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Abstract: The NASA Cyclone GNSS (CYGNSS) mission provides one Delay Doppler Map (DDM)
per second along observational tracks. To account for spatiotemporal correlations within adjacent
DDMs in a track, a deep hybrid CNN-LSTM model is proposed for wind speed prediction. The
model combines convolutional and pooling layers to extract features from DDMs in one track, which
are then processed by LSTM as a sequence of data. This method leads to a test RMSE of 1.84 m/s. The
track-wise processing approach outperforms the architectures that process the DMMs individually,
namely based on Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN), and
a network based solely on fully connected (FC) layers, as well as the official retrieval algorithm of the
CYGNSS mission with RMSEs of 1.92 m/s, 1.92 m/s, 1.93 m/s, and 1.90 m/s respectively. Expanding
on the CNN-LSTM model, the CNN-LSTM+ model is proposed with additional FC layers parallel
with convolutional and pooling layers to process ancillary data. It achieves a notable reduction in
test RMSE to 1.49 m/s, demonstrating successful implementation. This highlights the significant
potential of track-wise processing of GNSS-R data, capturing spatiotemporal correlations between
DDMs along a track. The hybrid deep learning model processing the data sequentially in one track
learns these dependencies effectively, improving the accuracy of wind speed predictions.

Keywords: deep learning; CNN-LSTM; GNSS reflectometry; track-wise retrieval; ocean wind speed;
CYGNSS

1. Introduction

Ocean surface wind plays a vital role in the Earth’s system, serving as an indicator
of ocean–atmosphere interaction. It influences ocean currents, facilitates heat and water
vapor transport, impacts marine transportation, generates swells and waves, and influ-
ences the ocean ecosystem. However, it can also become a destructive force, leading to
hurricanes that pose a threat to residential areas and cause a loss of life and extensive
damage. Therefore, understanding and modeling this parameter are crucial for predicting
the atmosphere–ocean system and establishing effective warning systems. This task has
become increasingly important due to the amplified frequency and severity of tropical
storms caused by climate change [1,2].

Global navigation satellite system reflectometry (GNSS-R) is a remote sensing tech-
nique that utilizes GNSS signals reflected from the Earth’s surface. It enables the acquisition
of various Earth parameters through instruments located at ground-based stations, on-
board aircraft or airships, and different space platforms [3,4]. The GNSS-R technique offers
distinct advantages for ocean wind monitoring, including its cost-effectiveness, lightweight
instrumentation, and low power requirements. Furthermore, GNSS-R also provides data
during rainfall with higher quality than conventional sensors [5,6]. These advantages allow
for the deployment of multi-satellite constellations with high sampling rates, surpassing
those of existing ocean surface wind data. The NASA Cyclone GNSS (CYGNSS) Earth
Venture mission, launched in December 2016, represents the first mission fully dedicated to
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GNSS-R [7]. CYGNSS consists of eight microsatellites and aims to monitor ocean surface
winds, particularly in tropical cyclones and hurricanes. By complementing existing ocean
wind data, CYGNSS overcomes challenges in hurricane forecasting.

Traditional wind speed retrieval methods primarily use parametric fitting approaches [5,8–10].
Typically, these methods involve conducting regression analysis between the quantities
extracted from measured DDMs and a match-up dataset obtained from other instruments
or reanalysis model estimates. For CYGNSS, the quantities of interest extracted from the
DDMs are usually the normalized bistatic radar cross-section (NBRCS) or the leading
edge slope (LES) of a three-delay x five-Doppler bin box, which includes the specular
point bin [8]. Subsequently, the derived NBRCS/LES is then fitted to wind speed data
using the minimum variance estimator (MVE). However, a limitation of these methods
is that incorporating information from the entire DDM, instead of just a limited box, or
introducing additional parameters for bias correction can be challenging.

Spaceborne GNSS-R is a novel technique that provides large datasets surpassing
those obtained through traditional instruments. Deep learning holds potential as an
effective processing tool in this domain. Recent studies have explored the potential of
machine learning for GNSS-R ocean wind speed prediction, but many have relied on simple
methodologies and architectures. Feedforward neural networks have been used to derive
wind speed from TDS-1 and CYGNSS data, achieving root mean square errors (RMSE) of
2.76 m/s and 1.51 m/s, respectively [11,12].

Convolutional neural networks (CNNs) are commonly employed for tasks such as
image and video recognition, object detection, classification, and segmentation. They have
shown promise in predicting wind speed from CYGNSS delay-Doppler maps (DDMs). As
DDMs can be viewed as image-like data, CNNs can extract features through conventional
layers and process the hierarchical patterns within them. CNNs have recently been pro-
posed to process DDMs directly and combine them with ancillary information. One study
presented an ensemble average model, utilizing multiple trained models on supercomput-
ing servers, achieving an RMSE of 1.36 m/s [13]. Another study reported a CNN-based
model with an RMSE of 1.53 m/s [14]. Recently, CYGNSS DDMs have been processed
based on transformer networks, resulting an RMSE of 1.43 m/s, and the models offered
explainability through attention maps [15].

