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Abstract: This paper focuses on the problems of inaccurate extraction of winter wheat edges from
high-resolution images, misclassification and omission due to intraclass differences as well as the
large number of network parameters and long training time of existing classical semantic segmenta-
tion models. This paper proposes a lightweight winter wheat planting area extraction model that
combines the DeepLabv3+ model and a dual-attention mechanism. The model uses the lightweight
network MobileNetv2 to replace the backbone network Xception of DeepLabv3+ to reduce the
number of parameters and improve the training speed. It also introduces the lightweight Convolu-
tional Block Attention Module (CBAM) dual-attention mechanism to extract winter wheat feature
information more accurately and efficiently. Finally, the model is used to complete the dataset
creation, model training, winter wheat plantation extraction, and accuracy evaluation. The results
show that the improved lightweight DeepLabv3+ model in this paper has high reliability in the
recognition extraction of winter wheat, and its recognition results of OA, mPA, and mIoU reach
95.28%, 94.40%, and 89.79%, respectively, which are 1.52%, 1.51%, and 2.99% higher than those for
the original DeepLabv3+ model. Meanwhile, the model’s recognition accuracy was much higher
than that of the three classical semantic segmentation models of UNet, ResUNet and PSPNet. The
improved lightweight DeepLabv3+ also has far fewer model parameters and training time than the
other four models. The model has been tested in other regions, and the results show that it has
good generalization ability. The model in general ensures the extraction accuracy while significantly
reducing the number of parameters and satisfying the timeliness, which can achieve the fast and
accurate extraction of winter wheat planting sites and has good application prospects.

Keywords: deep learning; lightweight; DeepLabv3+; attention mechanism; winter wheat recognition

1. Introduction

With socio-economic development and rapid population growth, as well as the impact
of global climate change and urban expansion, China’s sustainable agricultural develop-
ment is facing huge challenges [1]. Socio-economic development has significantly increased
the cost of food production, increasing the risk of food supply shortage [2]. Rapid popu-
lation growth has led to an increase in the demand for food, and the imbalance between
food production and population size is becoming more and more obvious [3]. Global
climate change can reduce the food production by destroying the environment in which
food grows [4]. The destruction of arable land and environmental pollution caused by
industrialization and urban expansion have reduced the space for sustainable agricultural
development [5]. The issue of food supply and security has become one of the key issues to
which China currently attaches importance [6]. Wheat is one of the world’s main sources of
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food crops [7], providing the most calories and protein [8], and its yield and quality are
related to food security [9]. China is a major global wheat producer [10], accounting for
approximately 17.98% of the world’s total wheat production [11], with an annual output of
131.4 million tons [12]. Wheat is the third largest crop in China after rice and corn [13]. Fur-
thermore, China’s winter wheat production accounts for 95% of the total wheat production
in the country [14]. China’s winter wheat planting area is about 226 million hm2 [15], and
it plays an important role in guaranteeing food security [16]. Therefore, the timely, efficient,
and accurate acquisition of winter wheat planting area information and spatial distribu-
tion is crucial for government management departments to formulate agricultural and
food policies, optimize land resources, adjust agricultural planting structures, and ensure
national food security [16,17]. It also has important applications in crop census, growth
monitoring, yield prediction, and natural disaster monitoring and assessment [18–20]. The
accurate and rapid extraction of winter wheat planting areas is an important prerequisite
for the refined management of winter wheat.

The traditional way to obtain crop planting information is usually through on-site
investigation and statistical data, and then, the survey data and statistical reports are
reported from the grassroots level to obtain nationwide data [21]. These data take a
significant amount of time to collect and process and are not available in a timely manner,
as data confidentiality delays the release of planting information [21]. This method not
only wastes time and manpower resources but also has low efficiency and a long cycle,
is unable to provide an accurate spatial distribution of crop categories, and has a certain
lag in time, making it difficult to meet the demand for the real-time control of agricultural
information [19,22].

