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Abstract: The effectiveness of training-based object detection heavily depends on the amount of
sample data. But in the field of remote sensing, the amount of sample data is difficult to meet
the needs of network training due to the non-cooperative imaging modes and complex imaging
conditions. Moreover, the imbalance of the sample data between different categories may lead to
the long-tail problem during the training. Given that similar sensors, data acquisition approaches,
and data structures could make the targets in different categories possess certain similarities, those
categories can be modeled together within a subspace rather than the entire space to leverage the
amounts of sample data in different subspaces. To this end, a subspace-dividing strategy and
a subspace-based multi-branch network is proposed for object detection in remotely sensed images.
Specifically, a combination index is defined to depict this kind of similarity, a generalized category
consisting of similar categories is proposed to represent the subspace, and a new subspace-based loss
function is devised to address the relationship between targets in one subspace and across different
subspaces to integrate the sample data from similar categories within a subspace and to balance the
amounts of sample data between different subspaces. Furthermore, a subspace-based multi-branch
network is constructed to ensure the subspace-aware regression. Experiments on the DOTA and
HRSC2016 datasets demonstrated the superiority of our proposed method.

Keywords: object detection; long-tail problem; generalized category; subspace-based multi-branch
network; remotely sensed image

1. Introduction

Object detection in remotely sensed images is a challenging task due to the non-
cooperative imaging mode and complex imaging conditions. Although, for natural images,
learning-based object detection has acquired impressive advances in the last decade, such
as Faster RCNN [1], YOLO [2], SSD [3], and RetinaNet [4], their applicability to remotely
sensed images is limited. This limitation arises from the massive irrelevant backgrounds
under the non-cooperative imaging mode and the diversity of targets under complex
imaging conditions.

Indeed, early learning models for object detection in remotely sensed images were
improved from the original models for object detection in natural images by adjusting the
regression strategy, such as the FR-O [5], LR-O [6], and DCN [7], which were enlightening
but suffered from poor detection accuracy at the same time.

Inspired by scene text detection, various object detection methods for remotely sensed
images have been proposed, such as the R2CNN [8], RRPN [9], ICN [10], and CAD-Net [11],
with a higher detection accuracy but also with an increase in computation complexity.
Specifically, the R2CNN [8] utilized multi-scale features and inclined non-maximum sup-
pression (NMS) to detect oriented objects. The RRPN [9] introduced the rotational region
proposal network (RPN) and rotational region-of-interest (RoI) strategy to handle arbitrary-
oriented proposals. The ICN [10] also applied the rotational RPN, multi-scale rotational RoI,
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and rotational NMS for the detection of oriented objects. CAD-Net [11] incorporated global
and local features to improve the accuracy of object detection in remotely sensed images.
However, these methods primarily emphasized the improvement of network structures for
better feature expression rather than focusing on the properties of remotely sensed targets.

With further study of the properties of remotely sensed images, SCRDet [12], RT [13],
Gliding Vertex [14], BBAvector [15], and HeatNet [16] were proposed to tackle certain
characteristics of remotely sensed targets. In these methods, SCRDet [12] employed pixel
and channel attention for the detection of small and cluttered objects. RT [13] designed
a rotated RoI learner and a rotated position-sensitive RoI align module to extract rotation-
invariant features. Gliding Vertex [14] utilized the gliding of the vertex of the horizontal
bounding box on each side to denote an oriented object. BBAvector [15] detected the center
keypoints and regressed the box-boundary-aware vectors to capture the oriented objects.
HeatNet [16] addressed the cluster distribution problem of remotely sensed targets and
refined an FFT-based heatmap to tackle the challenge of densely distributed targets. These
methods concerned certain properties of remotely sensed targets, most of which focused
on improving the representation of oriented bounding boxes. However, the relationship
between the targets in different categories has not been taken into account, especially
regarding the imbalance problem of sample data between different categories [17].