CYGNSS collects DDMs on board the spacecraft at one-second intervals along one-
dimensional observation “tracks”. The DDMs within a track exhibit spatial correlation,
indicating that processing them on a track-wise basis could potentially enhance prediction
accuracy compared to conventional methods that evaluate DDMs individually. It has been
shown that the wind speed estimation bias of conventional methods can be reduced by a
careful assessment of the DDM-extracted quality on a per-track basis [16]. Consequently,
the implementation of a track-wise machine learning processing approach can potentially
enhance the accuracy of wind speed prediction using CYGNSS DDMs.

Previous studies have demonstrated CNNs’ ability to extract wind speed from indi-
vidual DDMs [13,14]. However, CNNs can be combined with architectures such as long
short-term memory (LSTM) to process CYGNSS data sequence-wise. LSTM benefits from
its forget gates and artificial memory, enabling it to learn the spatial dependencies of DDMs
within a track. On the other hand, CNNs excel at extracting hierarchical patterns from
DDMs and combining complex features obtained through filter operations. In a recent
study, wind speed estimations were conducted using a CNN-LSTM network [17]. However,
the LSTM component of the network in this study was specifically designed to capture the
temporal correlation of wind speed in a particular area, rather than considering DDMs
in a track as sequential data. The current study introduced a hybrid CNN-LSTM deep
learning model to investigate how the fusion of these two architectures enhances wind
speed predictions based on a track-wise processing approach.

To address this question, the study developed a hybrid CNN-LSTM model and evaluated
its performance against conventionally used architectures. Section 2 introduces the measure-
ments and datasets. Section 3 provides an overview of the methodology and describes the
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models’ architecture. In Section 4, the results are presented, and the models’ performance is
evaluated and discussed. Finally, the concluding remarks are given in Section 5.

2. Dataset

CYGNSS data are provided in three levels. Level 1 data consist of geolocated DDMs.
Level 2 data provide time-tagged and geolocated average wind speeds, and Level 3
data offer science data records with average wind speeds gridded at a resolution of
0.2 × 0.2 degrees. In this study, we used Level 1 data (DDMs) with the objective of convert-
ing the data into wind speeds (Level 2).

The dataset was originally available in NetCDF format from NASA’s Physical Oceanog-
raphy Distributed Active Archive Center (PODAAC) (https://podaac.jpl.nasa.gov/dataset/
CYGNSS_L1_V2.1 (accessed on 20 March 2023)). The dataset covers a six-month period
from January 2018 to June 2018.

As the approach employed was supervised learning, the CYGNSS DDMs needed to be
labeled with wind speed information. To label the data, we used ERA5 weather estimates
provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) [18].
ERA5 offers hourly estimates of atmospheric, land, and oceanic parameters at a spatial
resolution of 30 km. Each CYGNSS DDM corresponds to a specific spatial grid cell, and
the closest available ERA5 estimate within the same time interval was considered as the
collocated wind speed label. The nominal width of the CYGNSS swath path is recognized
to extend up to 25 km, as indicated by the data publisher. However, the spatial resolution
of CYGNSS measurements is significantly influenced by ocean roughness conditions.
CYGNSS collects one DDM per second, employing a coherent integration time of 1 s. The
potential existed for the inclusion of more than one DDM within individual ERA5 spatial
segments. We randomly selected one sample from each segment.

The dataset included the DDMs, which were obtained by cross-correlating the reflected
signal with a replica of the signal. The resulting cross-correlation power was then mapped
based on delays and Doppler frequency shifts. The power mapped in the DDMs was
dependent on the ocean surface state (i.e., surface roughness caused by winds) along with
a set of technical parameters, such as the antenna gain of the GPS transmitter and CYGNSS
receiver. The DDMs were further processed into DDM BRCS, where technical effects were
corrected to a major extent, resulting in a dependency primarily on the ocean surface state.
Figure 1 displays examples of CYGNSS DDM BRCS at different wind speeds, illustrating
that the BRCS at each DDM bin varied inversely with wind speed. This correlation allowed
for the estimation of wind speed using the BRCS DDMs.

Figure 2a depicts the relationship between NBRCS and the collocated wind speeds
obtained from ERA5 estimates. The figure showcases the expected trend in NBRCS as a
function of wind speed, thereby confirming the accuracy of the collocation process.

(a) (b)

Figure 1. Cont.

https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V2.1
https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1_V2.1
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(c) (d)
Figure 1. Exemplary BRCS DDMs of CYGNSS at wind speeds below 3 m/s (a) and between 5 and
7 m/s (b), 11 and 13 m/s, (c), and 14 and 16 m/s (d).

