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Abstract: Machine learning (ML)-based models are popular for complex physical system simulation
and prediction. Lake is the important indicator in arid and semi-arid areas, and to achieve the proper
management of the water resources in a lake basin, it is crucial to estimate and predict the lake
dynamics, based on hydro-meteorological variations and anthropogenic disturbances. This task
is particularly challenging in arid and semi-arid regions, where water scarcity poses a significant
threat to human life. In this study, a typical arid area of China was selected as the study area, and
the performances of eight widely used ML models (i.e., Bayesian Ridge (BR), K-Nearest Neighbor
(KNN), Gradient Boosting Decision Tree (GBDT), Extra Trees (ET), Random Forest (RF), Adaptive
Boosting (AB), Bootstrap aggregating (Bagging), eXtreme Gradient Boosting (XGB)) were evaluated
in predicting lake area. Monthly lake area was determined by meteorological (precipitation, air
temperature, Standardised Precipitation Evapotranspiration Index (SPEI)) and anthropogenic factors
(ETc, NDVI, LUCC). Lake area determined by Landsat satellite image classification for 2000–2020
was analysed side-by-side with the Standardised Precipitation Evapotranspiration Index (SPEI) on 9
and 12-month time scales. With the evaluation of six input variables and eight ML algorithms, it was
found that the RF models performed best when using the SPEI-9 index, with R2 = 0.88, RMSE = 1.37,
LCCC = 0.95, and PRD = 1331.4 for the test samples. Furthermore, the performance of the ML model
constructed with the 9-month time scale SPEI (SPEI-9) as an input variable (MLSPEI-9) depended on
seasonal variations, with the average relative errors of up to 0.62 in spring and a minimum of 0.12 in
summer. Overall, this study provides valuable insights into the effectiveness of different ML models
for predicting lake area by demonstrating that the right inputs can lead to a remarkable increase
in performance of up to 13.89%. These findings have important implications for future research on
lake area prediction in arid zones and demonstrate the power of ML models in advancing scientific
understanding of complex natural systems.

Keywords: lake area; machine learning (ML); SPEI; remote sensing; Google Earth Engine (GEE)

1. Introduction

In arid and semi-arid areas, lakes are important freshwater resources to maintain the
local ecology [1]. Furthermore, lake area is an important indicator of arid accident and
local water resources. However, lakes have changed significantly over the past decades
owing to the synergistic effects of climate change and human activities [2–4]. Lakes are
the most specific factors in surface water bodies and global climate change, and land-
use and land-cover changes are leading to profound changes in lakes. Arid and semi-
arid regions are particularly susceptible to hydrological changes, making lakes in these
areas especially sensitive and vulnerable to human activities, climate change, and their
interplay [5,6]. Intensive irrigation practices, particularly in arid regions, have resulted in
negative environmental impacts including drought, desertification, dust storms, and soil
salinisation [7].
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Therefore, monitoring vulnerable lakes in arid and semi-arid regions is crucial for
effective government decision making. Lakes are very sensitive to climatic and weather
conditions, posing considerable challenges to the study of their dynamic nature. Traditional
monitoring methods, which are time-consuming, labour-intensive, and often unable to
accurately measure the actual lake area, result in insufficient surveying and monitoring of
lakes, particularly in remote regions like the Mu Us Sandy Land.

Fortunately, satellite-based observations offer a promising solution to this dilemma [8].
By leveraging satellite image analysis, we gain a valuable tool to estimate changes in the
physical and biological properties of aquatic and terrestrial ecosystems. Studies based on
satellite imagery have determined the dynamics, variability [9,10], morphology [11], and
surface area of lakes [2,12]. A low-to-medium resolution of 30 m is preferred for longer
time series, given the spatial and temporal resolution of satellite sensors. The Google Earth
Engine (GEE) platform, with its remarkable advantages in handling vast remote sensing
data and providing abundant computing resources and storage space, has been widely
used in various research fields in recent years.

Because of the influence of water cycle processes, lake area changes seasonally and
reaches its maximum during the rainy season. Many models have been used to predict
changes in lake area. For example, Guo et al. (2022) proposed a time series model based
on the ARIMA (autoregressive integrated moving average) to predict the area of Qinghai
Lake for the next three years [13]. Harris et al. (1989) used remote sensing data to conduct
a remote sensing survey of the watershed area of the Northern Ireland Lake, and the rela-
tionship between watershed area change and water level was also discussed in detail [14].
Zeng et al. (2008) found that lake shrinkage was linked to urban construction, road traffic
planning, policy orientation, and other factors in the area [15]. In addition to the use of 3S
techniques for estimating the lake areas reviewed above, studies using data-driven models
for lake area prediction are increasingly being developed. In water resources, phenomena
are governed by the laws of physics and involve relationships with amorphous bound-
aries and complex underlying variables [16]. Most of the processes are studied through
simulations using physically based mathematical models running on computers. Running
such physics-based models for large real-world systems is computationally intensive and
difficult to generalise for a number of reasons. The primary data sources for water resources
modelling come from observations of relationships simulated in terrestrial, spatial, and wa-
ter bodies, along with surveys, laboratory experiments, and multi-year systematic studies.
The data collected include a large number of potential variables from multiple sources, at
multiple resolutions in space and time, with varying degrees of skewness and uncertainty.
To overcome these challenges, several research communities, including hydroinformatics,
climate informatics, the American Geophysical Union, and earth and space science infor-
matics, have been focusing on the application of machine learning techniques that have
shown promising performance in hydrologic and water resource applications [17]. Simple
data-driven models outperform theory-driven models in terms of prediction accuracy in
many hydrological applications [18].

With the continuous development of computer science and Deep Learning Algorithms
(DLAs), data-driven hydrologic modelling appears to be a reliable alternative to traditional
process-based hydrologic models [19].

In the past decades, data-driven models have been used as powerful tools for general-
purpose computational modelling; related applications have rapidly developed in different
areas of hydrology, and their performance has been widely recognised [20]. For example,
attempts to predict lake area using supervised learning based on available information are
increasing and have accelerated significantly since 2019. A wide range of ML algorithms
providing supervised, semi-supervised, and unsupervised models enable the prediction
of geographic elements and provide a fresh perspective on the estimation of the area of
water bodies such as lakes. In view of this, based on existing studies, integrated learning
algorithms have been introduced to combine time series for multi-factor analysis affecting
lake area change, revealing the correlation and importance of lake area change from
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multiple scales such as climate and drought conditions in the study area and laying a
solid data foundation for research on spatial pattern evolution and driving mechanisms.
Table 1 reports the main references summarising the characteristics of previous studies on
regression prediction using ML algorithms [21–28]. In this study, we tested ML methods
for predicting lake area, with a particular focus on RF, ET, and GDBT, and, considering
the choice of predictors and the characteristics of ML algorithms, investigated how we
can improve the performance of ML models. For example, does the choice of different
time scales of the input variables also contribute to better results? This study aims to fill
the research gap by providing a systematic analysis of the choice of predictors and the
performance of different ML algorithms.

Table 1. Description of machine learning model parameters.

