is parallel to the mining direction, whereas the
short axis is perpendicular to the mining direction. As all the coal mining operations were
stopped after the monitoring data were collected, our analysis and research are thereby
facilitated. Table 1 shows the time interval between monitoring and the cessation of coal
mining for the selected coal face.
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Table 1. Information on the selected coal faces.

Number Cessation Year of
the Coal Mining

Time Interval Between Monitoring and
Cessation of Coal Mining (Year)

1 2016 0.5
2 2014 3
3 2012 5
4 2010 7
5 2009 8
6 2008 9
7 2006 11
8 2004 13

The locations of the selected coal faces within the study area are shown in Figure 5a.
InSAR data were collected from multiple monitoring points above the selected coal face,
and we arranged sampling lines to study the subsidence characteristics of representative
locations. For each coal face, two sampling lines were set, one parallel to the long axis and
one parallel to the short axis, with sampling points arranged along the lines (Figure 5b). We
first set the intersection of the two sampling lines as point 0 (S0). We placed 10 additional
sampling points along the mining direction, numbered from 1 to 10 (S1–S10), with S1 and
S10 on the boundary of the long axis (Figure 5b). We also placed eight additional points
perpendicular to the mining direction, numbered from 11 to 18 (S11–S18), with S11 and
S18 on the boundary of the short axis (Figure 5b). This arrangement was used consistently
across all coal faces, with the sampling points equally spaced and numbered for consistency.
The sampling points at the same relative locations in the different coal faces were numbered
consistently and can be considered to have same conditions. This arrangement allows for
the precise and consistent sampling of the coal face to ensure accurate measurements.

3.3. Relationship between Subsidence Rate and Duration after Coal Mining Cessation

We extracted the monitoring data at each sampling point and identified the corre-
sponding time duration after coal mining cessation based on Table 1. Using these data, we
obtained the average subsidence rate for each sampling point from eight different coal faces
(Table 1). As the duration after coal mining cessation corresponds to the number of coal
faces, we then established a rate–time coordinate system to show the relationship between
subsidence rate and duration after coal mining cessation. For each time interval between
monitoring and cessation of coal mining, the subsidence rate of each point is plotted as a
dot (Figure 6).
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As the sampling points in the same relative locations on each coal face were consis-
tently numbered, those with the same label numbers were grouped for further research,
such that all sampling points with the number S0 were grouped into the first group, those
with number S1 were grouped into the second group, and so on. The sampling points were
grouped into 19 groups, from S0 to S18. In each group, the sampling points came from
eight different coal faces, with eight different durations after coal mining cessation, from
0.5 yr to 13 yr (Table 1). An exponential function was used to fit the data from each group,
as seen in Figure 6. The functional form was as follows:

v(t) = v0e−ct, (1)

where v(t) is the average subsidence rate, which depends on the duration after coal
mining cessation, v0 is the initial subsidence rate after the cessation of coal mining, c is the
amplitude curve variation, and t is the duration after coal mining cessation.