With the rapid development of remote sensing technology, the use of remote sensing
for the large-scale monitoring of agricultural cultivation information is widely used [23].
Obtaining the crop planting area and distribution status through remote sensing methods
has the advantages of fast information extraction, wide monitoring range, strong timeliness,
and reliable results [24]. At the same time, remote sensing greatly reduces the investment of
time, manpower, material resources, and financial resources and can quickly and accurately
extract crop planting areas and obtain spatial distribution information [25,26]. Remote
sensing technology has become one of the main methods for extracting crop planting infor-
mation, which provides good technical support for crop planting information extraction
and has good application and development prospects [27]. For example, Qi et al. [14]
completed 10 m winter wheat mapping in Shandong Province, China, using Sentinel-2
imagery and coarse-resolution maps. Du et al. [28] used WorldView-2 high-resolution
images to realize the classification and area extraction of smallholder crops based on the
deep semantic segmentation method. In the process of extracting crop planting areas
from medium- and low-resolution remote sensing data, due to the low spatial resolution,
it is usually only applicable to large fields with high mechanization, and the extraction
accuracy cannot be guaranteed for smaller plots [20]. However, in most parts of China,
crop planting is still in the traditional agricultural stage, with small crop cultivation plots
and the alternating planting of multiple crops [29]. The process of extracting crop planting
areas using mid- to low-spatial-resolution remote sensing images is highly susceptible to
mixed pixel problems, resulting in significantly poor recognition performance and low
accuracy [14,28]. Because the spatial resolution of medium- and low-resolution data is
generally larger than the size of a small farm field, a pixel may contain multiple land classes
and cannot accurately extract the area of farmland [29].

At present, high-resolution remote sensing data are widely used in the fields of crop
recognition and the extraction of planting areas [30,31]. The Gaofen-2 (GF-2) satellite is the
first civilian optical remote sensing satellite developed by China with a spatial resolution
better than 1 m [32]. The GF-2 remote sensing satellite has a sub-meter-level spatial
resolution, and the images contain more abundant land information [32]. GF-2 high spatial
resolution images can identify small fields and can more accurately reflect crop information
at the field scale of smallholder farms, providing a new high-resolution remote sensing
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data source for remote sensing crop monitoring [33]. However, with images of high spatial
resolution, the spectral resolution is low, and the spectral statistical characteristics are not as
stable as those of images with medium and low spatial resolution [34]. At the same time, the
spectral differences between the same ground objects will increase, the spectral differences
between different ground objects will decrease, the spectral overlap is serious, and the
phenomenon of “different spectra of the same objects” and “same spectra of foreign objects”
is common [34,35]. Lower interclass spectral variability and higher intraclass spectral
variability in high-resolution images lead to ambiguity in classification [36]. On the other
hand, high-resolution images provide more detailed descriptions and depictions of small
land features, and the detailed information of features is amplified, which will increase
the amount of data dramatically, resulting in a sharp increase in the complexity of crop
feature extraction [37]. Traditional supervised and unsupervised classification methods are
applied to feature extraction in high-resolution remote sensing images, but only low-level
features such as color, shape, and texture can be extracted from the images, while higher-
level semantic features cannot be extracted, and the discriminative ability of the extracted
features is poor, often resulting in unsatisfactory classification results [37–40]. In order to
obtain higher-level semantic features from high-resolution remote sensing images, scholars
have conducted in-depth research on the remote sensing recognition and classification of
various crops using methods such as deep learning image semantic segmentation [28,41].
Simultaneously applying GF-2 images to identify and extract crop planting information is
of great significance for promoting the application of domestically produced satellites in
China and promoting the development of remote sensing technology in China.

Deep learning, as a branch of artificial intelligence, provides new ideas for accurate
crop classification. The crop remote sensing classification feature extraction process based
on deep learning requires no or only a small amount of human involvement to extract
the essential, abstract features of the target with advantages such as computational power
oriented to big data processing [42,43]. The convolutional neural network (CNN) is a
widely used deep learning network model in the field of computer vision with outstanding
performance in image classification, target detection, and semantic segmentation tasks [44].
In addition, CNN also shows obvious advantages in processing remote sensing image data
and has continuously achieved remarkable results in the classification and recognition of
remote sensing images in recent years [45]. Crop recognition extraction based on deep
learning has become an important field of research in the area of agricultural remote sensing
as a result of improvements in computer processing power, and numerous CNN-based
techniques have been successfully used in the study of crop recognition and classifica-
tion [46]. Deep learning has the benefit over conventional algorithms in that multi-layer
neural networks can automatically extract useful characteristics. Particularly, the CNN
model extracts high-level semantic information from images in addition to local detailed
features [47]. CNN consists of multiple nonlinear mapping layers, which improve crop
recognition accuracy by mining spatial correlations between target pixels and performing
combinatorial analysis to obtain high-dimensional features of the target [33]. For example,
Sun et al. [48] realized the intelligent extraction of winter wheat planting areas in complex
agricultural landscapes based on CNN. Chen et al. [19] extracted the spatial distribution of
crops using GF-2 images based on CNN. The DeepLabv3+ semantic segmentation model
is a more typical and high-accuracy network model in the field of semantic segmentation,
which is applied to image segmentation in various complex scenes [28,49,50]. However, the
DeepLabV3+ model also has some shortcomings. First, the large number of layers and the
large number of parameters in its feature extraction network, Xception, lead to its high com-
putation and resource consumption, making it difficult for the model to meet the demand
of large-scale and real-time detection [51]. Second, the spatial dimension of the input data
gradually decreases during feature extraction by the encoder, causing valuable information
to be lost, and detailed restoration is unable to be accomplished during decoding, which
eventually leads to a relatively low accuracy of target edge recognition [51].
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In summary, we aim to effectively solve the problems of inaccurate extraction of winter
wheat edges from high-resolution images, including misclassification and omission due to
intraclass differences, as well as the large number of network parameters and long training
time of existing classical semantic segmentation models. This paper proposes a lightweight
winter wheat plantation extraction model based on DeepLabv3+ and an attention mech-
anism. The main contributions of this study are as follows. (1) We use the lightweight
network MobileNetv2 to replace the backbone network, Xception, of DeepLabv3+, thus
reducing the number of parameters and improving the training speed. (2) We introduce the
lightweight Convolutional Block Attention Module (CBAM) attention mechanism to filter
the background information, which makes the model pay more attention to the key infor-
mation and extract the winter wheat feature information more accurately and efficiently.
(3) We rely on the improved model to achieve the fast and accurate extraction of winter
wheat planting sites from GF-2 remote sensing images, which provides reference for other
crop extraction research.