The data measurements were filtered by a set of quality conditions, as reported in [13].
The outlier measurements were also filtered out at a confidence level of 95%. To be more
specific, the samples lying outside the 95% confidence interval of NBRCS were already
removed. Figure 2b,c show the histograms of samples.

(a)

(b) (c)
Figure 2. NBRCS versus wind speed (a) and histogram of the dataset used in this study, wind
speed (b) and NBRCS (c).

3. Model Architectures

To explore the effectiveness of different architectures and determine whether the
sophisticated LSTM-CNN networks outperformed others, several architectures were devel-
oped. These architectures included: (i) a simple network comprising fully connected layers,
(ii) a CNN-based network, (iii) an LSTM-based network, (iv) an LSTM-CNN network that
conducted track-wise processing, and (v) an upgraded version of this network, referred to
as LSTM-CNN+ in this study. LSTM-CNN+ incorporated ancillary data through parallel
fully connected layers (illustrated in the following). All these architectures were developed
and evaluated in this study using the same training and test data to ensure a fair compar-
ison. It must be noted that the specific hyperparameters in each network, including the
number of hidden layers and neurons in these layers, the unit size, and the dropout rate,
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were determined through trial and error, based on achieving the best performance on the
validation dataset. This was the only viable approach and is also common in deep learning
model development studies, including those for GNSS-R wind speed retrievals [11–15].

3.1. Fully Connected Layers

The first architecture employed in this study was based on fully connected (FC) layers,
which constituted a feed-forward neural network (FFNN). In an FFNN, information flows
only in a forward direction, with connections between neurons transmitting outputs solely
to subsequent layers, rather than back to previous layers or the same layer. Essentially,
the information processed through multiple hidden layers is sequentially passed forward,
without any backward flow. In contrast, a recurrent neural network (RNN) allows for
interconnections that can form cycles or loops, thus creating an artificial memory [19]. More
details on RNNs can be found in Section 3.2.

The network based on fully connected layers consisted of three layers. The DDMs
were reshaped from an 11 × 17 input array into a 187 × 1 vector for input into the network.
Thus, to ensure that the input layer had the correct number of input features, the number
of neurons in the first layer was set to 187. The hidden layer of the network comprised
12 neurons, while the last layer output the wind speed with a single neuron. Additionally,
a dropout layer with a rate of 0.2 was included between the hidden and output layers. A
dropout layer was also used within the following architectures to prevent overfitting. This
dropout layer randomly deactivated a portion of the neurons during training, reducing
their co-dependency and promoting better generalization [20].

3.2. Long Short-Term Memory

Here, the problem was reformulated such that the delay-Doppler map (DDM) bins
were treated as sequential data rather than a feature vector, enabling the RNN to model
the correlations between the bins. However, although RNNs have the potential to ex-
cel with this processing strategy, they may encounter difficulties when trained on long
sequences [19,21]. To address this issue, long short-term memory (LSTM) was proposed.
LSTM is a specialized type of RNN with an enhanced recurrent hidden unit to capture
long-term dependencies [22–25].

Figure 3 illustrates the architecture of the proposed LSTM for processing the DDMs. The
input of the network consisted of the DDMs with bins denoted as x from an 17 × 11 array
of pixels. In this approach, the network treated every DDM as a sequence of 17 vectors,
each comprising 11 elements. Consequently, the network could learn the inter-correlation
among the pixels of the 17 input sequences of data, with each sequence having a size
of 11 elements. Thus, xk represents the kth input (row of the DDM) in that sequence.
The output of the network was a continuous value indicating the wind speed in m/s for
the entire data sequence, i.e., an individual DDM. The processing strategy of the LSTM
followed a many-to-one approach.

3.3. Convolutional Neural Network

A CNN is a type of deep learning model that is commonly used in tasks such as speech
and image classification, as well as video analysis. CNNs are effective in automatically
extracting visual features from data. Typically, a CNN is composed of multiple convolu-
tional and pooling layers, and it may also include FC layers. Pooling layers reduce the
dimensionality of the data by taking small blocks from the output of the convolutional
layers and producing a single output value for each block. Among the different types of
pooling, max-pooling, where the maximum value within a block is passed to the next layer,
is particularly popular.

CNNs have the ability to automatically extract features from images and learn multiple
layers of increasingly complex features. The initial layers of a CNN extract simple features,
while subsequent layers extract and detect higher-level features. These features can then be
passed to fully connected layers for further processing and generating the final output.
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Figure 3. The architecture of the LSTM network used for extracting wind speed from CYGNSS
BRCS DDMs consisting of several layers. The first two layers comprised 32 and 16 recurrent units,
respectively. These were then followed by a dense layer with 64 units; a dropout layer with a rate of
0.2; and, finally, the output dense layer with a single neuron.

