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Abstract: Recently, deep learning-based change detection methods for bitemporal remote sensing
images have achieved promising results based on fully convolutional neural networks. However, due
to the inherent characteristics of convolutional neural networks, if the previous block fails to correctly
segment the entire target, erroneous predictions might accumulate in the subsequent blocks, leading
to incomplete change detection results in terms of structure. To address this issue, we propose a
bitemporal remote sensing image change detection network based on a Siamese-attention feedback
architecture, referred to as SAFNet. First, we propose a global semantic module (GSM) on the encoder
network, aiming to generate a low-resolution semantic change map to capture the changed objects.
Second, we introduce a temporal interaction module (TIM), which is built through each encoding and
decoding block, using the feature feedback between two temporal blocks to enhance the network’s
perception ability of the entire changed target. Finally, we propose two auxiliary modules—the
change feature extraction module (CFEM) and the feature refinement module (FRM)—which are
further used to learn the fine boundaries of the changed target. The deep model we propose produced
satisfying results in dual-temporal remote sensing image change detection. Extensive experiments on
two remote sensing image change detection datasets demonstrate that the SAFNet algorithm exhibits
state-of-the-art performance.

Keywords: deep learning; remote sensing images; change detection

1. Introduction
1.1. Background

With the development of geographic information technology, significant progress has
been made in Earth observation technology, and various sensors and equipment have
been widely applied. Remote sensing technology captures target objects through satellites
equipped with sensors, analyzing the characteristic information of the target, extracting
key features, and applying them [1–4]. At the same time, remote sensing technology can
also capture spectral information beyond ultraviolet, infrared, and visible light to enrich
spatial feature information. Due to these advantages, remote sensing images have gradually
become a reliable and indispensable data source for obtaining surface information [5–9].
The change detection of dual-temporal remote sensing images refers to shooting the ground
via remote sensing platforms such as satellites and drones, capturing images at different
periods to locate areas that have changed and those that have not [10–12]. Simply put,
it recognizes the differences in the status of geographical objects under different time
distributions. Remote sensing image change detection is widely applied in geological
surveying [13–15], environmental monitoring [16–18], resource management [19,20], urban
expansion [21,22], and many other fields [23–26].
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How to effectively extract true change information from dual-temporal remote sensing
images is a crucial research direction at present. Over the past decades, many change detec-
tion methods have been proposed and applied. Images obtained in actual environments are
subject to many uncertain factors, such as lighting, seasons, and shooting angles. Change
detection methods can be divided into pixel-level change detection, feature-level change
detection, and object-level change detection according to the difference in change detection
elements. Pixel-level change detection considers each pixel as a basic unit and determines
whether the values in the pixel have changed through comparison. Common methods in-
clude interpolation [27], the ratio method [28], and principal component analysis (PCA) [29].
However, these methods all have high requirements for the accuracy of image registration
and are now mostly used as part of a framework, rather than used alone. Deng et al. [30]
used PCA to enhance data and input the processed features into the classifier to detect
land changes. Celik [31] proposed a detection method that combines PCA and K-means.
Feature-level change detection extracts significant features from the original dual-temporal
images and analyzes them for change detection. This method often extracts texture features
and edge features. Zhang et al. [32] proposed a texture feature extraction method that
can better describe texture features and spatial feature distribution based on local detail
features. Guiming and Jidong [33] proposed an edge detection method that improves the
Canny operator and achieves better noise-smoothing effects while retaining more details.
Object-level change detection treats the image as a combination of objects with different
semantic information and carries out semantic detection on these objects. Peng et al. [34]
proposed a UNet++ based encoder–decoder structure that uses a multi-side output fusion
method to obtain a higher-accuracy change map.

According to different technical means used, change detection methods can also be
divided into traditional methods and methods based on deep learning. Traditional change
detection generally consists of three steps: image preprocessing, difference map gener-
ation, and difference map analysis. In the image preprocessing stage, methods such as
geometric correction and image registration are used to make the dual-temporal remote
sensing images comparable in space and spectrum. In the difference map generation stage,
a feature matrix representing the distance between dual-temporal remote sensing images
is found through methods such as interpolation and ratio. In the difference map analysis
stage, methods such as thresholding and clustering are combined to classify the pixels in
the difference map. He et al. [35] proposed a dynamic threshold algorithm based on the
merged fuzzy C-means algorithm to generate each pixel’s membership value and a global
initial threshold, which can reduce speckle noise and better retain detailed information.
The main drawback of these methods is that they do not consider the surrounding pixel
information when determining the correctness of the detected pixels, and only take the
degree of fit between the statistical model and the actual data distribution as the standard.
Thonfeld et al. [36] proposed robust change vector analysis (CVA), which considers the
neighborhood information of each pixel to alleviate the effect of poor co-registration be-
tween images but does not capture object-level information. Zheng et al. [37] proposed a
method based on combined difference images and K-means clustering. The use of mean
and median filters ensures that edge information is well preserved while considering
local consistency. Luppino et al. [38] proposed the use of a cycle-consistent generative
adversarial network to transcode images from different sensors into the same domain in an
unsupervised manner, and further implemented change detection through CVA. Traditional
detection methods are complicated to operate and yield relatively low detection accuracy.