2. Data and Methods
2.1. Study Area

In this study, the eastern part of Yuncheng Basin in Shanxi Province, located at longi-
tude 110◦15′–112◦04′E and latitude 34◦35′–35◦49′N, was the study area (Figure 1). Figure 1a
shows the location of Shanxi Province in China; Figure 1b shows the location of the study
area in Shanxi Province; and Figure 1c shows the location map of the study area. The
study area is about 35 km wide from east to west and 57 km long from north to south,
with a total area of about 1111 km2. The Yuncheng Basin is bounded by the Emei Ridge
to the north, the Yellow River to the west, and the Zhongtiao Mountains to the east and
south, including the entire Sushui River Basin. Due to its location within the Zhongtiao
Mountains pre-mountain fault zone, it is a strongly subsiding basin and belongs to one of
the three important components of the Weihe River fault subsidence basin belt. The interior
of the basin is mostly river–lake phase accumulation except for a flood fan group around
the foot of the Zhongtiao Mountains. The study area has a warm–temperate continental
monsoon climate, with precipitation occurring mainly in summer, with an average annual
precipitation of 537 mm and an average annual temperature of 13 ◦C [52]. Except for some
low-lying areas with salinization, most of the Yuncheng Basin has fertile soil and sufficient
rainfall, and it has the longest frost-free period in the province. With a long history of
agricultural development and utilization, winter wheat and other grain crops are widely
grown in the basin, which is one of the major grain-producing areas in Shanxi Province [53].

2.2. Data
2.2.1. Remote Sensing Data

In this study, Gaofen-2 (GF-2) images were used as the data source of remote sensing
images to meet the requirement of high spatial resolution. The parameters of GF-2 satellite
data are shown in Table 1. GF-2 images consisted of one panchromatic band and four
multispectral bands of red, green, blue, and near infrared, with 1 m spatial resolution in the
panchromatic band and 4 m spatial resolution in the multispectral band [19]. GF-2 image
data with no clouds on 19 April 2021 within the study area were collected and downloaded,
and the entire study area was covered with 6 views of GF-2 images. At this time, the winter
wheat in the study area was in the jointing–booting stage and growing vigorously, and it
was in a different growth period from other crops; the spectral differences between crops
were large, so it was easy to identify and extract winter wheat by remote sensing.
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Table 1. Parameters of GF-2 satellite data.

Parameters Multispectral Panchromatic

Spectral range

0.45~0.52 µm

0.45~0.90 µm
0.52~0.59 µm
0.63~0.69 µm
0.77~0.89 µm

Spatial resolution 4 m 1 m
Width 45 km

Side-swing capability ±45◦

Revisit period 5 days
Coverage period 69 days
Orbital altitude 631 km

The GF-2 image data in the study area were pre-processed using Environment for
Visualizing Images (ENVI, version 5.3.1) software, and the pre-processing workflow is
shown in Figure 2. The pre-processing process of multispectral images included radiometric
calibration, atmospheric correction, and orthorectification, and the pre-processing process of
panchromatic images included radiometric calibration and orthorectification. Radiometric
calibration is used to map the digital values of the remote sensing image to the actual
radiometric measure so that an accurate relationship is established between each pixel value
in the image and the ground reflectance or radiance [54]. Atmospheric correction is used
to remove the effects of atmospheric scattering and absorption during data transmission
to restore the true reflectance information of the ground surface [54]. Orthorectification
corrects image distortions caused by changes in terrain so that the image pixels correspond
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to their actual positions on the ground [54]. Finally, the NNDiffuse Pan Sharpening fusion
method was used to fuse the panchromatic images with the multispectral images to obtain
multispectral remote sensing images with a spatial resolution of 1 m.
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2.2.2. Ground Survey Data