Although CNNs are commonly used for tasks like image and video recognition, object
detection, and segmentation, in this case, they were applied to a regression task: predicting
the wind speed from CYGNSS DMMs. The DDMs, being two-dimensional arrays, could
be treated as image-like data, and their features could be extracted and processed using
convolutional layers. The hierarchical patterns present in the DMMs could be leveraged by
the network. The overall architecture is depicted in Figure 4.

Figure 4. The architecture of the CNN used for extracting wind speed from CYGNSS BRCS DDMs.
The kernel size of the max-pooling layer was (2, 2), and the stride was 1.
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3.4. Hybrid CNN-LSTM

By combining the unique capabilities of the deep neural networks discussed in the
previous subsections, we could leverage the strengths of each model. LSTM benefits from
its forget gates and artificial memory, enabling it to learn spatial dependencies within the
DDMs in one track. On the other hand, CNNs excel at learning hierarchical patterns and
assembling complex features by leveraging simpler patterns identified by the filters. With
the goal of improving wind speed predictions, we proposed a hybrid model that combined
the LSTM and CNN architectures.

CYGNSS DDMs are collected in one-second intervals along one-dimensional obser-
vation tracks onboard the spacecraft. The adjacent DDMs within a track exhibit spatial
correlation. Therefore, by processing the DDMs in a “track-wise” manner, we could poten-
tially enhance prediction accuracy compared to traditional methods that evaluate DDMs
individually. To achieve this, we proposed the CNN-LSTM architecture, which processed
the DDMs as described in the following.

Firstly, the CYGNSS DDM tracks were divided into subtracks consisting of 10 DDMs.
Convolutional layers were applied in parallel to extract features from each DDM. These
features were then flattened and evaluated in a sequence-wise manner by an LSTM. After
passing through two LSTM layers with 63 and 32 recurrent units, respectively, the higher-
level features were fed into FC layers. The final FC layer, containing ten neurons, output
ten wind speeds corresponding to each DDM within the shortened track. The architecture
is visualized in Figure 5. Initially, a 2D convolutional network was defined, comprising
Conv2D and MaxPooling2D layers. The Conv2D layer extracted features from DDM
snapshots, treating them as images with a single channel (similar to black and white
images) and reading a 17 × 11 pixel DDM. The output of Conv2D was an array with a size
of 17 × 11. Subsequently, the MaxPooling2D layer with a block size of 2 × 2 consolidated
the output, resulting in an 8 × 5 matrix. This matrix was then flattened, transforming the
8 × 5 map into a 40-element vector.

Figure 5. The architecture of the CNN-LSTM for the extraction of wind speed from CYGNSS BRCS
DDMs. The kernel size of the max-pooling layer was (2, 2), and the stride was 1.

This process was repeated for each of the ten DDMs within a shortened track, generat-
ing a 10 × 40 array as the output of the CNN segment. The CNN segment was applied to
each input DDM, and the output of each DDM was transferred to the LSTM as a single time
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step. Thus, the LSTM’s task was categorized as “many-to-many”, involving the prediction
of ten wind speeds from ten DDMs, each of which was initially preprocessed by the CNN.

It is important to note that in this approach, the CNN and LSTM were treated as inde-
pendent steps, as implemented in [26]. This was distinct from the CNN-LSTM proposed
in [27], where matrix multiplication was replaced with convolution operations at each gate
within the LSTM cell.

3.5. Enhanced Hybrid CNN-LSTM (CNN-LSTM+)

The results presented in the following section demonstrate that the CNN-LSTM archi-
tecture outperformed other architectures in wind speed prediction. To further enhance the
performance, an additional pipeline was introduced, which combined ancillary information
and corrected associated biases. One example of such a bias was the effect of a higher
incidence angle, which led to a longer signal path and consequently a lower signal power.
The received power was also influenced by the power of the signals transmitted from the
GPS satellite, known as equivalent isotropically radiated power (EIRP).

While the BRCS DMMs used in this study were expected to account for these effects,
it has been shown that incorporating these input variables could enhance wind speed
predictions using machine learning techniques [11]. One possible explanation is that the
theoretical models employed for computing the BRCS may not completely remove technical
effects, such as those associated with the instrumental properties, as they rely on simplifying
assumptions that may not be valid for all real-world scenarios. Additionally, traditional
models lack validation under different conditions, given that spaceborne GNSS-R is a
relatively new remote sensing technique.

Therefore, leveraging deep learning to model and mitigate these effects could be a
viable solution. By incorporating ancillary information and correcting associated biases
through the additional pipeline, the accuracy of wind speed predictions could be further
improved. It has been shown that incorporating manually extracted features into CNNs
can improve prediction accuracy. Handcrafted features are often added to networks for
tasks like image classification [28]. It has also been shown that adding DDM-extracted
features to CNNs can enhance the accuracy of wind speed predictions [13].