In recent years, transformers have also been introduced to object detection in remotely
sensed images, such as the AO2-DETR [18], Gansformer [19], TRD [20], and TransCon-
vNet [21], to deal with the small sample problem in network training [22]. Specifically,
the AO2-DETR [18] generated oriented proposals to modulate cross-attention in the trans-
former decoder. Gansformer [19] employed a generative model to expand the sample data
before the transformer backbone. The TRD [20] combined data augmentation with a trans-
former to improve the detection performance. TransConvNet [21] utilized an adaptive
feature-fusion network to improve the representational ability for the remotely sensed
targets. These methods focused on improving learning efficiency to deal with the small
sample problem in network training [22]. However, nearly none of these methods con-
cerned with the influence of the long-tail problem, which arises from the imbalance of
sample data between different categories, as shown in Figure 1.
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Figure 1. The imbalance of sample data between different categories in the DOTA dataset. (a) The
image number and the target number in one image of each category are highly imbalanced before the
official data augmentation preprocessing. (b) The image number and the target number in one image
of each category are still imbalanced after the official data augmentation preprocessing.

Moreover, almost all of the above learning models take the entire sample space as
one space, which makes the high-dimensional nonlinearity for all of the possible categories
cannot be neglected, whereby the high expressing ability, with more learning parameters
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for this kind of high-dimensional nonlinearity, must be considered. Additionally, more
training samples are required to ensure the steady learning of the network. However, due to
the non-cooperative imaging mode and complex imaging conditions, the amount of sample
data is difficult to meet the needs of network training [23]. Training a universal network
for the entire sample space has been confirmed by other application tasks to be much more
difficult, or even impossible, compared to training several specific subnetworks for each
subspace [24–27]. Specifically, to deal with this problem, GLRR [24] combined similar
image patches into one group and removed the noise in the hyperspectral images by using
a group-based reconstruction with a low-rank constraint, [25] divided the pixels in one
sample image into different subspaces by using an unsupervised clustering, and learned
the nonlinear relationship from the RGB to the high-spatial-resolution hyperspectral image
by using a cluster-based multi-branch network for spectral super resolution. Furthermore,
a fusion method for low-spatial-resolution hyperspectral and high-spatial-resolution multi-
spectral images was also proposed [26]. Apart from these, [27] also utilized the subspace-
dividing strategy for change detection in hyperspectral images. We realized that the
similarity between the different categories should also be considered for the training of
an object detection network. Especially, a similarity measurement method for different
categories suitable for the object detection, a new subspace-dividing strategy especially for
the imbalance problem between different categories, and a suitable network structure for
the subspace-based object detection should be considered for remotely sensed images.

On the other hand, for the loss functions in object detection networks, two paradigms
exist, i.e., learning from the sample data with category-level labels and learning from sample
data with instance-level labels [28]. The former optimized the similarity between sample
data and feature expression by using category-level loss functions, such as L2-softmax [29],
large-margin softmax [30], and AM softmax [31]. The latter optimized the instance-level
similarity through metric learning based loss functions, such as triplet loss [32], angular
loss [33], and multi-similarity loss [34]. Among these methods, the category-level loss
function is dominant for object detection in remotely sensed images, which follows the
convention of object detection in natural images. On this basis, SCRDet [12] and RSDet [35]
introduced constraints to the loss function, i.e., the IoU Smooth L1 Loss and Modulated Loss.
DCL [36] utilized the angle distance and aspect-ratio-sensitive weighting to handle the
boundary discontinuity of labels. Most of these methods primarily focused on the category-
level loss function and the instance-level loss function, without thoroughly exploring the
relationship between the targets of different categories.

Faced with the above problems, a subspace-dividing strategy and a subspace-based
Multi-branch Object detectiOn Network (termed as MOON) is proposed in this paper to
leverage the amounts of sample data in different subspaces and solve the long-tail problem
for the remotely sensed images. In detail, a combination index is defined to depict this
kind of similarity, a generalized category consisting of similar categories is proposed to
represent the subspace by using the combination index, and a new subspace-based loss
function is devised to take the relationship between targets in one subspace and across
different subspaces into consideration to integrate the sample data from similar categories
within a subspace and to balance the amounts of sample data between different subspaces.
Moreover, a subspace-based multi-branch network is constructed to ensure the subspace-
aware regression, combined with a specially designed module to decouple the shared
features into a horizontal and rotated branch, and to enhance the rotated features. The
novelties and the contributions of our proposed method can be summarized as follows:

1. To our best knowledge, this is the first time that the long-tail problem in object
detection for remotely sensed images is focused to solve the high imbalance of sample
data between different categories;

2. A new framework of subspace-based object detection for remotely sensed images is
proposed, in which a new combination index is defined to quantify certain similarities
between different categories, and a new subspace-dividing strategy is also proposed
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to divide the entire sample space and balance the amounts of sample data between
different subspaces;

3. A new subspace-based loss function is designed to account for the relationship be-
tween targets in one subspace and across different subspaces, and a subspace-based
multi-branch network is constructed to ensure the subspace-aware regression, com-
bined with a specially designed module to decouple the learning of horizontal and
rotated features.