The collection of ground survey data helps to produce more accurate training samples
for the classification process as well as to verify the subsequent winter wheat identification
results and planting area extraction accuracy [33]. The data of winter wheat ground
survey samples in the study area were collected in the field on 26 April 2021, and the
coordinate location information of the winter wheat field survey sample points were
accurately recorded using a GNSS receiver during the field survey. The winter wheat
at the measured sample points were photographed and kept, which helped to grasp the
characteristics of winter wheat more accurately when making training labels later. The
samples were collected to meet the relevant accuracy requirements and were required to
cover the whole study area uniformly. A total of 78 winter wheat sample points were
obtained from the ground survey, and the distribution of the ground sample points is
shown in Figure 3.
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2.2.3. Dataset Production

The pre-processed GF-2 images of the study area were combined with ground survey
data and visual interpretation, and the pre-processed GF-2 images were manually labeled
using LabelMe software (version 3.16.7, http://labelme.csail.mit.edu/Release3.0/, accessed
on 16 March 2022) to produce the dataset. The winter wheat planting areas were labeled
as winter wheat and the other areas were labeled as background. Labeled images were
created and cropped to 600 × 600 pixels, as shown in Figure 4. A final dataset consisting
of 400 original images and corresponding labels is formed, and the dataset is randomly
partitioned by 8:2, of which 80% of the dataset was used for training and 20% was used for
verification of recognition accuracy.

2.3. Research Methodology
2.3.1. DeepLabv3+ Model

The DeepLabv3+ model is a semantic segmentation model that was proposed in
2018 with the model structure shown in Figure 5 [55], which is a more typical network
structure with higher accuracy in the field of semantic segmentation [56]. DeepLabv3+ is
proposed as a further improvement on the DeepLabv3 model, and their differences mainly
lie in the introduction of the encoder–decoder structure in DeepLabv3+, the different
dilation rates in the ASPP module, and the differences in the backbone networks used [51].
DeepLabv3+ uses Xception [57] as the backbone network and combines it with the atrous
spatial pyramid pooling (ASPP) module to form the encoder [49]. The encoder is used
to extract deep feature information from the input image; it usually consists of multiple
convolutional layers to learn different abstract features of the image, gradually increasing
the extraction of image features from shallow to deep layers [32]. The encoder gradually
reduces the size of the feature map by layer-by-layer convolution and pooling operations
while increasing the number of channels of the features to achieve the extraction and
compression of image features [33]. The ASPP module is designed to capture image multi-

http://labelme.csail.mit.edu/Release3.0/
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scale contextual information using dilated convolution with different dilation rates for the
better understanding of objects of different sizes and scales in an image [58]. DeepLabv3+
has improved the ASPP module by using a larger dilation rate and adding a larger receptive
field, which further improves the performance of image segmentation. In the decoder part,
the fused depth feature map is up-sampled four times using bilinear interpolation; then,
it is spliced and fused with the low-level feature map extracted by Xception; and finally,
the final segmentation result is obtained with the same size as the original image by 3 × 3
convolution and 4-fold up-sampling using bilinear interpolation [47].
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2.3.2. Replacing the Backbone Network

The traditional DeepLabv3+ semantic segmentation model uses Xception as the back-
bone network [49]. In contrast, this study used the lightweight improved MobileNetv2
network as the backbone network of the semantic segmentation model. MobileNetv2 is
a lightweight network model proposed by Google [59], which introduces the inverted
residual module and linear bottleneck layer based on the use of deep separable convolu-
tion, which greatly reduces the number of model parameters and thus makes the network
converge faster [60].

The MobileNetv2 network does not use activation functions in the low-dimensional
convolutional layers, while ReLU6 activation functions are used in the other layers to
prevent the nonlinear layers from corrupting too much feature information [59]. This feature
extraction network first obtains features of the same dimension by 3 × 3 deep convolution
and ReLU activation function; then, it obtains the reduced dimensional features by 1 × 1
convolution and ReLU6 processing, and finally, it performs dimensionality enhancement
using 1× 1 convolution [51]. The inverted residual module is primarily utilized to improve
the network’s capacity for feature extraction and the efficient transmission of multi-layer
feature information. For this module, first, 1 × 1 convolution is used to up-dimension; then,
3 × 3 depth convolution is used to extract features; and finally, 1 × 1 convolution is used to
downscale the features to obtain feature information [59].