Figure 6 presents the correlogram, illustrating the relationships between each pair of
the four additional variables (NBRCS, LES, incidence angle, and GPS EIRP) and wind speed.
The diagonal of the correlogram represents the distribution of each variable, visualized
through histogram plots. The ancillary data depicted in this figure were chosen based
on theoretical knowledge. These data, rooted in physical understanding, either exhibited
strong correlations with wind speed, aiding the network in achieving improved predictions
(NBRCS and LES), or represent technical parameters known to introduce biases (incidence
angle and GPS EIRP). Although the figure illustrates some dependencies clearly, the impact
of others may not be entirely evident. Nevertheless, upon incorporating these parameters
into the network, they led to a significant improvement in performance.

The architecture of CNN-LSTM+ is shown in Figure 7. In this architecture, FC lay-
ers were added to process the four ancillary parameters simultaneously for each of the
10 DDMs. These features were then concatenated with the flattened features obtained
from the convolutional and max-pooling layers, which processed the BRCS DDMs. The
concatenated features from both the main and ancillary data were treated as a sequence
and processed by LSTM layers. Finally, the FC layers output 10 wind speed variables,
corresponding to each DDM within a track. By incorporating both the main and ancillary
data, CNN-LSTM+ aimed to improve the accuracy of wind speed predictions.
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Figure 6. Correlogram of the ancillary data, NBRCS (unitless), LES (unitless), incidence angle
(degrees), and EIRP (Watts), considered as additional input variables for CNN-LSTM+, and wind
speed (m/s).

Figure 7. The architecture of CNN-LSTM+ for the extraction of wind speed from CYGNSS BRCS
DDMs. The kernel size of the max-pooling layer was (2, 2), and the stride was 1.
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4. Implementation and Results
4.1. Training

For the implementation of deep learning in CYGNSS data processing, the Python
environment and the Keras library were used. Keras is a well-known open-source Python
library that enables the creation and validation of deep learning models.

The rectified linear unit (ReLU) activation function was used throughout all the pro-
posed networks. The ReLU function is defined as f (x) = max(0, x), where x represents
the input to a neuron. This choice was made to overcome the vanishing gradient problem
associated with sigmoid and hyperbolic tangent activation functions, leading to faster
learning and improved performance. For weight optimization, the Adam algorithm [29]
was employed. Adam is an optimization algorithm that serves as an alternative to classi-
cal stochastic gradient descent, enabling the iterative updating of weights towards their
optimal values.

The dataset was divided into three groups: training (55%), validation (20%), and test
(25%). The datasets used for training, validation, and testing were collected from different
time periods. This approach was adopted to ensure that the test data remained indepen-
dent and unbiased, allowing for a fair evaluation of the trained networks. The network
was trained using the training dataset, with careful consideration given to the number of
iterations for weight updates. Overfitting to the training dataset was prevented by imple-
menting “early stopping”. This technique automatically halted the training process when
no improvement in model performance on the validation dataset was observed. Specifically,
the loss value on the validation dataset was monitored, and training was stopped if it did
not decrease after a certain number of iterations, referred to as the “patience”. In this
implementation, a patience of 10 iterations was set.

Before training, the dataset underwent normalization. This process scaled each input
value to a range of 0 to 1. The MinMaxScaler preprocessing class from the scikit-learn
library was used for dataset normalization. The BRCS DDMs served as the input attributes,
while their corresponding labels, ERA5 wind speed, represented the output attributes. The
input for each of the five networks was aligned to conform to the specified architectures.

The FC layer model was trained for 40 epochs, achieving a mean squared error (MSE)
loss value of 3.77 (m/s)2. The validation loss was slightly lower at 3.75 (m/s)2. This LSTM
model was trained after 87 epochs, with comparable loss values of 3.77 and 3.75 (m/s)2

for the training and test data, respectively. The LSTM model required more training time
compared to the FC layer model due to its more complex architecture.

The CNN model was trained after 94 epochs. The final MSE loss values for the training
and validation data were 3.86 and 3.78 (m/s)2, respectively. The CNN-LSTM model was
trained after 54 epochs, achieving a training loss of 3.03 (m/s)2 and a validation loss of
2.29 (m/s)2. The CNN-LSTM model demonstrated a significant improvement in terms of
training and validation loss compared to the FC layer, LSTM, and CNN architectures.

Finally, the CNN-LSTM+ model was trained after 50 epochs, resulting in a training
loss of 2.22 (m/s)2 and a validation loss of 2.26 (m/s)2. These values indicated a substantial
improvement in performance over the training and validation datasets compared to the
previous models.