Reference Name Description

Shrestha et al.
(2021) [21] NB Default

Khazaee et al.
(2019) [22] KNN Default

Koranga et al.
(2022) [23] GBDT

random_state = 2022,
max_depth = 4,

n_estimators = 200

Maier et al.
(2019) [24] ExtraTrees

random_state = 2022,
max_depth = 6,

n_estimators = 100

Chen et al.
(2022) [25] RF

random_state = 2022,
max_depth = 6,

n_estimators = 100

Ahirwal et al.
(2021) [26] AB random_state = 2022

Ngo et al.
(2022) [27] Bagging random_state = 2022

Ma et al.
(2021) [28] XGB

random_state = 2022,
max_depth = 6,

n_estimators = 200,
learning_rate = 0.3

2. Materials and Methods
2.1. Study Area

The Mu Us Sandy Land is located in the northern part of the Loess Plateau and the
southern part of the Ordos Plateau, specifically at the junction of Inner Mongolia, Shanxi
provinces, and Ningxia Hui Autonomous Region. This region represents a transitional zone
between the Loess Plateau and the Ordos Plateau, making it one of the four major sandy
areas in China. In this study, the Mu Us Sandy Land (107◦29′~109◦56′E, 37◦37′~39◦33′N,
27,800 km2) in Ordos City, Inner Mongolia, was selected for the study, and the administra-
tive areas were mainly distributed in five banners and counties, namely, Uxin Banner, Otog
Front Banner, Otog Banner, Ejin Horo Banner, and Hangjin Banner, accounting for about
60% of the whole Mu Us Sandy Land area (Figure 1). The Mu Us Sandy Land experiences a
unique climate as it straddles the arid and semi-arid climate zone. It is characterised by a
temperate continental monsoon climate with four distinct seasons and varying wet and
dry conditions. The average annual temperature in the area ranges from 6 ◦C to 8.5 ◦C.
Moreover, the region sees an annual accumulation of at least 3000 ◦C of temperature above
10 ◦C, indicating a significant heat resource. The average annual precipitation is in an
increasing gradient from northwest to southeast, with the most abundant precipitation in
the southeast, about 440 mm, and only about 250 mm in the northwest, with precipitation
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mostly concentrated in July–September, accounting for about 70% of the total annual pre-
cipitation [29]. The average evaporation over the years reached 2300 mm, which is about
5–10 times the precipitation, and the dryness was 1.0–2.5. The northwest wind prevails in
the area, with an annual average wind speed of 4.5 ms−1. The overall climatic characteris-
tics are dry climate, high evaporation, uneven precipitation distribution, strong sunshine,
and high wind and sand. The terrain of the Mu Us Sandy Land is generally high in the
northwest and low in the southeast, with an altitude of 1000–1600 m. The landscape is
typical of wind and sandy terrain, with gentle undulations, showing a landscape of beams
(sand dunes) and beaches (lowlands between dunes), with fixed and semi-fixed sand dunes
being the main features. Although the Mu Us Sandy Land is a grassland zone, the local
vegetation is dominated by sandy vegetation owing to the extensive distribution of sand
dunes. In recent years, the vegetation cover of the study area has been greatly enhanced
by the national policy of sand control and artificial afforestation. The overall nutrient
content of the soils in the area is relatively low, with a loose structure and poor water and
fertiliser retention capacity, making them susceptible to wind and sand. Because of the
characteristics of the sandy soils and the cover of the dry sand layer on the surface, which
facilitates the infiltration of water and its accumulation in the deeper layers and prevents
and reduces evaporation, the Mu Us Sandy Land has richer surface and groundwater
resources than the surrounding zonal vegetation areas [30]. There is basically no input
from external water systems within the Mu Us Sandy Land, relying mainly on natural
precipitation. The special soil matrix of the sands makes the inter-dune depressions within
the sands often form lake bubbles and rivers and streams, with hundreds of lakes and
several rivers of various sizes. The lake area of the sands is unstable, and because of the dry
climate combined with strong evaporation, many lakes mineralise and become saline lakes.
The lakes cover an area of 0.8~38 km2, and most of the lakes are larger than 2 km2 (Table 2).
The highest lake density was found in the northern region, followed by the central and
southwestern regions. In recent decades, especially after 2000, the number and area of
lakes in the Mu Us Sandy Land have experienced a significant decline. This decline can be
attributed to the combined effects of climate change and human activities [31].
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Table 2. Lake size distribution in the Mu Us Sandy Land.

Lake Area (km2) Percentage

0.8–2 39.68
2–4 22.22
4–10 25.40
>10 12.70

2.2. Acquisition and Processing of Remote Sensing Data
2.2.1. Lake Extraction

The Mu Us Sandy Land, located in northern China, is an arid and semi-arid region
characterised by extensive sand dunes and limited water resources. Understanding the
dynamics of lakes in this region is crucial for assessing water availability and managing
water resources effectively. Therefore, this study aimed to investigate the changes in the
lake area within the Mu Us Sandy Land from February to October between 2000 and 2020.
To achieve this objective, the researchers utilised the JRC Monthly Water History, v1.3
water reservoir of the GEE platform. The dataset consisted of 4,716,475 scenes obtained
from Landsat 5, 7, and 8 satellites between March 1984 and December 2021. Each pixel
was meticulously classified into water or non-water using an expert system, enabling
the creation of a monthly history of the region’s lakes. In order to detect changes over
time, the study divided the dataset into two epochs: 1984–1999 and 2000–2021. A total of
442 images were generated, corresponding to each month from March 1984 to December
2020. However, to ensure accurate analysis, additional data were included for images
affected by factors like cloud occlusion. This was done using a water body index extraction
method, enhancing the reliability of the lake area measurements. In this study, the monthly
and annual distribution of the 3941 images covering the study area (Path 127, Row 33;
Path 127, Row 34; Path 128, Row 32; Path 127, Row 34; Path 128, Row 33; Path 128,
Row 34; Path 129, Row 32; Path 129, Row 33; Path 129, Row 34) (Figure 2) showed a
heterogeneous distribution.
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Combined with fieldwork and the relevant literature to establish lake interpretation
markers [32] and we established the following rules: 1. The beach and saline land dis-
tributed around the lake are not counted as lake area if the saline land and beach are
distributed in the centre of the lake surrounded by water bodies, whereby they will be
counted as lake area; 2. The area of the salt field is not counted as lake area when there is
no water in the salt field; if there is water in the salt field, then the area of the salt field will
be counted as lake area. The 51 lakes in the Mu Us Sandy Land with an area ≥ 0.5 km2 in
2014 were finally selected for the study. This minimum surface area is the key to achieving
a more accurate representation of lakes each year, considering that the Landsat satellite
imagery has a minimum pixel size of 30 m.

2.2.2. NDVI Data

This study utilised MOD13Q1.006 Terra Vegetation Indices 16-Day Global 250 m data
from the Google Earth Engine (GEE) platform. The dataset comprises two vegetation
layers: the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation
Index (EVI). The NDVI is derived from NOAA-AVHRR, while the EVI is designed to
minimise variations caused by the background canopy while maintaining sensitivity to
dense vegetation conditions. To ensure data accuracy and reliability, both indices were
computed from atmospherically corrected bi-directional surface reflectances. Additionally,
the dataset was carefully masked to exclude areas affected by water, clouds, aerosols,
and shadows. This masking process helps to eliminate potential sources of interference
and ensure that the analysis focuses solely on valid vegetation data. To facilitate further
analysis, a monthly mean synthesis of the 16-day NDVI products was performed within
the GEE platform. This synthesis process aggregates the data over each month, providing a
comprehensive overview of the vegetation conditions. The resulting NDVI values ranged
from −0.2 to 1, with higher values indicating denser conditions.

2.2.3. LUCC Data

The LUCC data used for this study were obtained from the Land Cover 300 m year-
by-year dataset provided by ESA for 2000–2015 from Land Cover Maps v2.0.7 and for
2015–2020 from Land Cover Maps v2.1.1, comprising a total of 22 land-use/cover types,
where attribute values of 10, 11, 12, and 20 were reclassified as agricultural cropland. It
is important to note that owing to the gradual nature of land-use changes, the cultivated
land area of farmland remains largely stable over the course of a given year. Thus, for the
purpose of this study, the cultivated land area for each year was considered to be consistent
throughout that year, allowing for a more accurate and comprehensive analysis of the data.