In recent years, the development of deep learning algorithms has provided new so-
lutions for change detection, and it has also been widely applied in the research fields of
object detection and image segmentation [39]. It builds a neural network structure to obtain
a model framework, inputs the dataset into the network and then outputs the desired
results according to the needs of the task, and the obtained model structure will have
stronger robustness. Compared with traditional methods, deep learning-based methods
can achieve higher scores, and also reduce some cumbersome steps of data preprocessing,
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and the end-to-end learning model framework is easier to be directly used. Gong et al. [40]
first applied CNN to solve the task of remote sensing image change detection and achieved
good results, proving the feasibility of CNN in the task of remote sensing image change
detection. Subsequently, many researchers proposed CNN-based change detection meth-
ods. Zhan et al. [41] proposed a deep Siamese convolutional neural network to solve the
problem of change detection, which extracted the change information of dual-temporal
remote sensing images through the weight-sharing Siamese neural network, improving
the operational efficiency of the model. On this basis, weight-sharing Siamese neural
networks have been widely applied in the task of remote sensing image change detection.
Zhang et al. [42] proposed a deep Siamese semantic network change detection method,
improved the loss function, and used the triplet of piecewise functions to strengthen the
robustness of the model. Chen and Shi [43] proposed a spatio-temporal attention neural
network based on a connected body, dividing the image into sub-regions of multiple scales
and introducing the self-attention mechanism in them, thus capturing spatio-temporal
dependencies of various scales. Song et al. [44] proposed a change detection network
based on the U-shaped structure, which extracts and learns the similar feature information,
different feature information, and global feature information of dual-temporal remote
sensing images through multiple branches. Wang et al. [45] proposed a hyperspectral
image change detection method. The method first encodes the position of each pixel in the
image, and then uses a spectral transform coder and a spatial transform coder to extract
spectral sequence information and spatial texture information, respectively. Finally, the
time-domain transformer is used to extract the useful change features between the cur-
rent image pair, and the detection result is obtained through the multi-layer perceptron.
Zhang et al. [46] proposed a cascaded attention-induced differential representation learning
method for multispectral change detection, which explores the correlation of features ex-
tracted from bitemporal images to obtain more discriminative features, and finally detects
the discriminative features and obtains the final detection map.

With the emergence of high-resolution remote sensing images, traditional remote
sensing image change detection methods have been unable to solve related problems well.
The ground object scenes in high-resolution remote sensing images are generally more
complex, and the seasons or lighting conditions of different time-phase remote sensing
images are different, which may lead to different spectral characteristics of ground objects
with the same semantic concept at different times and different spatial positions, which
introduces a lot of noise interference to remote sensing images, making it more difficult
to detect changes in specific ground objects. The remote sensing image change detection
method based on deep learning can better model the relationship between remote sensing
images and real objects by virtue of its powerful representation ability. Wang et al. [47] used
Faster R-CNN to detect changes in high-resolution remote sensing images. Experiments
show that the detection accuracy of this method has been improved, and the detection
probability of wrong samples has been reduced, thereby extracting more real changes
information. Ding et al. [48] proposed a novel dual-branch end-to-end network to build
change detection, and innovatively introduced a spatial attention mechanism-guided cross-
layer addition and skip connection module to aggregate multi-level contextual information,
weakening original image features and differential features heterogeneity among them,
and direct the network’s attention to regions where changes occur. Shu et al. [49] proposed
a dual-perspective change context network for change detection, the process of extract-
ing and optimizing change features by bitemporal feature fusion and context modeling.
Yin et al. [50] proposed an attention-guided change detection Siamese network, which com-
bines shallow spatial information and deep semantic information, to assist in the restoration
of edge details of change areas and the reconstruction of small targets during upsampling.

1.2. Related Work

Considering the collection problem of dual-temporal remote sensing images, potential
factors such as sensors, illumination, and solar angle inevitably cause the same object to
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have different positions and spectra, causing visual changes in remote sensing images.
However, these changes are not caused by actual changes in the ground objects and should
not be detected. This redundant information in model training will bring up such a problem:
if the previous block fails to correctly segment the entire target, the incorrect predictions
may accumulate in subsequent blocks, leading to an inability to obtain structurally complete
change detection results. Therefore, how to fully utilize the information contained in the
dual-temporal remote sensing images and eliminate redundant useless information is a
difficulty we are currently facing. In this paper, we propose a new change detection network
in response to the above issues, referred to as a dual-temporal remote sensing image change
detection network based on the Siamese-attention feedback system architecture (SAFNet).
First, we propose a global semantic module (GSM) on the encoder network to generate a
low-resolution semantic change map to roughly capture the changing objects and provide
semantic guidance for the reconstruction of the change map. Then, we propose a temporal
interaction module (TIM). Unlike previous methods that only use a single cascading
operation or subtraction operation for dual-time feature fusion, TIM can enhance the
interaction between dual-time features, filter out redundant information, and improve
the network’s perception of the entire changing target. Finally, we also propose a change
feature extraction module (CFEM) to capture temporal difference information at different
feature levels, and a feature refinement module (FRM) to adaptively focus on the change
area, enhancing the network’s detection ability of edge information and small targets.
Our work’s main contributions are summarized as follows:

1. We propose a bitemporal remote sensing image change detection network based on the
Siamese-attention feedback system architecture (SAFNet) to address the challenges in
change detection tasks. We design a temporal interaction module (TIM). When multi-
scale features in the encoder block are passed into the corresponding decoder, the
network’s perception of the changing target is enhanced by using TIM to implement
feature feedback between the two time steps, thus producing better detection results.
SAFNet produces prediction outputs step by step and eventually obtains the best
change prediction map.

2. We propose the global semantic module (GSM), change feature extraction module
(CFEM), and feature refinement module (FRM). By introducing GSM into the deep
layer of the encoder network to obtain context-aware semantic change information
of multi-scale and multi-receptive fields, it can guide the network to better locate
significant change areas during the learning process, and reduce network false detec-
tion and missed detection. CFEM extracts difference information from the features of
dual-temporal remote sensing images between each level, better learning the edge fea-
tures and texture features of the change features. FRM enables the network to capture
change features in both spatial and channel dimensions, eliminates and suppresses
redundant features, and weights the feature extraction for the next time step, thereby
improving the network’s detection accuracy.

3. Extensive experiments on two remote sensing image change detection datasets show
that compared with other deep learning-based change detection algorithms, our
proposed SAFNet network demonstrates robustness and high precision.

The rest of the paper is as follows: Section 2 introduces each module in the model
and analyzes the composition of the dataset. Section 3 analyzes the performance of the
model through experiments. Section 4 discusses the strengths and future of our approach.
Section 5 summarizes our work in this paper.

2. Materials and Methods

In this section, we first give a detailed description of our proposed method, then
introduce the datasets used in our experiments, and finally give the experimental details.
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2.1. Proposed Approach

In this paper, we propose a bitemporal remote sensing image change detection network
based on Siamese-attention feedback system architecture (SAFNet) for predicting a change
map with complete structure and fine boundaries. The following starts with the backbone
network, and then details the specific implementation of each module.