2.3.3. Attention Mechanism

The attention mechanism learns the contextual information of the image and captures
the internal relevance of the image; the core idea is for the model to focus on critical
regional information and ignore irrelevant information [47]. The attention mechanism is
made up of the channel attention module and the spatial attention module, where the
channel attention module concentrates on which features of the image are more critical and
the spatial attention module concentrates on which region features are more critical [58]. In
order to accurately extract winter wheat planting regions, the extraction of winter wheat
edge features is made more accurate and efficient with the attention mechanism. In this
study, a Convolutional Block Attention Module (CBAM) combining the above two modules
was added to the semantic segmentation network [61]. This module focuses not only on
the scale of each channel but also on the scale of each pixel point, which can be adaptively
optimized according to the features of the input image [61]. In addition, a major advantage
of the CBAM is that it is lightweight and can be seamlessly integrated into any neural
network for plug-and-play [62].

The CBAM structure is shown in Figure 6 [61], where the input feature maps in the
channel attention module are subjected to a pooling operation to obtain the weights of
each channel of the input feature maps and apply them to the spatial attention module.
Subsequently, the spatial attention module takes the maximum value and the average value
on each channel of each feature point; after that, the weights of each feature point of the
input feature map are obtained by the same operation as the channel attention; and finally,
the weights are multiplied with the original input feature map and convolved to obtain the
deep features containing multi-scale contextual information [33].
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2.3.4. Model Improvement

Winter wheat mostly presents a faceted structure on satellite remote sensing images,
with simple semantic information but rich detailed information, which puts high demands
on the detail extraction ability of a segmentation network. The original DeepLabv3+ net-
work and other classical segmentation networks face more complex and diverse datasets
with more types of object features and larger data volumes, so the feature extraction part
of the backbone network used is more complex, enabling it to learn more complex fea-
ture patterns [49]. The Xception structure of the backbone network used in the original
DeepLabv3+, its complex structure and large number of parameters are suitable for segmen-
tation tasks with more object types, but at the same time, it brings disadvantages such as
huge computation volume and difficulty in training, which are not fully suitable for winter
wheat recognition tasks [51]. For winter wheat features on satellite remote sensing images,
this study applied the lightweight MobileNetv2 backbone network to the encoder–decoder
structure of DeepLabv3+ as an encoder to extract features. The MobileNetv2 network
has fewer parameters, and more direct connections are added in the network, having
fewer parameters, easier training, and faster convergence compared with Xception [51]. In
addition, the receptive field of convolution is increased with the addition of dilated convo-
lution, which can well combine the semantic information of the image, and it substantially
improves the operation speed, so it is suitable for the winter wheat recognition task from
remote sensing images [33]. The introduction of the CBAM makes the model pay more
attention to the key information and can extract the winter wheat feature information map
more accurately and efficiently, and the detailed information of the image and the spatial
correlation of pixels in a larger area are used to more accurately recognize in most areas
and improve the recognition effect of winter wheat plantation with different area sizes [33].
Figure 7 shows the network model diagram of the method in this study.
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2.3.5. Evaluation Metrics

To validate the performance of the improved winter wheat recognition model, six
accuracy evaluation metrics, Precision, Recall, Intersection over Union (IoU), mean pixel
accuracy (mPA), mean Intersection over Union (mIoU), and overall accuracy (OA), were
used to evaluate the recognition accuracy of the model.

Precision represents the proportion of actual winter wheat in pixels predicted by the
model as winter wheat. The calculation formula is as follows [62]:

Precision =
TP

TP + FP
(1)

Recall represents the proportion of pixels correctly predicted as winter wheat to all
actual winter wheat pixels. The calculation formula is as follows [62]:

Recall =
TP

TP + FN
(2)

IoU is the ratio between the intersection area and the union area of the predicted and
real regions. The calculation formula is as follows [33]:

IoU =
TP

FN + FP + TP
(3)

The mPA is the average of the proportion of correctly categorized pixels for all cate-
gories. The calculation formula is as follows [63]:

mPA =
1

k + 1

k

∑
i=0

TP
TP + FN

(4)

The mIoU is the average of the IoU of all categories. The calculation formula is as
follows [9]:

mIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(5)
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OA is the ratio of the number of all correctly predicted pixels to the total number of
pixels in the sample. The calculation formula is as follows [64]:

OA =
TP + TN

TP + TN + FP + FN
(6)

where k is the number of identified species except background, which is 1 in this study; TP is
True Positive; TN is True Negative; FP is False Positive; and FN is False Negative. TP and TN
represent the number of pixels correctly predicted as “winter wheat” or “non-winter wheat”,
respectively, FP represents the number of “non-winter wheat” pixels incorrectly judged as
“winter wheat”, and FN represents the number of “winter wheat” pixels incorrectly judged
as “non-winter wheat”.