Figure 6 shows that the sampling points in each group can be fitted with Equation (1).
The regression parameters of each group are listed in Table 2. For each group, the overall
subsidence rate exhibits a rapid initial decrease followed by a slower one. The subsidence
rate declines notably during the first 5 years after the cessation of coal mining, whereas
the decreasing trend appears to level off after 5 years (Figure 6). Along the long axis of the
coal face, the subsidence rate curve shows two distinct patterns (Figure 6a). Point S2, near
the upper boundary (Figure 5b), is a characteristic example. The overall subsidence rate
of S2 shows a slow, decreasing trend. The subsidence rate gradually declines at a roughly
uniform pace during the first 5 years following the cessation of coal mining. It remains
stable for the next 5 years before experiencing a slight increase after 13 years (Figure 6a).
The maximum subsidence rate occurred at half-a-year after the cessation of coal mining,
with a value of 28.9 mm/yr, whereas the minimum subsidence rate occurred in the 10th
year after the cessation of coal mining, with a value of 5.5 mm/yr (Figure 6a). The variation
trends of the subsidence rate at S1, S3, and S4 are similar to that at S2. Taking S9 near
the lower boundary (Figure 5b) as another example, its subsidence rate sharply decreases
during the first 5 years after the cessation of coal mining, followed by a slower decline
from 5 to 13 years after the cessation of coal mining (Figure 6a). The maximum subsidence
rate occurred at half-a-year after the cessation of coal mining, with a value of 58.1 mm/yr,
whereas the minimum subsidence rate occurred in the 9th year after the cessation of coal
mining, with a value of 0.28 mm/yr (Figure 6a). The variation trends of subsidence rate at
S7, S8, and S10 were similar to that at S9. The subsidence rate of S0 gradually decreases
after the cessation of coal mining until the 13th year, and the points next to it have similar
variation trends. Along the short axis of the coal face, the subsidence rate patterns at these
sampling points were similar, with fitting curves indicating a consistent subsidence rate
over time (Figure 6b). Each sampling point on this line shows a subsidence rate similar to
that of the central point (S0), with little variation over time (Figure 6b).

Table 2. Regression parameters of the function modeling subsidence rate and cumulative subsidence
over time.

Point v-t Function W-t Function v0 c Wm R2 (%)

0 v = 59.474e−0.403t W = 147.612(1 − e−0.403t) 59.474 0.403 147.612 96.9
1 v = 24.784e−0.188t W = 131.809(1 − e−0.188t) 24.784 0.188 131.809 65.9
2 v = 28.131e−0.170t W = 165.507(1 − e−0.170t) 28.131 0.170 165.507 80.6
3 v = 32.830e−0.258t W = 127.261(1 − e−0.258t) 32.830 0.258 127.261 81.5
4 v = 36.495e−0.316t W = 115.539(1 − e−0.316t) 36.495 0.316 115.539 80.6
5 v = 56.310e−0.460t W = 122.309(1 − e−0.460t) 56.310 0.460 122.309 97.7
6 v = 70.860e−0.435t W = 162.994(1 − e−0.435t) 70.860 0.435 162.994 99.7
7 v = 81.562e−0.446t W = 182.919(1 − e−0.446t) 81.562 0.446 182.919 98.9
8 v = 80.975e−0.385t W = 210.373(1 − e−0.385t) 80.975 0.385 210.373 99.1
9 v = 69.678e−0.301t W = 231.842(1 − e−0.301t) 69.678 0.301 231.842 95.5
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Table 2. Cont.

Point v-t Function W-t Function v0 c Wm R2 (%)

10 v = 49.958e−0.274t W = 182.281(1 − e−0.274t) 49.958 0.274 182.281 90.9
11 v = 56.152e−0.544t W = 103.222(1 − e−0.544t) 56.152 0.544 103.222 90.9
12 v = 57.035e−0.548t W = 103.994(1 − e−0.548t) 57.035 0.548 103.994 94.0
13 v = 67.484e−0.574t W = 117.528(1 − e−0.574t) 67.484 0.574 117.528 98.4
14 v = 64.033e−0.460t W = 139.256(1 − e−0.460t) 64.033 0.460 139.256 98.9
15 v = 58.353e−0.421t W = 138.536(1 − e−0.421t) 58.353 0.421 138.536 97.4
16 v = 56.574e−0.461t W = 122.639(1 − e−0.461t) 56.574 0.461 122.639 95.1
17 v = 49.485e−0.408t W = 121.197(1 − e−0.408t) 49.485 0.408 121.197 96.2
18 v = 42.968e−0.387t W = 110.963(1 − e−0.387t) 42.968 0.387 110.963 94.1

Wm is the maximum accumulated subsidence after the cessation of coal mining. The coefficient of determination
(R2) represents the proportion of the variance in the observed data that is explained by the fitted regression model.
Higher values of R2 indicate better fits of the model to the data.