2.1.1. Network Architecture

Since the purpose of the change detection task is to distinguish between the changed
area and the non-changed area in the dual-temporal remote sensing image, in view of the
weight-sharing twin structure of the Siamese network, the two images can be extracted
separately and then differentiated. The idea is very suitable for the change detection
task. We know that the attention mechanism can extract changing feature information
from the spatial dimension and the channel dimension very well, and can effectively
improve the efficiency of feature extraction. Based on this, we take ResNet34 [51,52] as our
backbone network and build it with a decoder and encoder approach. Figure 1 shows the
model’s whole organizational structure. The decoder consists of five pairs of twin networks
with shared weights, represented by E(l)

i (l ∈ {1, 2, 3, 4, 5} represents each decoder block;
i ∈ {1, 2} represents each remote sensing image for a given period). In a similar vein, we
use D(l) to symbolize the decoder.
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Figure 1. General structure of the bitemporal remote sensing image change detection network based
on Siamese-attention feedback architecture (SAFNet). The entire network is an encoder–decoder
structure, with E(l)

1 and E(l)
2 being the two decoder branches and D(l) being the encoder branch.

The input dual-time remote sensing images first pass through E(l)
1 and E(l)

2 to extract multi-scale

features, and then a global semantic module is established based on E(5)
1 and E(5)

2 , outputting global
semantic change information. The decoder network takes the global semantic change information
and multi-scale features as inputs, generating increasingly significant change prediction maps layer
by layer. We utilize the change feature extraction module (CFEM) to learn the difference information
of dual-temporal remote sensing images. The feature refinement module (FRM) is used to control the
information transfer at times t = 1 and t = 2.

Encoder network: In order to adapt ResNet34 for our change detection task, we
modified it into a Siamese fully convolutional network, while removing the last two fully
connected layers and the average pooling layer from the original network. In addition,
we removed the downsizing operation of the last convolutional block E(5)

i with the goal
of obtaining a larger range of features. We also used dilated convolution in this layer, as
dilated convolution allows us to expand the receptive field without losing information and
without requiring additional parameters. This equalizes the feature maps’ sizes, E(5)

i and

E(4)
i , which is 1/16 of the initial input size. After each convolutional block, we obtain the

difference information of each layer through the change feature extraction module (CFEM)
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so that the edge features and texture features can be better located during the decoding
phase. The specific details are discussed in later sections.

Decoder Network: The decoder network consists of five convolutional blocks. In order
to ensure that the output is of the same scale size as the encoder network, a two-fold
upsampling is used between the decoder blocks, except for the D(5) layer. Each decoder
block has three 3× 3 convolutional layers, and there are 64, 64, and 2 output feature layers,
correspondingly. The output channel is set to 64 in order to reduce the computational
expense. During the process of feature interaction in the time interaction module (TIM),
the feature information f (l,1) learned at time t = 1 is fed back to time t = 2 through the
attention map S(l) generated by the feature refinement module (FRM). Detailed specifics
will be addressed in subsequent chapters. During the network training process, each D(l)

will cyclically generate two change prediction maps O(l,1) and O(l,2). Here, O(l,1) serves as
the feedback from time t = 1 to time t = 2, and O(l,2) is the output prediction map of each
D(l), and it is supervised with the real labels via the cross-entropy loss.

Global semantic module: We take advantage of the rich semantic features learned
from E(5)

1 and E(5)
2 to generate low-resolution semantic change features. These features will

be input into the decoder block layer by layer for refinement, and finally generate a change
prediction map. This mechanism allows our model to extract meaningful information from
the rich semantic features learned from both time-stamped images, and the global semantic
module refines these features progressively to produce the change detection map.

2.1.2. Global Semantic Module (GSM)

We propose a global semantic module (GSM) because the single image features ex-
tracted directly by the Siamese network each have different characteristics and cannot be
directly applied to the upsampling change map reconstruction process. We believe that
the deepest pixels have the largest receptive field, which means that each pixel contains
a large amount of feature information, and it is beneficial to fuse all feature information
to determine semantic change information. Based on these facts, we propose a global
semantic module (GSM) as shown in Figure 2. It fuses the two sets of features to fully
utilize the global information, performs deep feature extraction on the fused features, and
then recognizes the global semantic change information.

1inputf 2inputf

outputf

 3x3Conv 3x3Conv  3x3Conv 3x3Conv

 1x1Conv 1x1Conv

Concatenation Multiplication

1inputf 2inputf

outputf

 3x3Conv  3x3Conv

 1x1Conv

Concatenation Multiplication

1outputf 2outputf

1inputf 2inputf

outputf

 3x3Conv  3x3Conv

 1x1Conv

Concatenation Multiplication

1outputf 2outputf

Figure 2. Global semantic module.

Suppose finput1 and finput2 are the two input features of the global semantic module,
and the input size is C × H ×W. First, to better detect the change in semantics, finput1
and finput2 are cross fused and dimensionally reduced through 3× 3 convolution to obtain
output features foutput1 and foutput2, and the size of the output feature map is C× H ×W.
Then, finput1 and foutput1 are fused by weighting, and finput2 and foutput2 are fused by
weighting so that the fused features overcome the difficulties of different characteristics of
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a single image. This way, the bi-temporal semantic information extracted by the network is
more representative and instructive, which enhances the network’s ability to distinguish
the change area. Finally, we perform a concatenation operation on the fused features
and use 1× 1 convolution for deep feature extraction to further extract semantic change
information and refine it, obtaining the output feature map foutput, and the size of the
output feature map is C × H ×W. The following formula may be used to explain the
aforesaid procedure’ calculation:

foutput1 = σ( f 3×3([ finput1; finput2])) (1)

foutput2 = σ( f 3×3([ finput2; finput1])) (2)

foutput = f 1×1([ finput1 ⊗ foutput1; finput2 ⊗ foutput2]) (3)

In the above, σ(·) represents the activation function sigmoid. [; ] represents the con-
catenation operation. ⊗ represents element-by-element multiplication. f 3×3(·) and f 1×1(·)
are convolution layers having a convolution kernel of 3 and 1, respectively.