2. Proposed Method
2.1. Problem Formulation

Theoretically, the process of object detection in remotely sensed images can be formu-
lated as the learning of the posterior P(C | B, I) [37], where C = {C1, C2, . . . , CK} denotes
the categories of remotely sensed targets, B denotes the bounding boxes, and I denotes the
learned representation of the sample data [1]. The joint distribution of the sample data for
object detection can be formulated as P(C, B, I), which can be decomposed by the Bayes
formulation:

P(C, B, I) = P(C | B, I)P(B, I) (1)

If P(B, I) is further decoupled into P(B, I) = P(B | I)P(I), the conditional distribution
P(B | I), i.e., the bounding box prediction, will not formally involve the target properties of
different categories for the remotely sensed targets. Furthermore, the prediction P(C | B, I)
contradicts the paradigm of object detection methods, as the bounding box regression of
a target cannot be determined before the classification prediction. To accurately depict the
process of object detection in remotely sensed images, Equation (1) should be rewritten into
Equation (2), as follows:

P(C, B, I) = P(B | C, I)P(C, I) (2)

where P(C, I) can be further decoupled into P(C, I) = P(C | I)P(I), which means the
whole process is from sample data learning to classification prediction, and finally to
bounding box regression. It is evident that, for the marginal distribution P(I), if the amount
of sample data is difficult to meet the needs of the network training, the learning models
would suffer from the poor expression ability. For the classification prediction P(C | I),
the imbalance between the different categories of the targets would result in the long-tail
problem, which arises from the imbalance of the sample data between different categories,
as shown in Figure 1. This issue is exemplified by using the influential DOTA dataset [5] for
remotely sensed object detection. From Figure 1, it can be seen that both the image number
and the target number of each category exhibit a high imbalance. Even after applying the
official data augmentation preprocessing for these sample images [13], i.e., cropping each
sample image into multi-image patches with the same size, the long-tail problem has not
been ameliorated. In addition, P(B | C, I) reflects the implicit influence of classification
prediction on the bounding box regression, which has not arisen much attention in current
object detection approaches for remotely sensed images.

2.2. Combination Index and Subspace Division

To solve the long-tail problem, the similarity between different categories of remotely
sensed targets should be considered. Concretely, as similar sensors, data acquisition
approaches and data structures could make the targets in different categories possess
certain similarities, and those categories should be modeled together in a subspace rather
than the entire space to leverage the amounts of sample data in different categories. To
depict this kind of similarity, which adopts a morphological similarity instead of the
traditional feature similarity, for a category CK, a combination index Ψk of different impact
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factors is defined, including the averaged target size ρ, averaged aspect ratio ν, target
number n, and image number N:

Ψk =

√
ρk

νk − 1
1/C ∑ νk

× log
(

nk
Nk

)
, k = 1, . . . , CK (3)

The consideration of image number N, target number n, and the averaged target
size ρ are motivated by the need to address the imbalance between different categories
with different amounts of sample data, as shown in Figure 1. And the averaged aspect
ratio ν is taken into account for the different difficulties of different categories influenced
by the appearance of remotely sensed targets. The reason for selecting these impact
factors is that, due to the non-cooperative imaging mode and complex imaging conditions
of remotely sensed images, these properties are deemed more representative than the
extracted features for the remotely sensed targets [17]. Moreover, these parameters can
be directly acquired from the labels of the sample data before the network training, while
the extracted features can usually only be available after the process of network training
or even after the process of object detection, which is obviously contrary to the original
intention of the network training.