2.3. Acquisition and Processing of Meteorological Data

Precipitation and air temperature are daily values at the site, these measurements were
provided by seven meteorological stations located near the study area. The rain gauges
used to collect precipitation data included siphon rain gauges and tipping bucket telemetric
rain gauges, which have a measuring range of ≤4 mm/min, a maximum permissible error
of ±0.4 mm (for measurements ≤ 10 mm), and ±4% (for measurements > 10 mm), in
addition to a travel time error of 24 h ± 5 min.

Where precipitation is summed cumulatively to monthly values and air temperature
is averaged to obtain monthly averages. Field evapotranspiration was calculated for the
study’s main crop, maize, based on the single crop coefficient method recommended
by FAO-56:

ETc = Kc·ET0 (1)

where ETC is the evapotranspiration of the crop under standard conditions (mm·d−1), KC
is the crop coefficient, and based on previous studies on the crop coefficient of maize, the
main crop in the study area, the final value of KC for maize during the whole fertility period
was determined to be 0.82; ET0 is the evapotranspiration of the reference crop (mm·d−1).
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The Penman–Monteith formula recommended by the Food and Agriculture Organiza-
tion of the United Nations (FAO) was used in this study to calculate evapotranspiration
from a reference crop. The PM-ET0 method involves estimating the evapotranspiration
rate of a hypothetical reference crop with specific characteristics. The reference crop in the
PM-ET0 method is considered a standard crop that represents ideal conditions for evapo-
transpiration calculations. It has a fixed height of 12 cm, a surface resistance of 70 sm−1,
and an albedo (reflectivity) of 0.23, which approximates the evapotranspiration rate of a
crop that is free of disease infection and is of uniform and vigorous growth, has complete
coverage of the soil surface, adequate water and nutrient supply, and an expansive surface
for the crop evapotranspiration process [33]. The specific formula is as follows:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(2)

where ET0: grass reference transpiration (mm/d); Rn: net crop surface radiation (MJ/(m2·d));
G: soil heat flux (MJ/(m2·d)); T: mean daily air temperature at 2 m height (◦C); u2: wind
speed at 2 m height (m/s); ea: saturation water vapour pressure (kPa); es: actual water
vapour pressure (kPa); es − ea: water vapour pressure deficit (kPa); ∆: slope of water
vapour pressure curve (kPa/◦C); γ: stoichiometric constant (kPa/◦C).

The Thornthwaite method [34] was used in this study to calculate PET with the
modified formula as follows:

PET =


0 T < 0

16
(

N
12

)(
NDM

30

)(
10T

I

)m
0 ≤ T < 26.5

−415.85 + 32.24T − 0.43T2 T ≥ 26.5

(3)

where T is the average temperature month by month, N is the maximum amount of
sunshine, NDM is the number of days per month, and I is the annual heat index, which is
obtained by summing the monthly heat indices for each of the 12 months of the year. The
annual heat index is calculated as:

I =
12

∑
i=1

(
T
5

)1.514
T > 0 (4)

M is the coefficient related to I. Using Equation (3), it is obtained that:

m = 6.75× 10−7 I3 − 7.71× 10−5 I2 + 1.79× 10−2 I + 0.492 (5)

PET is calculated using the Thornthwaite method, which requires fewer computational
variables and is a simple and easily implemented method.

2.4. SPEI Calculation

Based on the concept of water supply and demand, the Standardised Precipitation
Evaporation Index (SPEI) is a widely used drought index calculated on a scale of 1, 3, 6, 9,
and 12 months. It incorporates precipitation, temperature, and potential evapotranspiration
to estimate drought severity. Drought values less than −1 indicate moderate to severe
drought. As the lakes in this study area are mainly recharged by precipitation, the SPEI
index can better respond to changes in the lakes compared to other drought indices such as
the PDSI.

(1) The calculation process of the SPEI involves four steps, as outlined by [35]. First,
the climate level measure (Di) is determined, representing the difference between
precipitation (Pi) and potential evapotranspiration (PETi).

Di = Pi − PETi (6)
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where PET is calculated using the Thornthwaite method in Section 2.3.
(2) Next, a cumulative climate water balance series is established for different time scales

(k), typically in months, and n is the number of calculations, using Equation (7). This
series considers the accumulated deviations from normal conditions over the specified
time scale.

Dk
n =

k−1

∑
i=0

(Pn−i − PETn−i), n ≥ k (7)

(3) To create the data series, a log-logistic probability density function is fitted using
Equation (8), with parameters α, β, and γ estimated through the L-moment parameter
estimation method. The resulting cumulative probability (Equation (9)) represents the
likelihood of exceeding the determined moisture gain or loss.

f (x) =
β

α

(
χ− γ

α

)β−1
[

1 +
(

χ− γ

α

)β
]−2

(8)

F(x) =

[
1 +

(
α

χ− γ

)β
]−1

(9)

(4) Finally, the cumulative probability densities are transformed to a standard normal
distribution using Equation (10) to obtain the SPEI time series of change. The parame-
ter W in the equation has a value of

√
−2ln(P), while the other constant terms (C0,

C1, C2, d1, d2, d3) are assigned values of 2.515517.

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (10)

2.5. Development of ML Model to Predict Lake Area
2.5.1. Input Variables of ML Model

The performance of ML algorithms depends heavily on the choice of prediction
set. To identify the most influential predictors of lake area, it is crucial to choose the
appropriate temporal and spatial scale for each predictor [36,37]. Statistical analysis is
often used to identify influential predictors, such as in Shrestha et al.’s (2021) study on the
relationship between PDSI and lake area at different time scales [21]. It is important to
consider the correlations between predictors and lake area. In this study, SPEI, precipitation,
temperature, ETc, NDVI, and LUCC were selected as model predictors. In fact, adding
more variables to the prediction set would only produce a small improvement, but at
the cost of more information used in the model. However, it is undeniable that the other
variables are also important in modelling the lake area regression.

Figure 3 shows the workflow for the machine learning model used in this study. The
important step is determining the predictor factor for monthly lake area. In our study area,
the dynamics of lakes are influenced by meteorology and human activities, etc. As a result,
SPEI, precipitation, temperature, NDVI, ETc, and LUCC were chosen as input variables
of the ML model. The observed NDVI changes in the study area showed a clear seasonal
pattern. As the NDVI value increased, more water resources were consumed by ETc,
which led to a decrease in the groundwater level associated with the lake area. Therefore,
NDVI can be used as an important indicator of lake area change. It is important to note
that the study area’s geographical characteristics play a crucial role in local cultivation
practices; groundwater is a vital resource in the region, and fluctuations in its availability
can significantly affect the lake area. As a result, the land-use types included in the model
are mainly agricultural croplands, reflecting the primary land use in the region.
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In order to accurately reflect the effects of human activities, the researchers chose
maize, a widely cultivated crop in the Mu Us Sandy Land, as the primary research object.
To calculate the crop’s evapotranspiration, we used the single crop coefficient method,
which is a widely accepted and precise method. Considering that precipitation is the main
source of groundwater and lake recharge in the Mu Us Sandy Land, the study introduced
precipitation and ETc as model predictor variables and added them to obtain monthly
values, and then averaged them to obtain monthly average data. The study revealed
that the rainfall distribution in the area is highly heterogeneous, with most of the rainfall
concentrated in July and August. The rainfall mainly consisted of light rainfall with daily
rainfall less than 10 mm and medium rainfall between 10 and 25 mm, with medium rainfall
mainly distributed in July and August.

2.5.2. ML Algorithm

In this study, the entire dataset was divided into two subsets according to a 9:1 ratio,
with the larger subset used for training the ML algorithm and the smaller subset used
for testing. To ensure the validity of the modelling, different ratios, such as 80% and
70%, were tested, but the results did not show significant changes. The availability of
large datasets reduced the risk of over-parameterisation, allowing for accurate and reliable
results. The above process was implemented using the Scikit-Learn package for Python
3.7 [38]. ML performance was then checked using a test dataset to ensure that the calibrated
parameters were not overfitting or underfitting the training results and could be used in
other situations.