3. Results
3.1. Model Training

In this study, deep learning was run in the Windows 10 operating system; the computer
was equipped with one NVIDIA GeForce RTX 3070Ti GPU (8 G memory), CUDA version
11.6; the Pytorch1.11.0 deep learning framework was used to build the network; and the
software environment was Anaconda (python3.8). The initial learning rate of the model
was 0.01, the cosine annealing decay attenuated the learning rate, and the SGD optimizer
was used with a batch size of 2 and an epoch number of 300.

3.2. Model Training Results

The training results of the improved lightweight winter wheat recognition model in
this study are shown in Figure 8.
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As can be seen from Figure 8, the loss function value gradually decreases with the
increase in training times after the training starts, and the loss function values of the training
set and the validation set decrease to 0.076 and 0.122, respectively, by the 200th training,
and they gradually stabilize, with the lowest loss function value of 0.066 in the training
set at the 299th training and the lowest loss function value of 0.115 in the validation set at
the 254th training. Therefore, with the increase in training times, the loss values of both
the training set and test set decrease, indicating that the model attains better loss function
convergence, which will help to improve the wheat recognition accuracy.

3.3. Model Recognition Accuracy

In order to verify the effectiveness of the improved lightweight model for winter
wheat planting site recognition, the improved lightweight DeepLabv3+ model built on the
MobileNetv2 backbone network was compared with four classical semantic segmentation
models, UNet, ResUNet, PSPNet, and the original Deeplabv3+ model, under the condition
that other training parameters were guaranteed to be the same. The improved lightweight
DeepLabv3+ model has the highest recognition accuracy among the five models, and the
results are shown in Table 2.

Table 2. Comparison of winter wheat recognition results of different models.

Models
Winter Wheat

mIoU mPA OAIoU Recall Precision

UNet 80.78% 88.94% 89.80% 85.58% 92.05% 93.15%
ResUNet 85.37% 91.86% 92.36% 89.06% 94.11% 94.91%
PSPNet 80.67% 88.24% 90.38% 85.54% 91.87% 93.16%

DeepLabv3+ 82.43% 90.44% 90.30% 86.80% 92.89% 93.76%
Improved DeepLabv3+ 86.30% 91.93% 93.37% 89.79% 94.40% 95.28%

Table 2 shows the accuracy results of the improved lightweight DeepLabv3+ model
and other classical semantic segmentation models for winter wheat planting area recogni-
tion. As can be seen from Table 2, the mPA and OA of all five models are above 90%, and
all five models achieved good results for winter wheat recognition extraction, indicating
that deep learning has a very good performance for winter wheat planting area recognition
extraction. Through the six evaluation indexes selected, the recognition accuracy of the
improved lightweight DeepLabv3+ model for winter wheat was higher than the other four
models. The overall accuracy, mPA, and mIoU of the improved lightweight DeepLabv3+
model reached 95.28%, 94.40%, and 89.79%, respectively, which are 2.13%, 2.35%, and
4.21% better than the UNet model, 0.37%, 0.29%, and 0.73% better than the ResUNet model,
2.12%, 2.53%, and 4.25% better than the PSPNet model, and 1.52%, 1.51%, and 2.99% better
than the original DeepLabv3+ model, respectively. The improved lightweight DeepLabv3+
model achieved IoU, Recall, and Precision of 86.30%, 91.93%, and 93.37%, respectively,
for winter wheat recognition results, which were 5.52%, 2.99%, and 3.57% better than the
UNet model, 0.93%, 0.07%, and 1.01% better than the ResUNet model, 5.63%, 3.69%, and
2.99% better than the PSPNet model, and 3.9%, 1.49%, and 3.07% better than the original
DeepLabv3+ model, respectively. This shows that the improved lightweight DeepLabv3+
model used in this study has better results for winter wheat recognition extraction.