Taking the DOTA dataset [5] as an example, the combination indexes Ψk are calculated
for 12 representative remotely sensed object detection methods from the Object Detection
in Aerial Images (ODAI) challenge, including the RetinaNet [4], R2CNN [8], RRPN [9], LR-
O [6], DCN [7], RT [13], ICN [10], Mask RCNN [38], HTC, R3Det [39], and BBAvector [15].
The relation between the combination index Ψk (x-axis) and the accuracy of object detection
(y-axis) is shown in Figure 2.
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Figure 2. Relation between the combination index Ψk and the accuracy of object detection for different
categories on the DOTA dataset.

From Figure 2, it can be seen that, if the combination indexes of different categories
are close, their prediction results are close as well, such as the three categories of the
large vehicle (LV), small vehicle (SV), and ship (SH) in the dark blue box, as well as the
two categories of the tennis court (TC) and basketball court (BC) in the light blue box. It is
believed that these kinds of similar categories should be modeled together in one subspace
rather than in the entire space to reduce the high-dimensional nonlinearity of the sample
data in the entire space and to integrate the sample data within a subspace together for
a steadier learning of the network. In light of this, as shown as Equation (4), the relationship
of the absolute difference Ψ, the average precision AP, and their variance δ are taken as
a new measurement Ωsij for the similarity between the two different categories i and j.
Then, a new subspace-division strategy is established, where, if Ωsij is small enough, then
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categories i and j will be grouped into one subspace. In the case of the DOTA dataset, all of
the categories can be grouped into 6 subspaces, shown as Equation (5).

Ωsij :‖ Ψi −Ψj ‖<‖ APi − APj ‖ + ‖ δi − δj ‖ (4)

Ω = {

Ωs1 : BR, HP, GTF, PL
Ωs2 : LV, SV, SH
Ωs3 : HA, SP
Ωs4 : TC, BC
Ωs5 : RA, SBF
Ωs6 : BD, ST

} (5)

Therefore, the combination index Ψk and its absolute difference are feasible to depict
this kind of similarity between different categories, and the entire space can be divided into
multiple subspaces for better learning effects. By applying subspace dividing, the inner
property can be learned more efficiently for the categories within one specific subspace
than for the entire space. As pointed out in paper [40], the learning models gradually focus
from 200 classes to 50 classes and then to 29 classes, outperform the abrupt jump from
200 classes to 29 classes remarkably, which implicitly encodes the taxonomy information
into the network training. Our proposed subspace-division strategy could automatically
generate this kind of gradual focus, known as hierarchical learning, which sheds light
on hierarchical learning, and which is effective for boosting the prediction accuracy of
learning models.

2.3. Subspace-Based Multi-branch Network

After a combination index Ψk of different impact factors is defined and the entire
space is divided into multiple subspaces for better learning effects, here, in this subsection,
the overview of our proposed MOON method will be given, as shown in Figure 3, which
decouples the shared features into the horizontal branch and the rotated branch and the
subspace-based multi-branch network.
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As discussed in the SCRDet [12], insufficient feature expression is one of the key
obstacles for object detection in remotely sensed images, such as the bridge category and
helicopter category in Figure 2. To address this issue, the extracted features are firstly
enhanced from coarse to fine for better feature expression. The context information is firstly
utilized to holistically enhance the features for the remotely sensed targets with different
scales by adding the SE block [41] at the head of the Conv4x to the Conv3x, which proves to
be simple but effective. On this basis, asymmetric convolution [42] is employed to enhance
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the aspect-ratio tolerance for the remotely sensed targets. After exploiting the context
information from coarse to fine, feature expression can be enhanced efficiently.

Then, RPN provides coarse proposals for the targets, in which the horizontal an-
chors are utilized. The scales and ratios of the anchors are set to

{
42, 82, 162, 322, 642} and

{1 : 2, 1 : 1, 2 : 1}, respectively, considering the trade-off between being time-consuming
and prediction-precision. There are 6000 RoIs from the RPN before the NMS, and there are
800 RoIs reserved after the NMS, with an intersection over union (IoU) set to 0.7.

As discussed in related works, the shared extracted features for the horizontal and
rotated objects have a mutual influence on the learning of the orientation invariance for
the classification and the orientation sensitiveness for the localization. The learning of the
classification even impedes that of the localization. Therefore, the feature decouple network
is facilitated after the RPN to decouple the shared features and acquire high-quality feature
expression. Specifically, the shared features are decoupled into horizontal branch H and
oriented branch O, as in Figure 3. Then, both branches are divided into two sub-branches
separately, i.e., H = H1 ⊕ H2 and O = O1 ⊕O2.