2.5.3. Training and Testing of ML Methods

The third step in the process is selecting the machine learning (ML) algorithm, which
involves determining the structural hyperparameters that define the algorithm’s features.
Additionally, coefficients specified in the algorithm’s equations, as outlined by [39], are
chosen for individual case studies and input variable combinations. To optimise the
hyperparameters, various methods such as grid search, stochastic search, Bayesian methods,
and particle swarm optimisation (PSO) are employed. These techniques aid in fine-tuning
the algorithm’s performance to achieve optimal results. Machine learning commonly uses
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optimisation methods to find the best models for a dataset, and grid search with five-fold
cross-validation is a popular approach. This method is highly effective in providing optimal
results while limiting computational cost [40].

The present study sought to explore the performance of eight different machine
learning methods, namely, BR, KNN, GBDT, ET, RF, AB, Bagging, and XGB. This study
employed a unified set of parameters for each machine learning method. This allowed for a
more precise comparison of the models, eliminating any confounding variables that might
have impacted the results. Overall, the use of grid search with fivefold cross-validation
in conjunction with a standardised set of parameters for each machine learning method
proved to be a highly effective approach in this study. The results obtained demonstrate the
potential of these techniques in achieving optimal machine learning models with reasonable
computational costs.

2.5.4. Model Validation

To compare model performance, four indices were used, including coefficient of
determination (R2), root mean square error (RMSE), Lin’s concordance (LCCC), and ratio
of performance to deviation (RPD). The formulas for the four indices are as follows:

(1) Root mean square error or RMSE (km2):

RMSE =

√
∑n

i=1(xi − x̂i)2

n
(11)

where in xi and x̂i are the actual and predicted areas of the ith lake, respectively, and
n is the total number of lakes. The greater the model prediction error, the greater
the RMSE.

(2) Coefficient of determination (R2):

R2 =

 ∑n
i=1 (xi − x)

(
x̂i −

∼
x
)

√
∑n

i=1(xi − x)2 ×
√

∑n
i=1

(
x̂i −

∼
x)2


2

(12)

where
∼
x is the average predicted lake area. R2 shows the degree of co-linearity

between the observed and simulated time series and has a range of 0.0–1.0, with
higher values indicating a higher degree of co-linearity.

(3) LCCC weights averaging: Under LCCC weights averaging, the weight of the ith
model (wi) is estimated as [41]:

wi =
LCCCi

∑n
i=1 LCCCi

(13)

where LCCCi is the LCCC of the ith model and n is the number of calibration samples.

LCCC =
2lxy

l2
x + l2

y + (x− y)2 (14)

where xi and yi are the actual and predicted lake areas; x and y are the means for xi
and yi; and l2

x and l2
y are the corresponding variances and

lxy =
1
n∑n

i=1(xi − x)(yi − y) (15)

(4) Ratio of performance to deviation (RPD): The formula of RPD is as follows:

RPD =
SD

RMSE
(16)
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where SD is the ratio of standard deviation and RMSE is the root mean square error.

According to Rossel et al. (2016) [42], an LCCC value of 1 indicates perfect agreement.
An LCCC larger than 0.9 signifies excellent agreement, and a value ranging from 0.80 to 0.90
indicates good agreement. Moderate agreement is achieved when LCCC values are between
0.65 and 0.80, while values less than 0.65 denote poor agreement. The RPD provides an
evaluation based on prediction accuracy, categorised from excellent (RPD > 2.5), very good
(2.0 < RPD < 2.5), good (1.8 < RPD < 2.0), fair (1.4 < RPD < 1.8), to poor (RPD < 1.4). We
considered the best prediction model to be the one with the largest R2, LCCC, and RPD
values and the smallest RMSE, collectively providing a comprehensive assessment of the
model’s performance.

3. Results
3.1. Lake Area Accuracy Assessment

Using the areas of 13 lakes in Mu Us Sandy Land in Wushen Banner from 2000 to 2017,
as mentioned in the Wushen Banner Lake Water Ecological Comprehensive Management
Plan, as the verification data of lakes extracted by remote sensing in this study (Figure 4), it
can be seen that the extraction accuracy is R2 = 0.82. Larger errors occurred in 2000, 2001,
and 2015. The total area of lakes in these three years was relatively small. It can be found
that the extraction of lake area by remote sensing technology performed poorly when the
value was small. Data after 2017 cannot currently be accurately verified with available data.
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The long-term averages of the classified lakes from 2000 to 2020 revealed a notable
change in spatial pattern. Based on the classification where water is assigned a value
of 1 and no water is assigned a value of 0, areas with a consistent presence of water
exhibit mean values closer to 1, while areas without water have mean values close to 0,
indicating intermittent water presence. The fluctuations in the percentage of lake area
in different banners within the Mu Us Sandy Land from 2000 to 2020 are presented in
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Table 3, highlighting the variability over time. YJHLQ had the highest percentage of
lakes with fluctuations in lake area equal to or less than 20%. Conversely, ETKQQ and
YC had the highest percentage of permanent lake fluctuations. Furthermore, Figure 5
provides a visual representation of the diverse responses of the larger lakes within the
region to factors like drought. Notably, the alteration in lake area during the flat water
period (September–October) exhibited an expanding trend over the last two decades. This
trend can be attributed primarily to the influence of precipitation. Meteorological station
precipitation data indicate a substantial increase in precipitation since 2016 compared to the
period of 2000–2015. Within the Mu Us Sandy Land lakes complex, smaller lakes showed a
noteworthy alteration, with a rate of change exceeding 0.5.

Table 3. Percentage change in lake area in the northern part of the Mu Us Sandy Land, 2000–2020.

%Change in Mu Us Desert
Study Area

ETKQQ ETKQ HJQ WSQ WSZ YC YJHLQ

<20 25 60 45 50 50 25 90
20–40 20 20 10 15 25 30 5
40–60 15 15 15 20 5 30 5

60–100 10 5 25 5 5 5 0
>100 30 0 5 10 15 10 0
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Figure 5. Changes in average lake area in the northwestern part of the Mu Us Sandy Land
(2000–2020) are depicted in the image. Blue pixels represent shrinking lakes, while red pixels represent
expanding lakes.

Anthropogenic disturbances within the region are regarded as potential drivers of
these shifts. Activities such as hydraulic construction upstream, coal mining, construction
of highways near the lakes, and irrigation water use could have impacted the dynamics
of the lakes. These human-induced influences can disrupt natural hydrological processes,
leading to modifications in water availability and the overall hydrological equilibrium.

The temporal response of the lakes in the Mu Us Sandy Land revealed the seasonal,
sudden, and long-term effects of drought. A closer analysis of the annual average value
of the lake area from 2000 to 2020 unveiled five distinct stages ( 1©– 5© in Figure 6), each
characterised by unique expansion and contraction patterns. The period from 2000 to
2002 represents a period of rapid expansion, indicating a sudden influx of water in the
region. The following period, from 2003 to 2011, is marked by a slow contraction, as the
water levels steadily decreased. In contrast, from 2012 to 2014, the area experienced a slow
expansion phase, followed by a sharp expansion period from 2015 to 2017. Finally, from
2018 to 2020, the region entered another phase of slow contraction, further emphasising the
long-term effects of drought.
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3.2. SPEI Time Scale Decisions

The research aimed to create an optimal prediction model for lake area, and to achieve
this, we conducted a correlation analysis between the SPEI of various time scales and
the monthly lake area. The results are shown in Figure 7. The analysis revealed that
the SPEI values at the 9-month and 12-month scales were better correlated with the lake
area, indicating that these time scales are important predictors. Under the 9-month time
scale, YC and ETKQ had a higher correlation with the lake area, with R values of 0.39 and
0.34, respectively. Similarly, under the 12-month time scale, WSQ and WSZ had a better
correlation with lake area, with R values of 0.47 and 0.28, respectively. These findings
suggest that the choice of different time scale SPEI variables could have a significant impact
on the performance of ML models in reproducing lake area. The final selections of SPEI-
9 and SPEI-12 were used as predictor variables to construct the models in Section 3.3,
thus providing a more detailed understanding of the effects of input variables on model
performance at different time scales. These results can help to develop more accurate and
reliable prediction models for the Lake District.