3.4. Relationship between Subsidence and Duration after Coal Mining Cessation

Integrating the relationship between subsidence rate and time duration after coal
mining cessation, we can obtain the relationship between cumulative residual subsidence
amount and duration after coal mining cessation by integrating Equation (1) (Figure 7). The
function’s form after integration is shown in Equation (2). The regression parameters of
each group are listed in Table 2. From Figure 7, it can be seen that the surface of the mining
area continued to experience significant subsidence after the coal mining ceased. During the
long-term subsidence in the mining area, the maximum residual land subsidence recorded
was 232 mm at S9 (Figure 7). After the cessation of coal mining, significant subsidence
of the mining area’s surface persisted for 5 to 10 years (Figure 7). Within 15 years, 90%
of the surface had completed its residual subsidence for all sampling points across the
mining area (Figure 7). Subsequently, the subsidence movement stabilized, exhibiting a
more consistent and stable growth pattern.

W(t) = Wm(1 − e−ct), (2)

where W(t) is the subsidence, which depends on the duration after coal mining cessa-
tion, Wm is the maximum accumulated subsidence after the cessation of coal mining,
and Wm = v0/c.
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Figure 7. Subsidence profile obtained by integrating the subsidence rate over time: (a) along the long
axis of the coal face; (b) along the short axis of the coal face.

Figure 7 shows that the subsidence trend over time varies at different locations along
the mining direction in the coal face. Subsidence activity near the boundary can persist
for over 15 years, whereas sampling points closer to the center point, including those on
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the sampling line perpendicular to the mining direction, tend to level off 5 years after the
cessation of coal mining.

Referring to the spatial location relationship of each point shown in Figure 5b, we
established the section of cumulative long-term subsidence with time at the sampling lines
based on the relationship between cumulative long-term subsidence and duration after coal
mining cessation (Figure 7), as shown in Figure 8. The variation in cumulative subsidence
along the mining direction (S1–S10) of the extraction area shows significant differences
among the sampling points. In the short term, after the cessation of coal mining, subsidence
was more pronounced closer to the central sampling point (S0). However, over a longer
period of time, subsidence movements become more apparent near the boundary locations
(Figure 8a), and the subsidence curve exhibits an inclined W-shape. Perpendicular to the
mining direction (S11–S18), the cumulative subsidence was relatively consistent in the short
term after the cessation of coal mining. However, over time, the cumulative subsidence at
the center of the mining area became more pronounced (Figure 8b).
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4. Discussion
4.1. Reliability of the Proposed Method

To verify the reliability of the proposed method in this paper, a spatially independent
coal face numbered 81218 was selected. This coal face was located in the northwestern
part of the study area and ceased mining operations in November 2017 (Figure 5a). As
subsidence increases sharply within 4 to 5 years after the cessation of coal mining, we
processed 50 Single Look Complex (SLC) images obtained from Sentinel-1 using SBAS-
InSAR technology to obtain the land subsidence above coal face 81218 from November
2017 to November 2021. We segmented the long-term radar images into four groups, each
comprising 50 views with a timespan of one year. Additionally, we marked the location of
coal face 81218 and the contrast reference point in the subsidence cloud diagram, as shown
in Figure 9.