Figure 9a,b shows the prediction results in complex scenarios and in small fields;
Figure 9c shows the prediction results under the influence of other green vegetation when
the interclass variability is small; and Figure 9d shows the prediction results when the
intraclass variability is large in winter wheat.
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Figure 9. The results of winter wheat identification with different models ((a,b) for complex scenarios
and small fields, (c) for less interclass variation, and (d) for large intraclass variation).
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It can be seen from Figure 9 that all five network models successfully identified
and extracted large areas of winter wheat plantations, but the improved lightweight
DeepLabv3+ model identified winter wheat better than the other models. The recognition
results of UNet, PSPNet, and the DeepLabv3+ original model are more messy, there are
more obvious problems of misclassification and omission, and the prediction result images
have fragmented misclassification results in some places, which will predict the features
with similar spectral information to winter wheat in the images as winter wheat. The
recognized winter wheat planting land has relatively rounded edges, and some large areas
of winter wheat planting land are connected together. The missing edge information of
winter wheat planting sites is more serious, and these models cannot handle winter wheat
planting sites with different areas and spatial dispersion effectively. ResUNet predicted
poorly for some of the larger intraclass variability in winter wheat. The overall recognition
effect of the improved lightweight DeepLabv3+ model is better. By replacing the backbone
network for feature extraction and adding the CBAM, the model pays more attention to the
key feature information. The noise phenomenon in the recognition results is significantly
reduced, the integrity of the plots is enhanced, the overall recognition effect is improved,
the edge information of the winter wheat plantation is extracted more accurately, and the
phenomenon of misclassification and omission of small winter wheat plots is alleviated.

4. Discussion
4.1. Model Evaluation

Deep learning semantic segmentation models have a definite advantage over tra-
ditional classification methods in dealing with the high-resolution image classification
of complex scenes [49]. This study optimized and improved the DeepLabv3+ semantic
segmentation model for the problems of many network parameters, long training time, and
poor convergence [51]. The backbone network in the DeepLabv3+ semantic segmentation
model is replaced with a lightweight MobileNetv2 network, and the CBAM attention
mechanism module is introduced to synthesize the training accuracy and efficiency of
the model. A lightweight winter wheat classification extraction model based on GF-2
remote sensing images is established to provide reference for the deep learning planting
information extraction of high-resolution remote sensing images. The results show that
the improved lightweight model in this study outperforms the original model and other
classical semantic segmentation models for winter wheat recognition (Table 2, Figure 9).
This is due to the fact that winter wheat mostly presents a faceted structure on remote
sensing images with simple semantic information, and with a small number of datasets,
the deeper and more complex model will produce overfitting, resulting in a decrease in
recognition accuracy. The improved lightweight model can focus on the local information
of the recognition target, and the attention mechanism enables the network to pay more
attention to the pixels of the finely fractured winter wheat plantation, thus filtering out
other interfering information. These improvements improved the recognition efficiency
and accuracy of the model, which makes the recognition of winter wheat plantations more
complete. At the same time, there are some shortcomings in this paper, and the results of
extracting complex finely fractured plots are not satisfactory (Figure 10). The presence of
other interfering elements in complex finely fractured plots brings greater difficulties to
winter wheat recognition.

To further verify the generalization ability of the improved model, the improved
model was tested in Linfen City, Shanxi Province, China. The test results are shown in
Figure 11. The accuracy of the improved model for winter wheat extraction in Linfen City
is comparable to that of the study area, indicating that the model has strong generalization
ability and is worth further promoting its use.
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4.2. Model Comparison

From the recognition results in Figure 9, it can be seen that the UNet and PSPNet
models have relatively poor extraction results for winter wheat recognition, with many
misclassifications and voids. The original DeepLabv3+ semantic segmentation model uses
dilated convolution and a multi-scale strategy, which obviously increases the receptive
field and can recognize most of the winter wheat plantations, but it can only recognize
the winter wheat plantations with small reflectance differences in the image. When the
reflectance differences within the plantation increase, the phenomenon of holes will appear,
and there are many errors in predicting the edges of small roads and planting areas in the
plot. Other crops with spectral characteristics similar to winter wheat planting areas will be
predicted as scattered winter wheat planting areas. The improved lightweight DeepLabv3+
model outperforms the original DeepLabv3+ model and obtains better recognition results.
Winter wheat mostly presents a faceted structure on remote sensing images with simple
semantic information, and with a small number of datasets, the deeper and more complex
DeepLabv3+ model will produce overfitting, resulting in a decrease in recognition accuracy.
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Therefore, a simple backbone network is needed to extract winter wheat features from a
small number of datasets. By replacing the lightweight backbone network and introducing
the CBAM, the model focuses more on important information and the pixels of the fine
winter wheat plantation so as to filter out the other interfering information and improve
the recognition efficiency and accuracy of the model. This greatly reduces the occurrence of
holes and minor road prediction errors in the prediction results. And it uses the detailed
information of the image and the spatial correlation of pixels in a larger area to more
accurately recognize results in most areas, improve the recognition of fine-grained winter
wheat planting sites with different area sizes, and improve the effect of handling winter
wheat planting sites with large differences in spectral information features, as shown in
Figure 9. From the experimental results, it can be seen that there are still some shortcomings
in the improved model for winter wheat planting land extraction. In a follow-up study, we
will continue to adjust the combination of the hole rate and backbone network parameters
in ASPP so that the model can achieve a better extraction effect on the fine-grained winter
wheat plantation. Furthermore, we consider the idea of boundary loss and propose new
methods that can improve the accuracy of boundary extraction. We consider adding
other structures and mechanisms to the model so as to strengthen the robustness of the
network and the extraction effect and more effectively improve the extraction of blurring
and hole phenomena.