3.3. The Performance of the ML Algorithm

A total of eight ML algorithms (BR, KNN, GBDT ET, RF AB, Bagging, XGB) were
used to estimate the monthly lake area. Here, we employed two temporal-scale SPEIs, the
9-month scale (SPEI-9) and the 12-month scale (SPEI-12). The corresponding ML models
were expressed as MLSPEI-9 and MLSPEI-12, respectively. To ensure a fair and unbiased
comparison, the study implemented a standardised analysis procedure: the parameters
used for model construction were all unified, and the better performing of the MLSPEI-9 and
MLSPEI-12 models for the seven regions were optimised with a hyperparametric algorithm
(grid search cross-validation method).

As shown in Table A1 (Appendix A) and Figure 8, there were some differences in
the predictive ability of the eight algorithms for the area of the Mu Us Sandy lakes in the
two scenarios. In general, the five models GBDT, ET, RF, Bagging, and XGB performed
better. First, the better performers under MLSPEI-9 were mainly the GBDT, ET, RF, Bagging,
and XGB models, with RMSEs ranging from 0.0 to 11.1 km2, R2 ranging from 0.70 to 0.99,
LCCC ranging from 0.87 to 0.99, and RPD ranging from 0.0 to 58.1 for the training dataset,
while the test dataset had RMSEs ranging from 0.2 to 14.5 km2, R2 from 0.51 to 0.88, LCCC
ranging from 0.74 to 0.95, and RPD ranging from 8.3 to 2224.5 for the test dataset with
the RF model performing the best in terms of predictive power. With the five models, the
RMSE of the test set performed poorly in the WSZ (14.51/12.02/13.74/12.40/13.58 km2).
The best-performing models in each region were optimised to improve their accuracy
significantly, with a maximum reduction of 13.89% in RMSE and a maximum improvement
of 6.58% in R2 for the optimised model test set.
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The RF and Bagging models performed better in the study area under MLSPEI-12, with
RMSEs in the range of 0.26 to 8.59 km2, R2 from 0.74 to 0.94, LCCC ranging from 0.09 to
0.99, and RPD ranging from 0.0 to 113.0 for the training dataset. The BR and KNN models
performed worse in the WSZ (RMSE = 26.05/24.32 km2). The RMSEs for the test dataset
ranged from 0.40 to 13.94 km2, R2 in the range of 0.45 to 0.88, LCCC in the range of 0.19
to 0.94, and RPD in the range of 9.4 to 2651.2. The RMSEs of the four models continued
to perform poorly in the WSZ. Using the grid search cross-validation method to optimise
the seven models that performed better in the region, it could be seen that for the test set,
the RMSE values decreased by a maximum of 26.95% and the R2 improved by a maximum
of 6.74%.

With the exception of RF, the three regression models, GBDT, ET and BR, all had
relatively satisfactory accuracy on both the training and test datasets, but there were
large deviations in predicting the area of small lake groups (e.g., the area of most of the
lakes in ETKQQ is less than 1 km2), and the accuracy of the optimised models improved
significantly, which was consistent with the change in lake area corresponding to the
frequency of drought events. This implies that in this case, it is possible to achieve improved
predictions without requiring extensive pre-processing of the data. It was of interest to
interpret the performance of the ML method in light of its specific characteristics. For the
eight classes of models selected for the study, RF can be seen as an extended variant of
Bagging, where ET can be seen as an improved version of RF, which selects feature variables
randomly and draws samples with random putbacks. A bootstrap method is utilised to
select the sample set for training each decision tree. This means that for each decision tree in
the ensemble, a random subset of the original training set is chosen with replacement using
the bootstrap technique. In addition, in the RF method, the input samples are divided into
subsamples by random sampling with replacement. This process allows for the possibility
of duplicate data within each subsample. In contrast, the ET algorithm does not use random
sampling with replacement, thereby avoiding data duplication [43]. Based on the findings
of previous studies, the ET algorithm has been observed to be a more robust approach
compared to RF. It exhibits a lower degree of performance degradation when transitioning
from the training phase to the testing phase (since the division points of the eigenvalues are
chosen randomly instead of the optimal points, this will result in the size of the generated
decision trees being generally larger than those generated by RF). That is, the variance
of the model is further reduced relative to RF, but the bias is further increased relative to
RF. At some point, the generalisation ability of the ET is better than that of the RF, and in
general, the extreme RF classifier outperforms the RF classifier in terms of classification
accuracy and training time, etc. AB and GDBT are both members of the Boosting family,
use weak classifiers, and both use forward distribution algorithms; the iterative ideas
are different: AB compensates for the model’s shortcomings by boosting the weights of
misclassified data points (using misclassified samples), while GBDT compensates for the
model’s shortcomings by counting gradients (using residuals). The loss functions of the
two are different: AB uses exponential loss, GBDT uses absolute loss or Huber loss function.
Compared to AB, GBDT is recognised as a more generalisable algorithm, and in this study
also showed a similarly strong regression prediction capability.

3.4. Performance of MLSPEI-9 and MLSPEI-12 Model to Estimate Lake Area

Validation of the lake areas predicted by MLSPEI-9 and MLSPEI-12 showed that MLSPEI-9
performed better in predicting the area of the Mu Us Sandy Land lakes complex, with
R2 between simulated and true values ranging from 0.81 to 0.91, with the RF model
performing best, reaching an R2 of 0.882 at YJHLQ for the optimised test dataset. The RMSE
was 1.364 km2 (Figure 8 and Appendix A).

A seasonal analysis of the relative errors (mainly the maximum and minimum values
as well as the mean values) on the 95% confidence interval by bootstrapping showed that
(Figure 9) the relative error of MLSPEI-9 was much lower than that of MLSPEI-12, where
the relative error of MLSPEI-12 was lower in February, May, and October and higher in
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August and September. The reason for this may be related to the strong human production
and activity during this period, the gradual increase in the ecological water demand
of vegetation, irrigation of farmland, and strong evapotranspiration, leading to drastic
changes in the area of the lake group in summer. This was a test of the ML model’s ability
to capture the sensitivity of prediction dynamics; the average relative errors of MLSPEI-9
were lower in March, August, September, and October, with relative errors ranging from
0.12 to 0.19, with the average maximum value of the relative error occurring in May, when
the value reached 0.62.
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4. Discussion
4.1. Advantages of ML in Regression Analysis

ML is a more successful method for predicting lake area and can effectively charac-
terise lakes as influenced by various factors. Physically based hydrodynamic models are
known for their complexity and the need to generate results based on assumed inputs,
including information on lake morphology, inflow and outflow conditions, and a com-
prehensive range of meteorological variables such as air temperature, precipitation, and
wind, whereas machine learning models require empirical data for training and subsequent
predictions. It is essential to note that without adequate data, machine learning models
lack the foundational information required for generating meaningful insights. Conversely,
physics-based models leverage established physical principles to generate results, yet the
accuracy of these results still hinges on the accuracy of the input data. However, this data-
intensive requirement can make the application of physical models impractical, especially
in regions with limited data availability. To overcome this limitation, researchers have
increasingly turned to the development and utilisation of machine learning models for lake
area forecasting. One notable advantage of these machine learning models is their relatively
lower data requirements as inputs, as highlighted in studies by Kisi et al. (2015), Li et al.
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(2016), and Shiri et al. (2016) [44–46]. In recent decades, various types of machine learning
models have been devised and employed in hydrological and environmental research, of-
fering promising solutions to the challenges posed by data scarcity and complexity [47–53].
In this study, the performance of eight machine learning models was examined to leverage
the advantages of machine learning in predicting lake area. However, it should be noted
that further investigations are required to explore the existence of potentially superior
machine learning models in future studies.