2.1.3. Change Feature Extraction Module (CFEM)

There are currently various methods for extracting change features, such as subtraction,
addition, or concatenation operations, among others. However, the extraction of change
features through these simple operations often hinders the network’s discriminative ability.
Particularly, the network’s deep features, being abstract, are rendered unrecognizable by
these operations, which leads to misjudgments and omissions during prediction. Hence,
this section proposes a change feature extraction module (CFEM). It is depicted in Figure 3
as its structure. This module aims to extract the essential change features from the bitempo-
ral remote sensing images to enhance the network’s change detection discriminative ability.

 3x3Conv 3x3Conv

 3x3Conv 3x3Conv 3x3Conv 3x3Conv

 3x3Conv 3x3Conv  3x3Conv 3x3Conv

 3x3Conv 3x3Conv

1inputf 2inputf

cf

 3x3Conv

 3x3Conv 3x3Conv

 3x3Conv  3x3Conv

 3x3Conv

1inputf 2inputf

cf

Figure 3. Change feature extraction module.

Assume that the inputs of the change feature extraction module (CFEM) are finput1
and finput2, the feature map size is C× H ×W, where H and W represent the height and
width of the feature map, and C denotes the number of channels of the feature map. Firstly,
the input feature maps finput1 and finput2 are subtracted, and the absolute values are taken,
yielding a difference feature map which then goes through a 3× 3 convolution to extract
multiscale difference feature information fabs. To enable the network to adaptively select
learning change region features and discard unnecessary information, thus reducing the
redundancy of input features, the multiscale difference features fabs are weighted fused with
the features of finput1 and finput2, respectively, and then go through an 3× 3 convolution
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for deep feature learning. Afterwards, they are added and fused with finput1 and finput2,
respectively, and then go through another 3× 3 convolution to obtain foutput1 and foutput2.
After that, fabs, foutput1 and foutput2 are added together and fused, then go through another
3× 3 convolution to finally obtain the output feature map fc. The computational formula
for the above process can be described as

fabs = f 3×3(abs( finput1 − finput2)) (4)

foutput1 = σ( f 3×3(σ( f 3×3( fabs ⊗ finput1)) + finput1)) (5)

foutput2 = σ( f 3×3(σ( f 3×3( fabs ⊗ finput2)) + finput2)) (6)

fc = f 3×3( fabs + foutput1 + foutput2) (7)

In this context, abs(·) represents the operation of taking the absolute value after subtraction.

2.1.4. Feature Refinement Module (FRM)

Considering that a single axial attention may lose information from another dimension,
we introduce the feature refinement module (FRM) to fuse change feature information from
both the channel and spatial dimensions. The structure of this module is shown in Figure 4.
In current change detection tasks, the background of the change area is complex, and the
target features are not clear, which may lead to omissions and misjudgments of the change
area, hindering the final accuracy. Therefore, there is a need for feature refinement in both
the spatial and channel dimensions, filtering noise information, suppressing non-change
features, and highlighting change features. Our proposed feature refinement module
(FRM) is well capable of achieving this. FRM extracts the changed features of the original
input features in the channel dimension and space dimension, and then performs feature
fusion with the original input features so that the network assigns higher weights to the
changed areas and lower weights to the non-changed areas, and finally outputs more
refined attention features.

 1x1Conv 1x1Conv  3x3Conv 3x3Conv  3x3Conv 3x3Conv σ σ σ 
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Figure 4. Feature refinement module.

Assume the size of the input feature map finput is C× H ×W. Firstly, in the spatial
dimension finput, it goes through an 1 × 1 convolution, which compresses the feature
channel number to 1, obtaining the 1× H ×W feature map, which then goes through two
3× 3 convolution layers to extract feature information, followed by sigmoid activation to
obtain the spatial weight coefficient matrix Wp. In the channel dimension finput, it first goes
through a global average pooling to obtain the C× 1× 1 feature map, then goes through
two 1× 1 convolutions to extract channel characteristics, followed by sigmoid activation to
obtain the channel weight coefficient matrix Wd. Afterwards, Wp and finput are weighted
and fused to obtain the spatial path output fp, while Wd and finput are weighted and fused
to obtain the channel path output fd. In the end of the feature refinement module (FRM),
finput, fp and fd are added and fused to obtain the output S. The mathematical expression
for the process mentioned above can be stated as

fp = σ( f 3×3( f 3×3( f 1×1( finput))))⊗ finput (8)

fd = σ( f 1×1( f 1×1(AvgPool( finput))))⊗ finput (9)



Remote Sens. 2023, 15, 4186 9 of 21

S = finput + fp + fd (10)

In this context, AvgPool(·) denotes the operation of global average pooling.

2.1.5. Temporal Interaction Module (TIM)

Given the inherent characteristics of convolutional neural networks, if the preceding
block fails to segment the entire target correctly, the erroneous predictions may accumulate
in the subsequent blocks, resulting in an incomplete structure in the change detection results.
Since we cannot guarantee the accuracy of feature information after refinement at the first
time step, the guidance from the previous convolution block might involve magnification
or reduction operations, bringing many inaccuracies, especially at the target boundaries.
Moreover, if the preceding convolution block makes an error in learning and fails to detect
the entire target, the subsequent blocks will not risk carrying out a structurally complete
detection and identification. Therefore, we propose a temporal interaction module (TIM),
the structure of which is shown in the right part of Figure 1. Considering that inaccurate
guidance and overuse of some features may affect the blurring or drift of the detection
target, in order to overcome this obstacle, in the temporal interaction module (TIM), we
use FRM to control the information transfer and guide the network’s learning process
of boundary awareness and tiny targets through the feedback of t = 1 time to t = 2 time
attention so that our network can not only integrate the features between different stages
through guidance but also have the opportunity to correct errors at each stage through the
attention feedback mechanism. Through TIM, feature feedback between two time steps
is implemented to enhance the network’s perception of changing targets and improve
detection accuracy.