Among the first sub-branches, H1 and O1, the separable convolutions are employed
to reduce the computation [5]. Among the second sub-branches, the stack of asymmetric
convolution is conducted on the horizontal sub-branch H2, and the crisscross convolution is
introduced to the oriented sub-branch O2, which boosts the rotated features by introducing
the crisscross convolution kernels, as in Figure 4. Then, these sub-branches are element-
wise added separately. To the best of our knowledge, this study represents the initial
introduction of the decouple learning approach for the horizontal and rotated features into
the object detection explicitly. The learning of the orientation invariance for classification
no longer interacts with the learning of the orientation sensitiveness for the localization,
which is simple but significant for object detection in remotely sensed images. In addition,
this is the first time that the crisscross convolution structure is introduced for the rotated
features enhancement, which improves the pertinence of the remotely sensed targets.
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Similar to the object detection in natural images, the horizontal branch H proposes
horizontal RoIs (HRoI)

{
νH

i
}
= {(xi, yi, wi, hi)}, where (xi, yi, wi, hi) denotes the center

coordinates, the long side and the short side of a HRoI. To eliminate the misalignment
between the RoIs and the oriented objects, the oriented RoIs

{
νO

i
}
=
{(

xp
i , yp

i , wp
i , hp

i , θ
p
i

)}
are learned from the oriented branch and horizontal branch by the rotated RoI learner [13].
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This process is equivalent to the position-sensitive RoI align, followed by the fully connected
layers, to regress the offsets of the ground truth relative to the horizontal RoIs:

vg
x = 1/wp((xg − xp)cosθp + (yg − yp)sinθp)

vg
y = 1/hp((yg − yp)cosθp − (xg − xp)sinθp)

vg
w = log(wg/wp)
vg

h = log(hg/hp)
vg

θ = ((θg − θp)mod2π)/2π

(6)

where {(xp, yp, wp, hp, θp)} represent the parameters of the oriented RoIs and

{(xg, yg, wg, hg, θg)} represent the ground-truth bounding boxes, and
{(

vg
x, vg

y , vg
w, vg

h, vg
θ

)}
denote the outputs of the fully connected layers [13].

After acquiring the rotated features and oriented RoIs, the rotated-position-sensitive RoI
align, i.e., the RPS RoI Align [13], is applied to warp the features from H ×W × (K × K × C)
to K × K × C by using bilinear interpolation. Therefore, the orientation-robust RoI features
can be acquired, which would be fed into fully connected layers for prediction. To match
the oriented RoIs and ground-truth oriented RoIs, the polygon IoU is selected as the criteria.

2.4. Subspace-Based Loss Function

In this subsection, a subspace-aware classification will be introduced to form a new
subspace-aware regression.

Generally speaking, to boost the learning of categories with few sample data, apart
from the category-level cross-entropy loss function Lcls [13] to penalize the mismatch
between the prediction and ground truth in classification, to constrain the fine-grained
relationships between targets in different categories is also a feasible strategy, with a metric
learning based loss function [43,44] being an intuitive choice. However, for the remotely
sensed images, as the target may change little crossing some different categories, such as
the small vehicle category and the large vehicle category, while it may change a lot inside
some particular category, such as the ship category in DOTA dataset, the metric learning
based loss function cannot be introduced directly. To tackle this problem, a subspace-
based loss function LΨ is introduced to capture the relationship of different subspaces with
certain similarities crossing different subspaces and within one subspace, which can be
formulated by the intra-subspace loss and inter-subspace loss, respectively. The former
maximizes the similarity of the subspaces with the inner-similarity property, denoted as{

si
s
}
(i = 1, 2, . . . , M), while the latter minimizes the similarity of the subspaces with the

inner-dissimilarity property, denoted as
{

si
d
}
(j = 1, 2, . . . , N). All of these constrains are

evaluated by the cosine similarity metric. Therefore, the subspace-based loss function LΨ
can be formulated as:

LΨ = log
[
1 + ∑M

i=1 ∑N
j=1 exp

(
λ
(

α
j
1sj

d − αi
2si

s −m
))]