The final results of the parameter sizes and training times for the five models are
shown in Table 3.

Table 3. The parameter size and training time of different models.

Models Model Parameters (MB) Training Time (h)

UNet 94.97 3.39
ResUNet 175.72 2.56
PSPNet 178.51 5.16

DeepLabv3+ 209.70 3.45
Improved DeepLabv3+ 22.47 2.05

From Table 3, it can be seen that the improved DeepLabv3+ model is the one with the
least parameters among the five models. The model parameter size is 22.47 MB, which is
much smaller than the other four models, and the parameter size is 10.72% of the original
DeepLabv3+ model, 12.59% of PSPNet, 12.79% of ResUNet, and 23.66% of UNet. The
training time of the improved DeepLabv3+ model is 2.05 h, which is the shortest training
time among the five models: it is 3.11 h less than PSPNet, 1.4 h less than the original
DeepLabv3+ model, 1.34 h less than UNet, and 0.51 h less than ResUNet. Therefore, the
improved lightweight model based on the DeepLabv3+ model in this study improves the
image segmentation speed and reduces the model parameters while ensuring no reduction
in accuracy and aiming to achieve a fast and accurate extraction of winter wheat.

4.3. Future Work

As deep learning techniques are data-driven techniques, for the GF-2 satellite images
relied on in this study, the image features acquired within a certain period of time have
high similarity and similar feature distributions, which can be obtained using deep neural
network learning, and therefore, the method in this study has good adaptive performance.
As for the satellite remote sensing images on different sources, it is necessary to add
this type of data to the training set and fine-tune the network training parameters. The
improved winter wheat recognition model in this study has room for further improvement:
for example, further improving the training accuracy and using additional multi-source
remote sensing images for migration learning to enhance generalization ability. The next
step of this study will be to use multispectral remote sensing information to further solve the
problem of winter wheat recognition and classification in mixed cropping areas, as well as
subsequent analysis and processing, and to integrate it into actual agricultural production.
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With the increasing abundance of high-resolution remote sensing images and the
increasing information demand of modern agricultural cultivation, it is necessary to
strengthen the ground survey in the future in order to obtain typical features and crop in-
terpretation marks. Establishing localized crop sample datasets can help solve the problem
of restricted sample extraction for deep learning crop classification and promote research
on the application of deep learning in the remote sensing monitoring of agricultural crops.
At the same time, using the rich geometric structure and texture features of high-spatial-
resolution remote sensing images, the deep learning method, which is good at feature
learning, will be used for farmland plot extraction. Then, taking the plot as the basic unit,
multi-source high-resolution remote sensing data will be applied to further realize the
precise classification extraction of major crops oriented to the plot scale. Ultimately, it will
provide information services for the accurate census of crop planting information, precise
management of agricultural production and crop planting structure adjustment, etc.

5. Conclusions

In this study, a lightweight winter wheat extraction model is proposed based on the
DeepLabv3+ semantic segmentation model and CBAM attention mechanism module. The
model uses the lightweight MobileNetv2 as the backbone network and introduces the
lightweight CBAM module, which effectively solves the problems of inaccurate extraction
of winter wheat edges from high-resolution images, misclassification and omission due to
intraclass differences, as well as the large number of network parameters and long training
time of the existing classical semantic segmentation models. The OA, mPA, and mIoU of
this model for winter wheat extraction results in the study area reached 95.28, 94.40, and
89.79, respectively, which are better than the other four comparison models, and the model
parameters and training time are also the least. Meanwhile, the stronger generalization
ability of the model was also verified in other regions. In conclusion, the model guarantees
the extraction accuracy while reducing the number of parameters and training time, and it
has strong generalization ability, which is worthy of further promotion and use.
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