The TIM is used to control the information transfer between the decoder and encoder
modules. The enlarged structure of this module is shown in the right part of Figure 1,
and TIM works by cycling through two time steps. To clearly explain how TIM works,
black and red lines are used to demonstrate the information flow across the two time steps.
The output features from the change feature extraction module (CFEM) of E(l)

1 and E(l)
2 are

marked as f (l,t)c , the output features of D(l) are marked as f (l,t), and the output prediction
is marked as O(l,t), where t represents the time step. When t = 1, the encoder block’s f (l,1)c ,
as well as f (l+1,2)

c and O(l+1,2) from D(l+1), serve as the inputs for the decoder block D(l).
To save memory, we use an 1× 1 convolution on f (l,1)c to reduce its channel number to
64, while performing 2× upsampling on the output of D(l+1) to match the spatial size of
f (l,1)c . Afterwards, we concatenate all the features in the channel dimension to form a rough
prediction feature map I(l,1), which is input into the decoder block. The output feature and
output prediction map of the first time step are f (l,2) and O(l,2) , respectively. The entire
flow chart is shown on the right side of Figure 1 (TIM− 2, t = 1). At t = 2, f (l,1) passes
through the feature refinement module (FRM) to generate refined features S, providing
guidance for deep feature learning at the t = 2 moment, and the encoder generates an
updated difference feature map f (l,2)c . Then, f (l,2)c , f (l,1) and O(l,1) are concatenated to
produce a new feature I(l,2). Finally, the decoder block refines the input features again,
generating output features f (l,2) and output prediction maps O(l,2), which then proceed to
the next stage. The entire flow chart is shown on the right side of Figure 1 (TIM− 2, t = 2).

2.2. Datasets

To more comprehensively validate the effectiveness of our proposed SAFNet model,
we evaluate the model’s performance on three different remote sensing image change
detection datasets, BICD [50], CDD [51] and LEVIR-CD [43].

2.2.1. BICD

The BICD dataset is a remote sensing image change detection dataset suggested in our
first work. It includes 3420 pairs of bi-temporal remote sensing images with 512 × 512 pix-
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els. The number of image pairs divided into the training set, validation set, and test set
are 2280, 570, and 570, respectively. This dataset spans the period from 2010 to 2019, and
includes paired images from different regions of Eastern China at different times. The ob-
jects in the images include factories, farmlands, roads, and buildings, among other areas.
The schematic diagram of the dataset is shown in Figure 5.

img1

img2

label

a b c d e

img1

img2

label

a b c d e

Figure 5. BICD schematic diagram. A few dual-temporal remote sensing images from the dataset
are displayed, with each column constituting a sample. The first and the second rows depict the
dual-temporal remote sensing images, and the third row shows the labels (with white representing
areas of change, and black signifying unchanged areas). (a–e) are 5 pairs of dual-temporal remote
sensing image pairs and corresponding labels selected from BICD.

2.2.2. CDD

The CDD dataset is a publicly available remote sensing image change detection dataset.
The original images of this dataset are composed of seven pairs of images with a resolution
of 4750 × 2700 and four pairs of images with a resolution of 1900 × 1000. These 11 pairs of
images are synchronously cropped into 16,000 pairs of 256 × 256 pixel images, with the
number of image pairs divided into the training set, validation set, and test set being 10,000,
3000, and 3000, respectively. The schematic diagram of this dataset is shown in Figure 6.

img1

img2

label

a b c d e

img1

img2

label

a b c d e

Figure 6. CDD dataset schematic diagram. Each column represents one sample, with the first and
second rows displaying the bi-temporal remote sensing images, while the third row shows the labels
(white denotes change areas, black denotes no-change areas). (a–e) are 5 pairs of dual-temporal
remote sensing image pairs and corresponding labels selected from CDD.
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2.2.3. LEVIR-CD

LEVIR-CD is a large-scale building change detection dataset consisting of 637 pairs of
1024 × 1024 ultra-high resolution remote sensing images. It has a time span of 5–14 years,
filmed between 2002 and 2018, focusing on major changes in architecture. The dual-
temporal remote sensing images in the dataset come from 20 different areas in multiple
cities in Texas, including villas, high-rise apartments, small garages, large warehouses, and
other buildings, and consider seasonal and illumination changes. We crop the images into
256 × 256 pixel images, and the image logarithms are 7120, 1024 and 2048 for training set,
validation set and test set, respectively. Its schematic diagram is shown in Figure 7.

img1

img2

label

a b c d e

img1

img2

label

a b c d e

Figure 7. LEVIR-CD dataset schematic diagram. Each column represents one sample, with the first
and second rows displaying the bi-temporal remote sensing images, while the third row shows the
labels (white denotes change areas, black denotes no-change areas). (a–e) are 5 pairs of dual-temporal
remote sensing image pairs and corresponding labels selected from LEVIR-CD.

2.3. Implementation Details
2.3.1. Evaluation Metrics

To assess the performance of our SAFNet model in change detection tasks, we adopted
five commonly used evaluation metrics: precision (PR), recall (RC), mean intersection over
union (MIoU), F1-score (F1) and pixel accuracy (PA). We use F1 of the changed category and
MIoU of the changed category and unchanged category as the main evaluation indicators,
and PR, RC and PA as auxiliary indicators to comprehensively evaluate the model:

PR =
TP

TP + FP
(11)

RC =
TP

TP + FN
(12)

MIOU =
TP

TP + FP + FN
(13)

PA =
TP + TN

TP + TN + FP + FN
(14)

F1 =
2× PR× RC

PR + RC
(15)
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Here, TP representing true positive indicates the correct prediction of changing areas;
TN representing true negative refers to the correct prediction of non-changing areas;
FP representing false positive implies predicting non-changing areas as changing areas; and
FN representing false negative denotes predicting changing areas as non-changing areas.

2.3.2. Experimental Details

The experiments in this paper are implemented on a GeForce RTX 3080 graphics
processing unit (GPU) based on PyTorch. We set the batch size for training to 6 and the
initial learning rate lr to 0.001, and dynamically adjust the learning rate using a ploy
strategy. he mathematical formula for its calculation is as follows:

lr = lr_ ∗ (1− epoch
num−epoch

)p (16)

Here, lr is the new learning rate, lr_ is the initial learning rate, epoch is the current
iteration number, num−epoch is the maximum iteration number, and p is a constant that
manages the speed of decay. The epoch is set to 200. Furthermore, we choose binary
cross entropy loss as the loss function for our network, and use Adam as the optimizer for
our network.