4.2. Models’ Performance

To assess the performance of the models, wind speed datasets were generated using
each of the five deep learning networks over the test data. The test data were not used
during the model development, either directly (similar to the training data) or indirectly
(similar to the validation data). This allowed the evaluation of the networks’ performance
on unseen data and their generalization capability.

Figure 8 illustrates the results of the deep learning methodologies on a global scale.
The log-density plots depict the winds predicted by each of the five models compared to
the ground truth, which comprised the ERA5 winds, for the test dataset. The figure also
provides the RMSE and bias values for each network. The wind retrievals from all networks
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exhibited a nearly symmetric distribution centered around the 1:1 line within the range of 4 to
8 m/s. However, at low wind speeds, the networks tended to overestimate the winds. This
behavior was not specific to the retrieval methods but rather a common issue across different
methodologies, which could be explained by the characteristics of the observables. GNSS-R
measurements, for example, show limited sensitivity to winds below 2.5 m/s, and simulations
have confirmed this limitation in predicting very low wind speeds [30]. Nonetheless, this
overestimation of low winds is not a significant disadvantage of GNSS-R measurements and
is also observed in other radar data. Similar overestimations of low winds have been reported
in other studies regardless of the methodology employed [5,13,31].

(a) FC layers. (b) LSTM.

(c) CNN. (d) CNN-LSTM.

(e) CNN-LSTM+.
Figure 8. Predicted wind speeds over the test data versus ERA5 estimates. (a) FC layers:
RMSE = 1.93 m/s, bias = −0.24 m/s. (b) LSTM: RMSE = 1.92 m/s, bias = −0.28 m/s. (c) CNN:
RMSE = 1.92 m/s, bias = −0.08 m/s. (d) CNN-LSTM: RMSE = 1.84 m/s, bias = −0.12 m/s. (e) CNN-
LSTM+: RMSE = 1.49 m/s, bias = −0.08 m/s.

On the other hand, at high wind speeds, some of the networks tended to underestimate
the winds. This behavior was expected as the DDM observables, such as NBRCS, exhibited
reduced sensitivity to changes in wind speed. Underestimation at high wind speeds has
also been observed in winds retrieved by the official CYGNSS algorithm [31]. This issue is
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common in traditional radar measurements, which also experience degraded performance at
high wind speeds. However, the magnitude of this bias at high wind speeds differed among
the deep learning models. As shown, the CNN-LSTM+ model maintained the symmetry of
the log-density plot even at higher wind speeds, centered around the 1:1 line. The superiority
of this network may stem from its ability to better learn trends at high wind speeds and
overcome the “tendency to the mean” issue discussed in Section 4.3.

The log-density plots of the networks over the test data demonstrate how the perfor-
mance improved with more advanced architectures. The predicted winds exhibited greater
concentration around the 1:1 line for the CNN-LSTM and CNN-LSTM+ models. Among them,
the CNN-LSTM+ model stood out as the best model for obtaining wind speed, with an RMSE
of 1.49 m/s and a bias of −0.08 m/s. Overall, all the networks showed acceptable accuracy,
with an RMSE below 2 m/s.

The distributions of the wind speeds predicted by the five networks, compared to
the ground-truth ERA5 wind estimates, are depicted in Figure 9. Overall, the wind speed
distributions exhibited a distortion characterized by an increased concentration of predictions
around the mean wind speed value. However, the extent of this distortion varied among the
different networks. The networks based on FC layers, LSTM, and CNN (Figure 9a, Figure 9b
and Figure 9c, respectively) displayed a more pronounced accumulation of wind speed
predictions around the mean.

(a) FC layers. (b) LSTM.

(c) CNN. (d) CNN-LSTM.

(e) CNN-LSTM+.
Figure 9. Distributions of predicted wind speeds versus that of ERA5 estimates.
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Similarly, the CNN-LSTM network (Figure 9d) also exhibited a distortion, although
it showed a slight improvement compared to the previous models. In Figure 9e, the
distribution of wind speeds predicted by the CNN-LSTM+ network is compared to the
true wind speeds. It demonstrated a much closer fit to the true wind speed distribution,
indicating a significant improvement compared to the previous deep learning architectures.
Further discussion on this improvement is provided in Section 4.3.

The CNN-LSTM+ architecture, being the best-performing model in this study, was
further evaluated and visualized in terms of its predicted wind speeds. Figure 10 presents
the predicted wind speeds along two exemplary tracks, as well as the corresponding BRCS
DDMs. Generally, consistency was observed between the predicted wind speeds and the
ERA5 wind speeds.