= log
[
1 + ∑M

j=1 exp
(

λα
j
1

(
sj

d − δd

))
∑N

i=1 exp
(
−λαi

2
(
si

s − δs
))] (7)

where λ represents the scale factor, δd represents the inter-subspace margin, and δs rep-
resents the intra-subspace margin. In addition, α

j
1 and αi

2 are non-negative factors to
enhance the flexibility of the rescaling and optimization by measuring the distance from
the optimum of their individual similarity scores [28], i.e., Od for sj

d and Os for si
s:

α
j
1 = max

(
0, sj

d −Od

)
αi

2 = max
(
0, Os − si

s
) (8)
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To acquire a robust arc-like decision boundary, as in [28], the parameters are set to
Os = 1+m, Od = −m, δs = 1−m, and δd = m, in which the margin parameter m controls
the radius of the decision boundary, which can be viewed as a relaxation factor. By using
the subspace-based loss function LΨ, the distribution of the categories with similar inner
properties will be pulled together, while the distribution of the categories with dissimilar
inner properties will be pushed apart, so the inner property of the categories with similar
specificities can be efficiently learned through the training.

In accordance with the idea for the subspace-dividing approach, as the inner property
of the similar categories within a subspace is more identical than that of the entire space,
it is possible to form the regression process as a subspace-aware regression. Concretely,
an orientation-invariant clustering for the horizontal branch, which involves the complexity,
scale, appearance, and distribution information of different targets, is introduced into
the oriented regression branch through the utilization of a self-expressive layer for each
subspace. Concretely, given a data matrix X = [x1, x2, . . . , xN ] ∈ Rdx×N , whose columns
are drawn from a union of n subspaces, the self-expressiveness layer expresses each point
xj ∈ Rdx as a linear combination of other points, i.e.,

xj = ∑ i 6=j cijxi (9)

where
{

cij
}

i 6=j represent the self-expressive coefficients. An interesting characteristic of
the self-expressiveness is that, the solution to Equation (9), which minimize a specific
regularization function on the coefficients, exhibits a subspace-preserving property. This
implies that the nonzero coefficients cij only exist between xi and xj lying in the same
subspace [45,46]. After applying the subspace clustering, subspace-aware regression can be
acquired to assist and ensure accurate object location, as shown in Figure 5.
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After acquiring the subspace-aware classification and the subspace-aware smooth L1
regression Lreg = ∑ k∈{x,y,w,h,θ} smoothL1

(
vg

k

)
, the overall loss function can be expressed as:

L = Lcls + LΨ + Lreg (10)
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3. Experiments and Discussion
3.1. Datasets and Implements

In the following experiments, two public datasets for object detection in remotely
sensed images, i.e., the DOTA dataset [5] and HRSC2016 dataset [47], will be used to
validate the effectiveness of our proposed MOON method. These datasets are very repre-
sentative and influential in remotely sensed object detection, and the accuracy of the object
detection in them can be directly compared from their official implements in the original
papers for comparison.

The DOTA dataset is one of the largest aerial and satellite image datasets, which is
collected from Google Earth and other platforms. There are 2806 images in this dataset,
ranging from 800× 800 to 4000× 4000, which covers 15 categories. Here, the DOTA dataset
is generally split into training (1/2), validation (1/6), and test (1/3).

The HRSC2016 dataset is an aerial image dataset, which is collected from the Google
Earth. There are 1061 images in this dataset, ranging from 300 × 300 to 1500 × 900, which
includes 20 categories of ships. There are 436 images, 181 images, and 444 images in the
training, validation, and test set, respectively.

In the following experiments, the ResNet50 is selected as the backbone and the stochas-
tic gradient descent (SGD) is selected as the network optimization method, with a mini-
batch set to 100. The learning rate is set to 0.0025 with the moment set to 0.9. The average
precision (AP) and the mean average precision (mAP) are selected as the evaluation criteria,
which are consistent with and restricted by the online DOTA server.

3.2. Comparison with SOTA on the DOTA Dataset

In this section, our proposed MOON method will be compared with nine state-of-the-art
methods for object detection in remotely sensed images, including the R2CNN [8], RRPN [9],
FR-O, DCN, RT [13,48], ICN [10], Mask RCNN, HTC, R3Det [39], and BBAvector [15].