3. Results

In this part, in order to comprehensively evaluate the effectiveness of our proposed
network and modules, we conduct ablation experiments and comparative experiments on
BICD, CDD and LEVIR-CD datasets.

3.1. Network Structure Selection

We compare the experimental results of two CNN architectures, the early fusion
architecture and the Siamese architecture. Early fusion network structures concatenate
two images together before feeding them into the network, treating them as different color
channels. The Siamese structure processes two images separately through a network with
the same structure and weight parameters. The experimental results in Table 1 show that
the Siamese structure outperforms the early fusion structure, and the F1 and MIoU are
improved by 0.95% and 0.74%, respectively.

Table 1. Performance comparison of different network structures (the best results are indicated in
bold font).

Method PA (%) PR (%) RC (%) F1 (%) MIoU (%)

Early Fusion 95.72 88.15 78.64 82.57 83.14
Siamese 95.89 89.75 79.12 84.09 83.31

3.2. Ablation Experiments on BICD

Given the complexity of our network, we can gain a better understanding of it and
verify the effectiveness of each module by either deleting or adding modules that we
propose. Thus, we conduct ablation experiments on each module using the BICD dataset.
Table 2 shows our experimental results, and all models have the same training strategy.
To intuitively compare the effectiveness of our models, we primarily focus on the MIoU
metric. In the experiments, we use ResNet34 as the backbone of our network.

(1) Ablation experiment of CSM: By introducing CSM into the deep layer of the decoder
network and fully utilizing global information to capture change information, we
generate a low-resolution semantic change map. This map can guide the repair of
shallow texture information and help the network reduce missed detections and false
detections during the decoding phase. The experimental results in Table 2 show that
GSM improves the scores of F1 and MIoU by 0.73% and 1.79% over the backbone
network, proving the effectiveness of GSM.
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(2) Ablation experiment of TIM: In order to reduce the accumulation of incorrect predic-
tions in subsequent blocks, our proposed TIM can enable feature feedback between
two time steps to enhance the network’s perception of changing targets, and to repair
the details of changing areas, thereby increasing the accuracy of feature learning.
The experimental results in Table 2 show that our proposed TIM improves the scores
of F1 and MIoU by 0.22% and 0.36%.

(3) Ablation experiment of CFEM: To extract important change features from bi-temporal
remote sensing images, our proposed CFEM performs change feature extraction
via absolute difference operations, improving the learning of edge features and tex-
ture features of changing areas, thus enhancing the network’s discriminative ability.
The experimental results in Table 2 show that our proposed CFEM improves the
scores of F1 and MIoU by 0.27% and 0.44%, demonstrating the effectiveness of our
proposed module.

(4) Ablation experiment of FRM: To fuse channel information and spatial information, our
proposed FRM enables the network to simultaneously capture change features in both
spatial and channel dimensions, removes and suppresses redundant features, and then
weights feature extraction for the next time step, thereby improving the network’s
detection accuracy. The experimental results in Table 2 show that our proposed
FRM improves the scores of F1 and MIoU by 0.19% and 0.33%, demonstrating the
effectiveness of our proposed module. At the same time, we use Figure 8 to illustrate
the effectiveness of the FRM module more intuitively. The figure shows the heat map
effect of adding FRM and not adding FRM. It can be seen that after the introduction
of FRM, the network effectively solves the problem of fuzzy edge details of changing
targets and the false detection of tiny targets.

Table 2. The effectiveness of our suggested module is assessed by ablative experiments (the best
results are indicated in bold font).

Method PA (%) PR (%) RC (%) F1 (%) MIoU (%)

Backbone 95.09 88.54 77.73 82.78 80.39
Backbone + GSM 95.59 88.87 78.75 83.51 82.18
Backbone + GSM + TIM 95.69 89.57 78.62 83.73 82.54
Backbone + GSM + TIM + CFEM 95.81 89.48 78.99 83.90 82.98
Backbone + GSM + TIM + CFEM + FRM 95.89 89.75 79.12 84.09 83.31

Img1 Img2 a b cImg1 Img2 a b c

Figure 8. Heatmaps without and with FRM are compared. (Img1,Img2) are dual-temporal remote
sensing images. (a) labels, (b) feature heatmap without FRM module in the network, (c) feature
heatmap with FRM module added to the network.
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The message passing between the decoder and encoder modules is controlled by a tem-
poral interaction module (TIM), which is the core innovation of our approach. The module
works in a two-time-step loop. In the first time step, the weight-shared Siamese network
extracts the change features of the image through CFEM, and the output features and out-
put prediction maps extracted in the second time step of the previous stage are sent to the
decoding module. At this time, after the feature extraction of the first time step, we cannot
guarantee the quality of the result because the features from the previous block will bring
many uncertain values to the boundary of the object after the enlargement operation, and
if for the previous block, one module fails to identify a small variation target, subsequent
modules will not risk performing structurally complete detection. Therefore, we use feature
extraction in two time steps to enhance the learning ability of the network for edge and tiny
targets, introduce FRM between the two time steps, refine and filter the features learned
in the first time step, highlight the changing features to suppress non-changing features
(the results of Figure 8 show that the effect of this module is significant, used to guide the
feature extraction of the second time step), and finally generate a salient prediction map
with finer boundaries and more prominent small targets. In order to verify the effectiveness
of TIM with two time steps, we conduct an ablation comparison experiment with TIM with
one time step. The experimental results are shown in Table 3. TIM_(t = 1) means having
one time step, and TIM_(t = 1, t = 2) means having two time steps. As can be seen from the
table, TIM_(t = 1, t = 2) works better.

Table 3. TIM ablation comparison experiment (the best results are indicated in bold font).