Figure 10. Wind speed profiles predicted by CNN-LSTM+ in two exemplary tracks, along with the
corresponding BRCS DDMs.
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To assess spatial trends and performance variability, Figure 11 displays the global
map of the average wind speed, as well as the RMSE and bias of the CNN-LSTM+. There
was notable agreement between the global average maps of ERA5 and the wind speeds
predicted by the CNN-LSTM+. The RMSE and bias values remained within acceptable
ranges worldwide, although the RMSE tended to be slightly larger in regions with higher
latitudes where the average wind speed is higher. These findings are discussed in more
detail in Section 4.3.

(a)

(b)

(c)

(d)
Figure 11. The global map of average wind speed from ERA5 (a), and that predicted by
CNN-LSTM+ (b), as well as the RMSE (c) and bias (d). The units in all the maps are m/s.
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As a benchmark for evaluating the proposed deep learning models, we compared the
results to wind speeds retrieved using the official operational MVE method [8,32], which
is used to generate Level 3 CYGNSS data products. The traditional retrieval algorithm
follows a time-averaging procedure [33] to smooth out the wind speeds, thereby improving
their accuracy but sacrificing spatial resolution. It is important to note that no averaging
or smoothing was applied to the results of the deep learning models in this study, which
should be taken into consideration when comparing the outcomes.

The RMSE and bias of the CYGNSS baseline algorithm, evaluated over a dataset with
the same population and temporal coverage as the test dataset used for the deep learning
architecture evaluation, were 1.90 m/s and 0.20 m/s, respectively. The RMSEs of the FC
layers, LSTM, and CNN models were slightly higher compared to the MVE, whereas the
CNN-LSTM and CNN-LSTM+ models outperformed the baseline algorithm. CNN-LSTM+
achieved a 22% reduction in the RMSE compared to the MVE. The bias of CNN-LSTM+
was also smaller than that of the MVE, with values of -0.08 m/s and 0.20 m/s, respectively.
Finally, Table 1 summarizes the performance of the deep learning architectures and the
MVE algorithm.

Table 1. The performance of the trained deep learning models and the operational retrieval algo-
rithm, MVE.

Architecture RMSE (m/s) Bias (m/s) Training
Epochs

Training
MSE (m/s)2

Validation
MSE (m/s)2

FC layers 1.93 −0.24 40 3.89 3.79
LSTM 1.92 −0.28 87 3.77 3.75
CNN 1.92 −0.08 94 3.86 3.78

CNN-LSTM 1.84 −0.12 54 3.03 3.29
CNN-

LSTM+ 1.49 −0.08 50 2.22 2.26

MVE 1.90 0.20 - - -

4.3. Summary and Discussion

The FC layers model was the simplest architecture that could be used. Due to this
simplicity, the model needed fewer epochs compared to other architectures; however,
the training and validation loss, as well as the test RMSE, were the highest among the
models. Comparing the training time of the FC layers and LSTM models, it was seen that
LSTM required a longer training time, as shown by the higher number of training epochs.
However, LSTM resulted in slightly improved training loss, validation loss, and test RMSE
values. LSTM, with its artificial memory, was able to capture the dependencies of the DMM
bins on each other and, as a result, predict the wind speed based not only on the absolute
values of the DDM bins, but also on their states relative to each other (the patterns in
the DDMs).

The CNNs were able to extract the visual patterns through their convolutional and
pooling layers. However, it was shown that they required 94 epochs for training and were
the slowest of the architectures. Although the training and validation loss were slightly
better than those of LSTM, no improvement in the test RMSE was shown. The bias was
smaller, at −0.08 m/s.

The hybrid CNN-LSTM model showed an improvement in training and validation
loss and the test RMSE, and it converged to the optimal weights more quickly compared to
CNN and LSTM after 54 epochs, although the network’s architecture was more complicated.
CNN-LSTM was able to better learn the patterns in DDMs and output a more accurate
wind speed.

Within CNN-LSTM+, the introduction of NBRCS and LES could significantly im-
prove the performance of the network. Additionally, the technical parameters of the
incidence angle and GPS EIRP were considered as inputs so that the network could cor-
rect the associated effects. Therefore, CNN-LSTM+ resulted in significantly lower values
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of training and validation loss and the best test RMSE and bias values of 1.49 m/s and
−0.8 m/s, respectively.

The distribution of the winds predicted by FC layers, LSTM, and CNN-LSTM showed
distortion with respect to that of the true winds. This issue could have been mainly due
to the “regression to the mean” issue, which is a common problem in deep learning using
unbalanced data. The loss values used in regression, such as the MSE, are normally values
averaged over all predicted values. When most of the data population was concentrated
at the mean value, i.e., 6–7 m/s, the network tended to a conservative prediction around
this value if it was not able to learn the trends at extreme ranges. With this strategy, the
loss value, i.e., the MSE in this study, could still be close to its optimal value, although
the extreme predictions were smoothed closer to the mean. This issue was resolved by
CNN-LSTM+ to an acceptable level, showing a much better fit between the distribution of
the predicted and true wind speeds, see Figure 9. Under high winds, the DDM observables,
NBRCS, and LES were less responsive to wind speed, see Figure 2a, and errors could cause
large biases in this range. CNN-LSTM+, processing all the DDMs in addition to NBRC
and LES, and learning the effects of the incidence angle and GPS EIRP could improve
the predictions under higher winds. As a result, the predicted distribution fit the true
distribution better.