4.2. Variation in the Performance of Different MLs in Different Regions

This study used eight machine learning models for lake area prediction in seven
different regions, and the results of the study indicated that a group of methods performed
reasonably well in a given region, and in general, the eight ML models had better simulation
accuracy on larger lakes, e.g., WSZ. According to the findings of Zhang et al. (2009) [54], the
response of lakes is influenced by their size. Larger lakes tend to exhibit greater sensitivity
to long-term climate effects, which can manifest as gradual changes over time. These lakes
may moderate the impact of seasonal variations on their water levels or area. On the
other hand, smaller lakes are found to be more responsive to seasonal effects, showing
more pronounced fluctuations in water levels or area in response to short-term climate
variations throughout the year. This research highlights the importance of considering lake
size as a factor in understanding and predicting the responses of lakes to climate dynamics.
While KNN generally performed poorly in the eight regions, overall, RF performed best
in the study area. It was found that models like the more current XGB did not stand out,
while the more traditional RF model instead delivered satisfactory results, thanks to the
advantages of the Random Forest algorithm itself, such as high accuracy, wide applicability,
strong non-linear data analysis, and less susceptibility to overfitting [55], suggesting that
traditional methods sometimes perform better than advanced algorithms. This study only
focused on lake area prediction in the Mu Us Sandy Land, which has some limitations, and
the applicability of the model to other regions remains to be explored.

4.3. The Determination of Input Factors Is Key to the Accuracy of the Prediction Results

The selection of input factors is key to the accuracy of prediction, and owing to the
limitations of the acquired data, the important factors affecting lake area response were
morphological and hydrological characteristics, and the depth of groundwater burial was
not considered as a predictive variable in this study. Groundwater plays an important role
in lakes in arid and semi-arid regions. In cases where evapotranspiration surpasses precipi-
tation, any deficit in the water balance of the lake is compensated for by the contribution
of groundwater. The variability in water table depth, aquifer thickness, and hydraulic
connectivity unveiled spatial and temporal patterns within the complex of lakes in the Mu
Us Sandy Land region. Additionally, research has indicated that the size of lakes in arid and
semi-arid areas is influenced by factors such as the gradient of groundwater flow [56,57],
the positioning of the lake relative to local or regional groundwater flow [58], storage
capacity, lake bathymetry [59], as well as topography and geographical characteristics of
the area. These factors collectively play a role in shaping the dynamics and area of lakes
in arid and semi-arid regions [60–63]. It was evident from this study that climatic and an-
thropogenic influences cause smaller shallow lakes to dry up immediately during droughts
and larger lakes to decrease in size. Therefore, whether fluctuations in lake area in the
Mu Us Sandy Land can be used as an entry point for measuring and monitoring changes
in precipitation and groundwater levels in the Mu Us Sandy Land is a focus for future
research. A lake closer to the groundwater monitoring point was selected in each of the
Otog Banner and Uxin Banner areas, and the area of the two lakes from February to October
2021 was extracted using the latest JRC Monthly Water History v1.4 dataset available in
GEE. Analysis with the groundwater monitoring point data showed that the lake area
has a trend of decreasing with the increase in groundwater burial depth (Figure 10). This
indicates that there is a correlation between lake area and groundwater depth in the Mu
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Us Sandy Land. As the 29 groundwater monitoring sites in the region started to provide
data in 2019, the regression model of this study did not introduce groundwater depth data
as a driving variable in view of the lack of continuity of data. Future research will discuss
the feasibility and optimisation effects of introducing groundwater depth of burial data to
drive the lake area prediction model.

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 28 
 

 

provide data in 2019, the regression model of this study did not introduce groundwater 
depth data as a driving variable in view of the lack of continuity of data. Future research 
will discuss the feasibility and optimisation effects of introducing groundwater depth of 
burial data to drive the lake area prediction model. 

 

Figure 10. Groundwater depth and lake area, February–September 2021. 

4.4. Accuracy and Limitations of JRC Dataset in Identifying Water Bodies at 30 m Resolution 
The overall accuracy of the JRC dataset in identifying water bodies was higher. This 

heightened accuracy (>95%) results from the combination of the drooling cap component, 
original strips, and the pronounced contrast between water and the homogeneous sur-
rounding landscape. Given a spatial resolution of 30 m, at least nine pixels are required to 
consistently represent an object using Landsat imagery [64]. To circumvent mixed pixel 
effects caused by suspended sediment, submerged or floating vegetation, and background 
reflectivity at lake boundaries, the pixels within the 3*3 filter were removed, leading to an 
underrepresentation of smaller lakes. Likewise, the non-uniform distribution and limited 
number of cloud-free images hindered capturing the seasonal variations within the 
smaller lakes of the Mu Us Sandy Land. Consequently, this study’s response to the spatial 
and temporal variability of smaller lakes is localised or limited. Nonetheless, the results 
suggest that higher-resolution satellites (e.g., Sentinel-2) could be leveraged to character-
ise smaller lakes and their responses to seasonal variability. However, many high-resolu-
tion satellites exhibit limitations in terms of time (revisit frequency) and recording peri-
ods. 

4.5. Assessing the Use of Drought Indices and Potential of Lakes as Monitoring Wells in the Mu 
Us Sandy Land 

While the SPEI effectively mirrors the precipitation conditions in the Mu Us Sandy 
Land region, further exploration is needed for drought indices such as the SPI. Subsequent 
investigations should consider the impact of local hydraulic conductivity, regional lake 
location, and topography on changes in lake response. Given the sporadic nature of mon-
itoring well data in the Mu Us Sandy Land area, future research could explore the feasi-
bility of utilising lakes as monitoring ‘wells’ to enhance the quantification of groundwater 
levels. 

  

Figure 10. Groundwater depth and lake area, February–September 2021.

4.4. Accuracy and Limitations of JRC Dataset in Identifying Water Bodies at 30 m Resolution

The overall accuracy of the JRC dataset in identifying water bodies was higher. This
heightened accuracy (>95%) results from the combination of the drooling cap component,
original strips, and the pronounced contrast between water and the homogeneous sur-
rounding landscape. Given a spatial resolution of 30 m, at least nine pixels are required to
consistently represent an object using Landsat imagery [64]. To circumvent mixed pixel
effects caused by suspended sediment, submerged or floating vegetation, and background
reflectivity at lake boundaries, the pixels within the 3*3 filter were removed, leading to an
underrepresentation of smaller lakes. Likewise, the non-uniform distribution and limited
number of cloud-free images hindered capturing the seasonal variations within the smaller
lakes of the Mu Us Sandy Land. Consequently, this study’s response to the spatial and
temporal variability of smaller lakes is localised or limited. Nonetheless, the results suggest
that higher-resolution satellites (e.g., Sentinel-2) could be leveraged to characterise smaller
lakes and their responses to seasonal variability. However, many high-resolution satellites
exhibit limitations in terms of time (revisit frequency) and recording periods.

4.5. Assessing the Use of Drought Indices and Potential of Lakes as Monitoring Wells in the Mu Us
Sandy Land

While the SPEI effectively mirrors the precipitation conditions in the Mu Us Sandy
Land region, further exploration is needed for drought indices such as the SPI. Subsequent
investigations should consider the impact of local hydraulic conductivity, regional lake
location, and topography on changes in lake response. Given the sporadic nature of moni-
toring well data in the Mu Us Sandy Land area, future research could explore the feasibility
of utilising lakes as monitoring ‘wells’ to enhance the quantification of groundwater levels.