The layout of sampling lines and points was set consistently across coal face 81218. Con-
sidering the different subsidence characteristics of the sampling points shown in Figures 6–8,
we selected S2, S4, S0, S7, and S9 along the mining direction to compare the subsidence
obtained from the actual monitoring data and predicted the results using the proposed
method in this paper. As shown in Figure 10, the actual monitoring data fluctuate slightly
along the predicted curve, and the overall change trend is consistent with the predicted
curve. In addition, we utilized both correlation analysis and analysis of variance (ANOVA)
to evaluate the similarity between the actual monitoring data and the predicted curve. Corre-
lation analysis measures the strength and direction of the relationship between two variables.
The correlation coefficient ranges between −1 and 1, with a result close to 1 indicating a
stronger positive correlation, a result close to −1 indicating a stronger negative correlation,
and a result close to 0 indicating little to no correlation between the two variables [49]. After
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conducting a correlation analysis on the two sets of data, we can determine whether the
data from both sets show similar change trends. However, correlation analysis alone does
not provide information on the significance of any differences between the two datasets.
To address this problem, we performed an additional ANOVA step. The ANOVA method
is a statistical test that determines whether there are significant differences between the
means of two or more groups of data. In the context of comparing two datasets, ANOVA
can be used to test for significant differences in their overall values [50]. Table 3 displays the
correlation coefficients for each point, all of which are greater than 0.9, indicating a strong
correlation between the predicted subsidence results and the monitoring results at each
point. Additionally, the ANOVA test performed on each point shows that the F value of the
data between sets was much smaller than the critical F value at α = 0.05, indicating that there
was no significant difference between the values of the two sets at each comparison point.
Overall, the proposed method demonstrated reliable and accurate long-term subsidence
predictions for the surface of the mined-out collapse area, as evidenced by the close match
between the predicted and monitored results.
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4.2. Regression Parameters of the Fitting Curve

As indicated by Equations (1) and (2), v0 represents the initial subsidence rate of the
sampling points after the cessation of coal mining, which determines the initial subsidence
intensity of the sampling points. Wm represents the maximum cumulative subsidence of the
sampling points after the cessation of coal mining, which determines the final cumulative
subsidence value of the sampling points. c is the time influence factor, which affects the
trend of v and W for the sampling points over time. As shown in Figures 6 and 7, a high
value of c leads to a rapid decrease in the velocity (v) of the sampling point during the
initial stage following the cessation of coal mining, whereas the parameter W reaches a
relatively stable state within a short period of time.

Table 2 shows that the parameters of the sampling points vary with the location of
coal face axes. For the sampling points (S1–S10) on the long axis, both v0 and c show a
similar trend of increasing and then decreasing, with maximum value occurring at S7. This
regularity can be attributed to two factors: (1) The mining sequence of the coal face. Mining
activities follow a certain sequence, and when monitoring land subsidence at the same time,
the start time of the subsidence differs across different locations. Compared to sampling
points with lower numbers (S1–S5), those with higher numbers (S6–S10) experience a
shorter time span and more intense subsidence in the early stages of monitoring. (2) The
boundary effect. Due to the influence of the unmined rock layers outside the mining
boundary, those near the boundary may produce more cavities that cannot be closed
immediately [51], resulting in less significant subsidence at sampling points near the
boundary in the initial stages after the cessation of coal mining, compared to those in the
middle of the mining area. In contrast, sampling points (S11–S18) along the short axis of
the coal face are perpendicular to the mining direction and are not affected by the mining
sequence. Due to the short span of the short axis, each sampling point is more significantly
affected by the boundary, and the changes in the parameters of each sampling point are not
significant. Meanwhile, the sampling points close to the center (S0) are less affected by the
boundary effect and have a larger v0 value.

As seen in Figure 8, it is evident that the cumulative subsidence curve along the long
axis of the coal face evolves from a subsidence basin into an inclined W-shape over time.
The initial basin shape is consistent with the land subsidence shape after the cessation of
coal mining [13]. However, the subsequent inclined W-shape differs from the residual land
subsidence prediction results and is the result of the combined effects of the two factors
previously mentioned. Traditional prediction methods do not consider the influence of
mining sequence [52]. By considering the parameters of the sampling points (Table 2), it is
evident that S7 has the largest v0, whereas S9 has the largest Wm. Meanwhile, S2, which
is on the opposite side relative to S9, exhibits a local peak in the cumulative subsidence
curve. Despite the fact that S7 experienced a significant cumulative subsidence in the initial
stages after mining cessation, its subsidence trend slowed down considerably over time.
In contrast, S2 and S9 did not undergo significant subsidence during the early stages after
mining cessation, but their subsidence rate decreased slowly, resulting in a more substantial
final cumulative subsidence (Wm). In terms of the horizontal position of the sampling points
relative to the coal face, S7 is close to the center of the coal face, whereas S2 and S9 are
close to the edge. Upon the ceasing of mining, the overlying strata in the center of the coal
face underwent more substantial compaction, and inadequate compaction can therefore
still be observed near the boundary of the coal face. Consequently, the sampling points
near the boundary (S2 and S9) exhibited a higher subsidence potential [53]. Moreover,
S7 and S9 are in close proximity to each other and have higher serial numbers. Due to the
mining sequence of the coal face, the higher-numbered sampling points on the long axis
experienced a shorter subsidence time before monitoring, resulting in more pronounced
subsidence compared to the smaller-numbered sampling points.