Method PA (%) PR (%) RC (%) F1 (%) MIoU (%)

TIM_(t = 1) 95.55 88.63 79.01 83.54 82.48
TIM_(t = 1,t = 2) 95.89 89.75 79.12 84.09 83.31

Our proposed modules, including the global semantic module (GSM), time interaction
module (TIM), change feature extraction module (CFEM), and feature refinement module
(FRM), further optimize the performance of the network based on the backbone network.
By individually introducing these modules, the scores of the evaluation index MIoU are
increased by 1.79%, 0.36%, 0.44% and 0.33%, respectively, and the scores of F1 are increased
by 0.73%, 0.22%, 0.27% and 0.19%. And through the four modules, for the joint effect of our
model, compared with the backbone network, the score of MIoU is improved by 2.92%,
and the score of F1 is improved by 1.41%. These four modules can thereby enhance the
learning capacity and prediction accuracy of the network for change detection tasks.

3.3. Comparison Experiments with Different Algorithms on BICD

In this section, we compare the method we propose with other semantic segmentation
and change detection methods to observe our model comprehensively. In the experiments,
to ensure fairness in the comparison, all methods use the same training strategy. The quanti-
tative results of various model metrics are shown in Table 4. From the table, we can see that
the traditional change detection method PCA-Means has very poor detection effects and
can hardly complete the change detection task on this dataset. Among the deep learning
methods, FC-Siam-Diff has the worst effect with scores of F1 and MIoU of only 57.97% and
64.51%, and the detection effect of SAGNet is the best compared with other deep learning
methods, with the scores of F1 and MIoU reaching 83.45% and 83.93%. Compared with
other algorithms, our model SAFNet basically achieves the best results according to various
indicators; its MIoU is slightly lower than that of SAGNet, but its F1 and MIoU also reach
84.09% and 83.31%, indicating the effectiveness of our proposed method.

Figure 9 shows the comparison of prediction maps of different methods. We compare
prediction maps on three different sets of bi-temporal remote sensing images to further
illustrate the feasibility of our algorithm. Among them, a is the image label, and b − l
are prediction maps from various comparative algorithms. A comprehensive review of
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the three sets of comparative experiments reveals that the traditional PCA-Means algo-
rithm performs the worst. Next is the FC series change detection algorithm, which can
hardly recognize change areas and suffers from many missed detections and false alarms.
The prediction maps of other deep learning-based algorithms are rather coarse, and their
abilities to handle edge details and small targets are inferior. In contrast, the prediction map
generated by our algorithm predicts the edge details of the change area and the changes
in small targets very well. It can be said to differentiate between change and non-change
areas in a targeted manner. Moreover, our algorithm’s prediction map is closer to the label
and yields better prediction results.

Table 4. Results of experiments compared to those from other algorithms (the best results are
indicated in bold font).

Method PA (%) PR (%) RC (%) F1 (%) MIoU (%)

PCA-Means [31] 86.32 28.66 12.53 17.43 48.82
FC-Siam-Diff [53] 90.79 77.63 46.26 57.97 64.51
FC-EF 90.23 73.26 43.24 54.37 65.94
FC-Siam-Conc 91.45 78.18 47.55 59.14 68.66
Unet [54] 92.57 81.36 69.73 75.09 72.59
FCN-8s [55] 93.02 81.67 72.75 76.95 74.38
ChangNet [56] 94.14 88.57 77.11 82.44 76.49
DASNet [57] 94.84 89.34 75.46 81.82 79.93
TCD-Net [58] 95.24 88.28 74.03 80.53 81.13
MFGAN [59] 95.44 87.99 76.18 81.66 82.09
BIT [60] 95.78 89.51 75.68 82.02 82.89
TFI-GR [61] 95.63 88.87 77.92 83.04 82.96
SAGNet 95.82 89.36 78.28 83.45 83.93
SAFNet (our) 95.89 89.75 79.12 84.09 83.31
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Figure 9. Presents the contrast of predictive results from various algorithms. (I–III) correspond
to the comparative experiments for three sets of bi-temporal remote sensing images. (Img1,Img2)
are indicative of remote sensing images captured at different time intervals. (a–l) respectively
represent prediction maps of the label, PCA-Means, FC-Siam-Diff, FC-EF, FC-Siam-Conc, Unet,
FCN-8s, ChangNet, DASNet, TCD-Net, MFGAN, and our network SAFNet.
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3.4. Generalization Experiments on the CDD Dataset

To further verify the effectiveness of our SAFNet algorithm, we conducted general-
ization experiments on the CDD dataset, with the results shown in Table 5. From the F1
and MIoU scores, it can be seen that the PCA-Means method is the lowest, and the F1 and
MIoU scores are only 31.23% and 39.53%. The rest of the algorithms based on deep learning
are improved in the four indicators, and the best performance is our algorithm. SAFNet, F1
and MIoU scores reach 89.48% and 73.36%, which shows that our algorithm has very good
generalization and robust performance.

Table 5. Comparison of generalization experimental results on the CDD dataset (the best results are
indicated in bold font).

Method PA (%) PR (%) RC (%) F1 (%) MIoU (%)

PCA-Means 80.35 39.36 25.88 31.23 39.53
FC-EF 94.39 85.31 59.86 70.35 52.38
FC-Siam-Diff 94.92 84.32 63.51 72.45 53.27
FC-Siam-Conc 94.78 83.69 64.32 72.74 53.88
FCN-8s 97.01 83.13 75.06 78.89 68.19
Unet 97.66 84.24 74.57 79.11 68.83
DASNet 97.47 84.85 89.79 87.25 70.21
ChangNet 97.64 82.27 90.21 86.07 70.93
TCD-Net 97.39 83.65 91.32 87.32 71.72
MFGAN 97.37 83.76 92.83 88.05 72.21
TFI-GR 97.58 84.53 92.63 88.41 72.39
BIT 97.49 83.57 93.88 88.43 73.01
SAFNet(our) 97.67 85.32 94.06 89.48 73.36

Figure 10 shows the prediction comparison diagram of different algorithms on the
CDD dataset. (I), (II), and (III) are three groups of different bi-temporal remote sensing
images, and b − l are prediction maps of various algorithms. As can be seen from the
figure, compared to other methods, our proposed SAFNet algorithm predicts edge details
and small targets more accurately, and the predicted change areas are also clearer. Other
methods all have some shortcomings. Especially for image (I), the change area is not
obvious, and the interference from the background is strong. Under such circumstances,
other methods can only predict part of the change area, some even cannot predict at all,
while our method can accurately predict continuous change areas, overcome background
interference, and handle edge parts more delicately. This demonstrates the effectiveness of
our SAFNet algorithm for change detection tasks.