5. Conclusions

This study aimed to investigate the potential of using machine learning (ML) methods
to predict the monthly lake area in a typical arid area. The input variables for these ML
models included both meteorological factors and human activities data. The conclusions
drawn from the study are as follows:
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1. ML Models’ Performance: Eight different ML algorithms were utilised to predict the
lake area based on the given input variables. The results indicate that all eight ML
methods were able to effectively describe the relationship between lake area and both
meteorological factors and human activities. This implies that ML models can be
utilised to understand and predict the response of lake areas to various environmental
and anthropogenic factors.

2. Superiority of the RF Model: Among the various ML algorithms tested, the RF model
emerged as the most robust performer. Its performance was quantified using the R2,
and the RF model achieved an impressive R2 value of 0.88. This indicates that the RF
model’s predictions closely matched the observed lake area data, making it a reliable
tool for predicting lake area in the study area.

3. Limited Performance of the BR and KNN Models: On the other hand, the study
found that the BR and KNN models consistently provided poorer results compared
to the other ML algorithms tested. These models may not capture the complex
relationships between lake area and the predictor variables as effectively as the RF
and other models.

4. Importance of Meteorological Factors: The study also explored the impact of different
meteorological factors on the lake area prediction. Specifically, the SPEI at various
time scales was introduced as an input variable. The analysis revealed that SPEI-9,
which represents a longer-term climate condition, had a positive effect on predicting
lake area. This suggests that long-term meteorological patterns play a significant role
in determining lake area variations in the arid area under investigation.

5. Identifying Appropriate Predictor Variables: The success of applying ML algorithms
to predict lake area largely depends on the selection of suitable predictor variables.
This study emphasises the importance of including both meteorological and human
activity factors in the inputs to achieve accurate predictions.

Overall, this study provides valuable insights into the effects of using SPEI as predic-
tors at different time scales and the performance of various ML algorithms in predicting
lake area in arid regions. The findings can serve as a guide for future research in lake
area prediction, and researchers can utilise the results to make informed choices regarding
model selection and predictor variables to enhance the accuracy of their predictions.
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Appendix A

Table A1. Performance of eight machine learning models in predicting the area of the Mu Us Sandy Land lakes complex under SPEI-9 and SPEI-12, respectively
(values in brackets correspond to test data, bolded italics are the optimal prediction models for the 7 regions).

SPEI-9

ETKQ ETKQQ HJQ WSZ WSQ YC YJHLQ

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

BayesianRidg 5.896
(5.148)

0.084
(0.231)

0.678
(0.483)

0.040
(0.286)

4.676
(5.339)

0.003
(−0.002)

26.17
(26.291)

0.208
(0.172)

8.402
(7.576)

0.233
(0.397)

1.165
(1.281)

0.417
(0.441)

4.423
(3.849)

0.075
(0.058)

KNN 4.982
(5.268)

0.346
(0.195)

0.596
(0.504)

0.258
(0.219)

3.610
(3.601)

0.406
(0.544)

24.31
(26.297)

0.317
(0.172)

7.909
(10.447)

0.320
(−0.146)

1.201
(1.509)

0.380
(0.225)

3.632
(3.354)

0.376
(0.285)

GBDT 0.164
(3.805)

0.999
(0.580)

0.032
(0.349)

0.998
(0.627)

0.149
(2.537)

0.999
(0.774)

0.694
(14.511)

0.999
(0.748)

0.382
(4.351)

0.998
(0.801)

0.032
(0.813)

0.999
(0.775)

0.126
(2.231)

0.999
(0.683)

ET 2.745
(3.042)

0.801
(0.731)

0.378
(0.277)

0.702
(0.765)

2.535
(2.802)

0.707
(0.724)

11.12
(12.020)

0.857
(0.827)

4.530
(5.604)

0.777
(0.670)

0.629
(1.054)

0.830
(0.622)

1.841
(1.802)

0.840
(0.793)

RF 2.834
(3.549)

0.788
(0.635)

0.318
(0.307)

0.788
(0.712)

2.318
(2.315)

0.755
(0.812)

9.886
(13.735)

0.887
(0.774)

4.221
(4.195)

0.809
(0.796)

0.592
(0.951)

0.849
(0.692)

1.630
(1.382)

0.874
(0.879)

AB 3.760
(3.899)

0.627
(0.559)

0.464
(0.405)

0.551
(0.498)

2.901
(3.127)

0.616
(0.656)

14.023
(14.519)

0.773
(0.748)

5.303
(5.878)

0.694
(0.637)

0.807
(0.964)

0.720
(0.684)

2.365
(2.100)

0.736
(0.719)

Bagging 2.090
(3.481)

0.885
(0.648)

0.247
(0.315)

0.872
(0.695)

1.814
(2.392)

0.850
(0.799)

8.589
(12.395)

0.915
(0.816)

3.579
(4.693)

0.861
(0.769)

0.560
(1.036)

0.865
(0.635)

1.369
(2.138)

0.911
(0.709)

XGB 0.001
(3.680)

0.999
(0.563)

0.001
(0.402)

0.999
(0.505)

0.001
(2.484)

0.999
(0.783)

0.001
(13.577)

0.999
(0.779)

0.001
(4.632)

0.999
(0.774)

0.001
(1.006)

0.999
(0.655)

0.001
(2.058)

0.999
(0.731)

grid search
cross-validation

1.529
(2.819)

0.938
(0.769)

0.223
(0.272)

0.895
(0.773)

1.835
(2.214)

0.846
(0.828)

6.366
(10.351)

0.953
(0.872)

0.653
(4.344)

0.995
(0.802)

8.403
(0.714)

0.999
(0.826)

1.477
(1.364)

0.897
(0.882)

SPEI-9

ETKQ ETKQQ HJQ WSZ WSQ YC YJHLQ

LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD

BayesianRidg 0.302
(0.658)

113.1
(30.5)

0.211
(0.860)

/
(2224.5)

0.094
(0.524)

/
(259.8)

0.461
(0.544)

61.1
(43.0)

0.487
(0.726)

/
(103.8)

0.646
(0.682)

/
(67.1)

0.278
(0.247)

/
(23.6)

KNN 0.594
(0.444)

95.8
(29.0)

0.509
(0.494)

/
(875.7)

0.644
(0.776)

/
(136.9)

0.567
(0.448)

53.1
(47.2)

0.569
(0.120)

/
(1123.6)

0.631
(0.506)

/
(65.9)

0.619
(0.634)

/
(16.8)

GBDT 0.999
(0.767)

2.0
(17.4)

0.999
(0.796)

/
(965.6)

0.999
(0.914)

/
(79.068)

0.999
(0.905)

1.4
(16.3)

0.999
(0.897)

/
(31.8)

0.999
(0.900)

/
(60.2)

0.999
(0.861)

/
(12.6)
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Table A1. Cont.