First of all, the comparison results on the public DOTA dataset are shown in the top
11 rows of Table 1, and the highest accuracy of each category is highlighted in bold, while
the second-best is underlined. We should mention that, during the comparison, only the
pure network structure is used, and the additional approaches, such as data augmentation,
are not used. The results presented in the top 11 rows of Table 1 demonstrate that our
proposed MOON method achieves a very competitive performance and outperforms the
other compared methods both in terms of the final mAP and the AP for most categories,
respectively, which has validated the effectiveness of our proposed method.

Table 1. Comparison results with the other methods on the DOTA dataset for different categories
using the AP criterion.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

R2CNN 88.5 71.2 31.7 59.3 51.9 56.2 57.3 90.8 72.8 67.4 56.7 52.8 53.1 51.9 53.6 60.7

RRPN 80.9 65.8 35.3 67.4 59.9 50.9 55.8 90.7 66.9 72.4 55.1 52.2 55.1 53.4 48.2 61.0

LR-O 81.1 77.1 32.3 72.6 48.5 49.4 50.5 89.9 72.6 73.7 61.4 58.7 54.8 59.0 48.7 62.0

DCN 80.8 77.7 37.2 75.8 58.8 51.1 63.5 88.2 75.5 78.0 57.8 64.0 57.9 59.5 49.7 65.0

Mask RCNN 89.2 76.3 50.8 66.2 78.2 75.9 86.1 90.2 81.0 81.9 45.9 57.4 64.8 63.0 47.7 70.3

HTC 89.3 77.0 52.2 66.0 77.9 75.6 86.9 90.5 80.6 80.5 48.7 57.2 69.5 64.6 52.5 71.3

R3Det 89.5 82.0 48.5 62.5 70.5 74.3 77.5 90.8 81.4 83.5 62.0 59.8 65.4 67.5 60.1 71.7

BBAvector 88.4 80.0 50.7 62.2 78.4 79.0 87.9 90.9 83.6 84.4 54.1 60.2 65.2 64.3 55.7 72.3

RT (baseline) 88.3 77.0 51.6 69.6 77.5 77.2 87.1 90.8 84.9 83.1 53.0 63.8 74.5 68.8 59.2 73.8

MOON 89.0 84.4 54.4 77.2 78.4 77.8 87.7 90.8 87.6 85.3 63.9 67.6 77.2 70.6 63.4 77.0

MOON (MS + RR) 89.1 85.7 56.6 80.3 79.1 84.9 88.0 90.9 87.6 87.6 69.5 70.7 78.3 78.4 69.4 79.8
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Secondly, as shown in the last row of Table 1, combining our proposed method with
the Multi Scales (MS) [49] and Random Rotate (RR) [5] data augmentation methods, the
final mAP can be further improved to 79.8.

3.3. Comparision for the Long-Tail Problem

In the following section, our proposed MOON method will be compared with the
methods specially designed for addressing the long-tail problem, to assess the effectiveness
of our proposed method. The influential RoI Transformer (RT) method is selected as the
baseline method for its similar pipeline with our proposed method. And the methods for
long-tail problem, i.e., the focal loss [4] and GHM loss [50], are selected as the compared
methods. It can be seen from Table 2 that our proposed MOON method is superior to the
other methods for the long-tail problem of remotely sensed images, particularly in the
categories with few sample data, such as the soccer ball field (SBF) and roundabout (RA).

Table 2. Comparison results with other methods for the long-tail problem using the AP criterion.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

RT (baseline) 88.3 77.0 51.6 69.6 77.5 77.2 87.1 90.8 84.9 83.1 53.0 63.8 74.5 68.8 59.2 73.8

RT + focal loss 88.7 82.6 54.1 72.0 77.4 77.5 87.4 90.9 86.8 85.2 62.7 59.3 76.1 68.7 59.4 75.2

RT + GHM 88.7 77.4 53.9 77.4 77.6 77.6 87.7 90.8 86.8 85.6 61.9 60.1 76.1 70.5 64.3 75.8

MOON 89.0 84.4 54.4 77.2 78.4 77.8 87.7 90.8 87.6 85.3 63.9 67.6 77.2 70.6 63.4 77.0

3.4. Ablation Studies

In this section, the effectiveness of each part, the multi-branch network (m-net) and the
subspace-based loss function (s-loss), will be validated respectively. The ablation studies
are conducted on the ship category, as in [16], which is representative and challenging for
object detection in remotely sensed images due to its different scale, aspect ratio, arbitrary
orientation, and dense distribution properties. Additionally, the RoI Transformer (RT) is
selected as the baseline detection method for its high detection accuracy and similar feature-
extraction pipeline with our proposed method. As shown in Table 3, the effectiveness of
each part of this proposed method has been verified, among which the s-loss takes the
effect remarkably.