3.5. Generalization Experiments on the LEVIR-CD Dataset

The generalization results for LEVIR-CD are shown in Table 6. The results of the
generalization experiment show that among other change detection methods, TFI-GR
obtained the best detection results, and the scores of F1 and MIoU reached 90.01% and
89.37%. However, our SAFNet still achieves the highest accuracy on LEVIR-CD, the scores
of F1 and MIoU reach 90.67% and 89.66%, and F1 and MIoU are improved by 0.66% and
0.29% compared with TFI-GR.
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Figure 10. Presents the contrast of predictive results from various algorithms. (I–III) correspond
to the comparative experiments for three sets of bi-temporal remote sensing images. (Img1,Img2)
are indicative of remote sensing images captured at different time intervals. (a–l) correspond to
the prediction maps of the label, PCA-Means, FC-EF, FC-Siam-Diff, FC-Siam-Conc, FCN-8s, Unet,
DASNet, ChangNet, TCD-Net, MFGAN, and our SAFNet network, respectively.

Table 6. Comparison of generalization experimental results on the LEVIR-CD dataset (the best results
are indicated in bold font).

Method PA (%) PR (%) RC (%) F1 (%) MIoU (%)

PCA-Means 78.63 12.34 45.69 19.43 33.96
DASNet 98.57 90.35 84.23 87.19 87.43
ChangNet 98.48 90.54 86.98 88.72 86.64
BIT 98.62 90.26 88.51 89.38 89.19
TFI-GR 98.68 92.01 88.08 90.01 89.37
SAFNet(our) 98.87 92.49 88.93 90.67 89.66

Figure 11 is a comparison of the predictions of different algorithms on the LEVIR-CD
dataset. Among them, img1 and img2 are a pair of dual-temporal remote sensing images to
be detected. a represents the label, while b-g are the prediction results of different change
detection algorithms. It can be seen from the figure that the edge details in the prediction
images of other algorithms are very poor, and the prediction images of some algorithms
even have serious missed and false detections. However, compared with other algorithms,
the prediction map of SAFNet proposed by us handles the edge part well, and there is
no missed detection and false detection phenomenon, which shows the superiority of our
proposed SAFNet algorithm.



Remote Sens. 2023, 15, 4186 18 of 21

a b c d e f gImg2Img1 a b c d e f gImg2Img1

Figure 11. Comparison of prediction results graphs of different algorithms. (Img1,Img2) represent
remote sensing images in different periods. (a–g) represents the prediction graph of label, PCA-Means,
DASNet, ChangNet, BIT, Segformer, and our network SAFNet, respectively.

4. Discussion
4.1. Advantages of the Proposed Method

It is proved by experiments that the method proposed in this paper is obviously supe-
rior to other algorithms, and can effectively detect the change area in the dual-temporal
remote sensing image, and the experimental results on the three datasets prove the effec-
tiveness and superiority of SAFNet. Compared with other methods, our method possesses
higher detection accuracy. In the feature encoding stage, features are extracted through a
weight-shared Siamese network and input into CFEM to generate rough change features;
however, only combining the output of the decoder is not enough to detect changes in
remote sensing images. Considering that the features from the previous block will bring
many uncertain values to the boundary of the object after the upscaling operation, in
addition, if the previous module fails to identify the small variation objects, the subsequent
modules will not risk performing structurally complete detection. We perform cyclic learn-
ing on two time steps through TIM, and perform attention optimization through FRM
between two time steps to adjust the weight between each channel and pixel so that the
network pays more attention to the changing area and more finely learns edge features.
In order to enable the network to detect false detections and missed detections of tiny
objects, we introduce CSM at the bottom layer of the decoder network to learn features of
global information, generate a low-resolution semantic change map, and guide the network
to repair and optimize shallow texture information. Reduce the phenomenon of missed
detection and false detection. All in all, our proposed method has achieved good results
on different types of remote sensing images, and this method has strong generalization
and robustness.

4.2. Limitations and Future Research Directions

In our study, we introduce a Siamese-attention feedback architecture-based change
detection network (SAFNet) for bitemporal remote sensing images, which has shown
remarkable results on photo-level images. However, we also recognize that remote sensing
images are often acquired through different means, such as synthetic aperture sonar (SAS)
and synthetic aperture radar (SAR) [62,63]. The characteristics of these images, such as
noise type, lighting conditions, etc., may differ from photorealistic images, which may
have an impact on the performance of our method. We expect that SAFNet should work
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well for SAS and SAR images as well, although some adjustments may be needed to
accommodate the characteristics of such images. For example, we may need to perform
specific preprocessing on input images, or tune our network architecture and parameters to
better handle the noise and lighting conditions of such images. Future research directions
may include more experiments on SAS and SAR images to evaluate and optimize the
performance of our method on such images. We also expect to further investigate possible
improvements and optimizations to make our method better serve various fields of change
detection in remote sensing images.

5. Conclusions

In this paper, we propose a bitemporal remote sensing image change detection net-
work based on Siamese-attention feedback architecture (SAFNet). The network adopts
an overall decoder–encoder structure. Through the time interaction module (TIM) estab-
lished between the decoder and the encoder, the network can enhance the interaction of
feature information between two time steps, filter out redundant information, and improve
the network’s perception of the entire change target. By introducing the global semantic
module (GSM) in the encoder network, the network can capture the semantic change map
of the change target, providing guidance for the reconstruction of the prediction map. In
addition, we propose two modules: change feature extraction module (CFEM) and feature
refinement module (FRM). CFEM captures multi-scale temporal difference information,
enabling the network to learn edge features and texture features of the change area better.
FRM focuses adaptively on the change area, improving the network’s detection capabilities
for edge details and small targets. Experimental results show that our proposed SAFNet
outperforms other algorithms on BICD, CDD and LEVIR-CD datasets, and the F1 and
MIoU indicators reach 84.09%, 89.48%, 90.67% and 83.31% and 76.36%, 89.66%, with very
good generalization and robustness.
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