Based on the above analysis, it can be inferred that the cumulative subsidence of the
surface near the boundary of the coal face is more significant during long-term subsidence
after mining cessation. Therefore, it is recommended that more attention be paid to the
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treatment of the overlying strata and the surface above the boundary of the coal face
after mining in practical engineering to minimize the post-mining subsidence impact of
the project.

4.3. Applicability of the Proposed Method

The proposed method for predicting long-term land subsidence in subsidence areas
is based on the normalizing, merging, and fitting of short-term InSAR monitoring data
obtained from multiple coal faces with different durations after coal mining cessation. This
method demonstrates certain advantages in predicting long-term land subsidence in goafs.
First, it addresses the difficulty in acquiring continuous and long-term data on surface
movement and subsidence in goafs, as monitoring activities in field observation stations
often end after the cessation of coal mining to save costs. Second, it avoids increasing the
errors incurred when using SBAS-InSAR technology to process long-time-series images,
which may lead to significant errors due to the limitations of radar image data, such
as atmospheric conditions, vegetation cover, terrain slope, orbit errors, and subsidence
gradients. Although the SBAS-InSAR technology is more effective in mitigating the impact
of temporal and spatial mismatches on the results, it can also capture surface displacements
caused by human activities as monitoring time increases, which may be confused with
land subsidence induced by mining. In contrast, the proposed method of using short-term
monitoring results to fit land subsidence can effectively avoid these adverse factors, thus
improving the accuracy of the prediction results.

Based on the above discussion, we recognize that the proposed method for predicting
long-term land subsidence in goafs is advantageous and competitive in some aspects. This
prediction method has potential application prospects in situations where there are missing
or short periods of monitoring data within a wide range. Meanwhile, this method can
effectively eliminate the interference of land subsidence caused by human activities when
coal mines stop operation for some time. However, it should be noted that the geological
and topographic conditions of different mining areas vary, and the parameters of the
prediction model may change due to differences in geological, topographic, and mining
conditions. Furthermore, as the values of subsidence parameters are influenced by various
factors, future research could explore additional potential influencing factors and refine the
prediction models.

5. Conclusions

In this paper, we proposed a method for predicting long-term land subsidence in goafs
based on short-term InSAR monitoring data. Using the Yangquan No. 2 mine in Shanxi
Province, China as a case study, we provided a detailed description of the application
process and investigated the long-term subsidence patterns of the mined-out area. The
main conclusions are presented as follows:

(1) The relationship between subsidence rate and time duration after coal mining
cessation on a coal face conformed to an exponential function, whereas that between the
cumulative subsidence and duration after coal mining cessation on a coal face conformed
to the Knothe time function;

(2) After the cessation of coal mining, significant land subsidence of the mining area
persisted for 5 to 10 years, followed by a trend of stabilization in which the subsidence rate
decreased over time. Within the first 5 years, a notable land subsidence was observed in
areas situated nearer to the center of the coal face. Subsequently, this area moved towards
the boundary of the coal face;

(3) The cumulative subsidence curve along the long axis of the coal face ultimately
displays an inclined W-shape, with the peak occurring near the boundary, which might be
attributed to the boundary effect. The curve is not symmetrical, with the section closer to
the cessation line exhibiting greater subsidence, which might be attributed to the mining
sequence of the coal face;
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(4) After mining cessation, sustained and significant subsidence motion occurred above
the boundary of the coal face, with a large cumulative subsidence. Particular attention
should be paid to subsidence motion in this area.
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