Table 3. Results of ablation studies on our proposed method.

Method m-net s-loss mAP

RT (Baseline) 72.9

RT + m-net
√

74.1

RT + s-loss
√

74.7

MOON (RT + m-net + s-loss)
√ √

75.2

3.5. Effect of Each Part of the Multi-branch Network

To validate the effectiveness of each part of the multi-branch network in our proposed
MOON method, the RT is selected as the baseline method as well. On this basis, the
baseline method is compared with that of the shared feature decouple and the crisscross
convolution separately. After that, the multi-branch network is compared, which contains
both the shared feature decouple and the crisscross convolution. As shown in Table 4, the
shared feature decouple improves the accuracy of the object detection by 0.9% through
eliminating the interaction between the learning of the horizontal and rotated features,
which is significant but generally ignored in the object detection of remotely sensed images.
And the crisscross convolution structure improves the object detection accuracy by 0.4%
through enhancing the rotated features. Consequently, the overall m-net improves the
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accuracy of the object detection by 1.2%, which validates the effectiveness of the multi-
branch network.

Table 4. Effect of each part of our proposed multi-branch network.

Method Decouple Crisscross mAP

RT (Baseline) 72.9

RT + Decouple
√

73.8

RT + Crisscross
√

73.3

MOON (RT + Decouple + Crisscross)
√ √

74.1

3.6. Effect of Each Part of the Subspace-based Loss Function

To verify the effectiveness of each part of the subspace-based loss function in our
proposed MOON method, the s-loss is divided into subspace-aware classification (SC),
subspace-aware regression (SR), and the s-loss function. However, when the ablation study
is conducted on the ship category exclusively, the subspace aware is difficult to apply for the
very limited sample amount in this category. Therefore, the small vehicle category is added
into this experiment. Both the baseline method and our proposed method are trained on the
ship and small vehicle categories. As depicted in Table 5, the s-loss improves the accuracy
of the object detection by 1.8%, which validates the effectiveness of the subspace-based
loss function.

Table 5. Effect of each part of our proposed subspace-based loss function.

Method SC SR mAP

RT (Baseline) 72.9

RT + SC
√

73.9

RT + SR
√

73.8

MOON (RT + SC + SR)
√ √

74.7

3.7. Comparison on HRSC2016 Dataset

The comparison experiments are also conducted on the HRSC2016 dataset to verify
the effectiveness and the universality of our proposed method. In order to assess its
performance, our proposed method is compared with the official object detection methods
of HRSC2016, i.e., the RC2, as shown in Table 6. In the evaluation, the voc07 metric is used
to remain consistent with that of the RT method. Since the HRSC2016 is exclusively focuses
on the ship category, the subspace-aware classification of the s-loss has been removed. From
Table 6, it can be seen that our proposed method outperforms the other object detection
methods significantly.

Table 6. Results on the HRSC2016 dataset.

Method mAP

RC2 75.7

R2PN 79.6

R2CNN 79.7

RT 80.1

BBAvector 82.8

MOON 84.9
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4. Conclusions

To solve the sample data insufficiency problem and the long-tail problem in the object
detection of remotely sensed images, a subspace-dividing strategy and a subspace-based
multi-branch network is proposed. Specifically, a combination index is defined to depict
the similarity between different categories, a subspace-dividing strategy is proposed based
on this combination index, and a new subspace-based loss function is devised to integrate
the sample data from similar categories within a subspace and to balance the amounts
of sample data between different subspaces. Moreover, a subspace-based multi-branch
network is constructed to ensure the subspace-aware regression. Experiments on the DOTA
and HRSC2016 datasets demonstrated the superiority of our proposed method.
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