SPEI-9

ETKQ ETKQQ HJQ WSZ WSQ YC YJHLQ

LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD

ET 0.921
(0.907)

47.9
(16.3)

0.884
(0.923)

/
(1314.4)

0.881
(0.922)

/
(115.1)

0.938
(0.941)

25.3
(21.3)

0.914
(0.843)

/
(70.4)

0.929
(0.835)

/
(60.7)

0.930
(0.913)

/
(9.1)

RF 0.910
(0.802)

58.1
(16.6)

0.926
(0.864)

/
(1331.4)

0.899
(0.951)

/
(120.1)

0.949
(0.921)

23.1
(23.0)

0.923
(0.897)

/
(37.8)

0.946
(0.888)

/
(53.9)

0.946
(0.951)

/
(8.3)

AB 0.843
(0.826)

44.0
(20.9)

0.817
(0.830)

/
(1657.6)

0.840
(0.897)

/
(138.5)

0.892
(0.920)

32.6
(26.2)

0.874
(0.814)

/
(60.3)

0.886
(0.897)

/
(57.2)

0.896
(0.945)

/
(11.4)

Bagging 0.948
(0.818)

41.5
(16.3)

0.872
(0.845)

/
(1030.9)

0.932
(0.914)

/
(110.8)

0.962
(0.938)

18.0
(21.7)

0.940
(0.878)

/
(34.8)

0.938
(0.819)

/
(64.9)

0.959
(0.865)

/
(13.3)

XGB 0.999
(0.785)

0.01
(16.9)

0.999
(0.742)

/
(2224.5)

0.999
(0.913)

/
(90.9)

0.999
(0.913)

0.002
(18.8)

0.999
(0.883)

/
(30.6)

0.999
(0.819)

/
(69.6)

0.999
(0.900)

/
(11.2)

grid search
cross-validation

0.976
(0.903)

18.4
(14.8)

0.963
(0.900)

/
(1182.4)

0.946
(0.956)

/
(115.3)

0.979
(0.948)

13.1
(18.4)

0.998
(0.897)

/
(32.9)

0.999
(0.922)

/
(55.7)

0.958
(0.952)

/
(8.6)

SPEI-12

ETKQ ETKQQ HJQ WSZ WSQ YC YJHLQ

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

BayesianRid 5.903
(5.179)

0.081
(0.222)

0.678
(0.482)

0.040
(0.286)

4.676
(5.339)

0.003
(−0.002)

26.05
(26.345)

0.215
(0.169)

8.049
(5.974)

0.296
(0.625)

1.218
(1.294)

0.362
(0.430)

4.423
(3.849)

0.075
(0.058)

KNN 4.979
(5.268)

0.347
(0.195)

0.597
(0.504)

0.256
(0.219)

3.620
(3.601)

0.402
(0.544)

24.32
(26.954)

0.316
(0.130)

7.896
(10.211)

0.323
(−0.095)

1.199
(1.509)

0.381
(0.225)

3.641
(3.354)

0.373
(0.285)

GBDT 0.269
(4.565)

0.998
(0.395)

0.030
(0.451)

0.998
(0.376)

0.184
(3.194)

0.998
(0.641)

0.684
(14.171)

0.999
(0.759)

0.287
(3.694)

0.999
(0.857)

0.040
(0.789)

0.999
(0.788)

0.113
(2.288)

0.999
(0.667)

ET 2.989
(3.535)

0.764
(0.637)

0.388
(0.412)

0.686
(0.479)

2.506
(3.049)

0.714
(0.673)

9.604
(11.882)

0.893
(0.831)

4.152
(3.855)

0.813
(0.844)

0.645
(1.159)

0.821
(0.542)

1.868
(1.804)

0.835
(0.793)

RF 3.005
(3.507)

0.762
(0.643)

0.331
(0.398)

0.771
(0.513)

2.404
(3.136)

0.736
(0.654)

8.594
(13.938)

0.915
(0.767)

3.728
(3.472)

0.849
(0.873)

0.614
(1.095)

0.838
(0.592)

1.622
(1.526)

0.876
(0.852)

AB 3.961
(4.321)

0.586
(0.458)

0.446
(0.447)

0.586
(0.388)

2.927
(3.216)

0.609
(0.637)

13.52
(15.019)

0.789
(0.730)

5.394
(5.116)

0.684
(0.725)

0.781
(1.104)

0.737
(0.585)

2.487
(2.420)

0.708
(0.628)
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Table A1. Cont.

SPEI-12

ETKQ ETKQQ HJQ WSZ WSQ YC YJHLQ

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Bagging 2.026
(3.135)

0.892
(0.715)

0.262
(0.423)

0.857
(0.452)

1.839
(3.368)

0.846
(0.601)

7.088
(13.392)

0.942
(0.785)

3.271
(3.392)

0.884
(0.879)

0.525
(1.049)

0.881
(0.626)

1.428
(1.772)

0.904
(0.800)

XGB 0.001
(3.793)

0.99
9(0.582)

0.001
(0.477)

0.999
(0.303)

0.001
(2.781)

0.999
(0.728)

0.001
(13.292)

0.999
(0.788)

0.001
(3.875)

0.999
(0.842)

0.001
(1.099)

0.999
(0.589)

0.001
(2.279)

0.999
(0.670)

grid search
cross-validation

1.279
(2.290)

0.913
(0.731)

0.234
(0.396)

0.886
(0.520)

0.001
(2.544)

0.999
(0.773)

3.696
(9.703)

0.984
(0.887)

2.924
(3.369)

0.907
(0.881)

0.100
(0.755)

0.996
(0.806)

1.300
(1.519)

0.920
(0.853)

SPEI−12

ETKQ ETKQQ HJQ WSZ WSQ YC YJHLQ

LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD LCCC PRD

BayesianRid 0.299
(0.645)

113.0
(30.7)

0.211
(0.859)

/
(2224.4)

0.094
(0.524)

/
(259.8)

0.468
(0.530)

60.9
(42.5)

0.547
(0.871)

/
(82.5)

0.603
(0.705)

/
(60.8)

0.278
(0.248)

/
(23.6)

KNN 0.594
(0.444)

95.8
(29.0)

0.506
(0.494)

/
(875.7)

0.641
(0.776)

/
(136.9)

0.566
(0.399)

53.1
(48.8)

0.572
(0.192)

/
(119.0)

0.631
(0.505)

/
(66.0)

0.616
(0.634)

/
(16.8)

GBDT 0.999
(0.636)

3.2
(23.6)

0.999
(0.653)

/
(2262.8)

0.999
(0.835)

/
(151.8)

0.999
(0.887)

1.283
(18.2)

0.999
(0.930)

/
(23.8)

0.999
(0.910)

/
(50.6)

0.999
(0.845)

/
(12.7)

ET 0.897
(0.862)

50.4
(20.5)

0.887
(0.768)

/
(2221.1)

0.878
(0.879)

/
(142.0)

0.953
(0.924)

22.8
(20.2)

0.923
(0.930)

/
(52.1)

0.929
(0.798)

/
(56.3)

0.929
(0.913)

/
(9.7)

RF 0.904
(0.857)

55.2
(19.8)

0.92
(0.792)

/
(2433.6)

0.887
(0.858)

/
(155.5)

0.963
(0.892)

19.9
(22.8)

0.936
(0.938)

/
(29.9)

0.946
(0.832)

/
(51.9)

0.947
(0.935)

/
(9.4)

AB 0.818
(0.719)

39.3
(23.9)

0.81
(0.753)

/
(2634.2)

0.823
(0.860)

/
(138.1)

0.907
(0.913)

31.9
(28.3)

0.872
(0.876)

/
(60.4)

0.902
(0.850)

/
(67.0)

0.912
(0.893)

/
(12.8)

Bagging 0.954
(0.853)

38.4
(17.1)

0.942
(0.714)

/
(2462.3)

0.929
(0.815)

/
(130.7)

0.973
(0.888)

15.8
(24.5)

0.944
(0.941)

/
(33.1)

0.950
(0.841)

/
(56.8)

0.954
(0.909)

/
(10.9)

XGB 0.999
(0.773)

0.01
(19.9)

0.999
(0.655)

/
(2651.2)

0.999
(0.885)

/
(150.6)

1.000
(0.903)

0.002
(20.9)

0.999
(0.920)

/
(23.9)

0.999
(0.769)

/
(60.8)

0.999
(0.867)

/
(11.9)

grid search
cross-validation

0.954
(0.866)

47.8
(17.8)

0.965
(0.848)

/
(1958.0)

0.999
(0.903)

/
(142.9)

0.993
(0.946)

7.8
(18.0)

0.964
(0.941)

/
(29.5)

0.998
(0.923)

/
(46.1)

0.969
(0.935)

/
(9.6)
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