The wind speeds derived from CNN-LSTM+ represented the best data and are further
evaluated in Figure 11. The maps show consistency between the spatial patterns of the
predicted and ERA5 average wind speeds, which further proves the accuracy of the product.
As expected, the RMSE was larger when the average wind speed was higher, and a larger
bias was also seen.

The best architecture in this study, CNN-LSTM+, with a test RMSE of 1.49 m/s,
outperformed the currently operational CYGNSS retrieval algorithm, MVE, with an RMSE
of 1.90 m/s. The operational methods for wind speed retrievals were based on the NBRCS
and LES extracted from a limited window centered at the DDM bin with the maximum
value. These parameters were fitted to matching data based on the MVE, whereas CNN-
LSTM+ processed all the DMMs throughout all delay and Doppler frequency shift bins in
addition to NBRCS and LES. CNN-LSTM+, which also took into account ancillary data,
was able to learn their associated effects, which are not easily described using theoretical
models. As a result, CNN-LSTM+ offered significantly better performance.

5. Conclusions

Spaceborne GNSS-R exploiting reflected GNSS signals for remote sensing applications
offers a wide range of possibilities for monitoring Earth parameters. One prominent
application is the monitoring of ocean wind speeds, which can complement existing
datasets and improve hurricane modeling and forecasts.

With the availability of large GNSS-R datasets from spaceborne missions, similar to
other remote sensing techniques like optical Earth observations, machine learning methods
can be employed to process GNSS-R data and generate higher-quality data products.
This study focused on implementing deep learning for spaceborne GNSS-R to retrieve
global ocean wind speeds. Five different deep learning architectures were developed
and evaluated, and the results demonstrated that these models could achieve acceptable
accuracy with RMSE values below 2 m/s. More advanced architectures, such as LSTM
and CNN, outperformed a network based solely on FC layers, with RMSEs of 1.92 m/s,
1.92 m/s, and 1.93 m/s, respectively.

The CYGNSS mission, which generates one DDM every second along its swath, or
track, provided the dataset for this study. To account for the spatiotemporal correlations
in the adjacent DDMs in one track, a deep hybrid CNN-LSTM model was developed. It
combined convolutional and pooling layers to extract features from a sequence of ten
DDMs on one track, which were then processed by LSTM. The CNN-LSTM model, with a
test RMSE of 1.84 m/s, achieved an improvement compared to the other networks and the
current official retrieval algorithm of the CYGNSS mission, with an RMSE of 1.90 m/s.
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Building upon CNN-LSTM, the CNN-LSTM+ model was proposed, incorporating
parallel FC layers with convolutional and pooling layers to process additional ancillary
data, including NBRCS, LES, incidence angle, and GPS EIRP. This improved network
effectively learned the patterns dependent on wind speed by considering higher-level
features and potentially correcting biases associated with the incidence angle and GPS
EIRP. The CNN-LSTM+ model achieved a notable reduction in the test RMSE to 1.49 m/s,
demonstrating successful implementation. The distribution of predicted wind speeds
aligned better with the true wind speeds, and the global average wind speed generated by
CNN-LSTM+ was consistent with the ERA5 estimates.

This study highlighted the significant potential of the track-wise processing of GNSS-R
data as an alternative to conventional methodologies that rely on the individual processing
of DDMs. By considering the spatiotemporal correlations between DDMs along a track, the
CNN-LSTM model developed in this study effectively captured these dependencies and
improved the accuracy of wind speed predictions. By taking into account the inherent cor-
relations between DDMs along a track, the model was able to extract valuable information
from the sequence of DDMs and better capture the dynamics of the ocean surface, resulting
in enhanced wind speed predictions.

The ConvLSTM+ model proposed in this study has versatile applications in GNSS-R.
Its track-wise processing capability enables it to learn the spatiotemporal dependencies
of DDMs in one track, making it advantageous for ocean ice studies using data from
polar missions.

Deep-learning-based data products, like that presented in this study, have the potential
for integration into Earth system modeling and weather forecasting through assimilation.
However, deep learning can be used for predictions, formulating end-to-end trainable
models to forecast future ocean states based on available GNSS-R and other instrument data.

Although applied to CYGNSS data, the methodology can be extended to process data
from upcoming GNSS-R missions like ESA HydroGNSS and PRETTY, planned for launch
in 2024 and 2023, respectively.
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