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Abstract: Progress toward habitat protection goals can effectively be performed using satellite
imagery and machine-learning (ML) models at various spatial and temporal scales. In this regard,
habitat types and landscape structures can be discriminated against using remote-sensing (RS)
datasets. However, most existing research in three-dimensional (3D) habitat mapping primarily
relies on same/cross-sensor features like features derived from multibeam Light Detection And
Ranging (LiDAR), hydrographic LiDAR, and aerial images, often overlooking the potential benefits of
considering multi-sensor data integration. To address this gap, this study introduced a novel approach
to creating 3D habitat maps by using high-resolution multispectral images and a LiDAR-derived
Digital Surface Model (DSM) coupled with an object-based Random Forest (RF) algorithm. LiDAR-
derived products were also used to improve the accuracy of the habitat classification, especially for
the habitat classes with similar spectral characteristics but different heights. Two study areas in the
United Kingdom (UK) were chosen to explore the accuracy of the developed models. The overall
accuracies for the two mentioned study areas were high (91% and 82%), which is indicative of the
high potential of the developed RS method for 3D habitat mapping. Overall, it was observed that a
combination of high-resolution multispectral imagery and LiDAR data could help the separation of
different habitat types and provide reliable 3D information.

Keywords: habitat mapping; remote sensing; satellite imagery; LiDAR; 3D mapping

1. Introduction

Biodiversity is an important element that influences ecosystem services to humanity.
The rate of global biodiversity extinctions has been increasing since humanity’s dominance
of the Earth [1,2] as well as growing demands for goods and services [3]. Human activities
and climatic change have also caused pressures on global biodiversity due to changes in the
structure and function of plants [4,5]. Therefore, effective strategies should be developed
to alleviate this massive habitat biodiversity loss [6]. In this regard, information on the
extent and spatial distribution of habitat types and their dynamics are needed for different
conservation planning activities. Consequently, accurate mapping of habitat types and
terrain information are prerequisites for such plans.

Habitat mapping using remote-sensing (RS) techniques has been developing for the
last couple of decades [7]. RS is a cost- and time-effective tool that contributes to the natural
habitat classification and investigation of landscape changes over wide areas using different
datasets, such as multispectral, radar, and Light Detection And Ranging (LiDAR) imagery.
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RS data are suitable for discriminating different habitat types (e.g., forests, grasslands, and
wetlands). Although it is usually not as accurate as field surveys, it has several advantages
which make it appealing for habitat classification, especially over vast areas. Former RS
studies have mainly focused on the manual interpretation of aerial photographs over small
areas. However, aerial photo interpretation is still labor-intensive and time-consuming, and
automating the corresponding process is challenging [8]. Therefore, space-borne satellite
images with different spatial resolutions are now more popular for habitat mapping [9,10].

Multispectral RS techniques, which use data acquired in visible and infrared parts
of the electromagnetic spectrum, are one of the approaches to map and monitor habitat
types. Multispectral RS systems use the differences in the reflected radiation from the
ground surface associated with the variety of habitat properties to discriminate habitat
types [11]. Different habitat types show different reflectance values due to the variation of
vegetation properties, structures, and canopies, making it possible to classify and separate
them using spectral indices. Most previous studies have investigated the use of medium
spatial resolution multispectral data for habitat mapping over large areas [12,13]. However,
accurate separation of habitat types requires data with higher spatial resolutions to provide
detailed information on the boundary of different habitat types [14–16]. Particularly, high-
resolution data are more beneficial for fragmented landscapes. Greater levels of detail, such
as textural features, which are different for various shapes of plants and canopy levels,
can be obtained using high spatial resolution data. However, even with a high-resolution
observation, it might be challenging to distinguish some habitat types due to their similar
spectral characteristics [11]. Therefore, complementary datasets, such as topographic
features, could help differentiate these species [17].

Along with horizontal dimension, vegetation height is also important for habitat
classification and three-dimensional (3D) mapping. LiDAR sensors provide measurements
of distances (heights) of the top (e.g., canopy height) and the ground surface [8,18,19].
Multiple studies have also used topographic-related features, such as slope, aspect, and
roughness, to improve the result of habitat classification. RS datasets are usually used
along with machine-learning (ML) models to map habitat types. ML, in integration with
mapping techniques, provides automatic pattern detection from the dataset with a variety
of independent image features, improving classification accuracies compared to statistical
models [20,21]. Some of the ML classification techniques, such as Random Forest (RF),
which is a non-parametric classification model, have the advantage of not being relied on
assumptions about data distribution, thus showing a high potential for habitat classifica-
tion [22]. Both pixel-based and object-based (or object-based image analysis) classification
approaches have been used for habitat mapping [23,24]. An object-based approach con-
verts pixels with similar spectral information into segments, which will later be the basis of
the classification. This technique has shown better performance compared to pixel-based
methods [25,26]. For example, ref. [27] showed that the object-based method resulted
in a higher accuracy in identifying fragmented grasslands compared to a pixel-based
classification technique.

So far, many studies have employed various RS datasets and ML models for habitat
classification. For example, ref. [1] explored the use of Unmanned Aerial Vehicle (UAV)–
LiDAR point cloud data to extract various topographic and vegetation structure features
for forest mapping. In another study, high-resolution RS data were used to produce the
Normalised Difference Vegetation Index (NDVI) to map vegetation cover and identify
individual tree crowns [28]. Several studies also compared different ML algorithms for
identifying specific habitat types and confirmed the high performance of RF classifiers for
object-based classification applications [29]. A study conducted by ref. [30] used an object-
based RF classification algorithm along with multispectral UAV images to discriminate
different tree species in Canada. Ref. [31] also produced a 3D map of coastal habitats using
a combination of spectral and height features derived from an airborne topo-bathymetric
bi-spectral LiDAR system. This study also analyzed the distinctive attributes of green
LiDAR full waveforms to extract habitat-specific features. These extracted features, along
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with infrared intensities and elevations, were used as input datasets in an RF model. The
study assessed the individual contributions of these predictors to the accuracy of the results,
aiming to improve the precision of habitat classification in coastal regions. The integration of
ML methods with aerial structure from motion photogrammetry for 3D habitat mapping has
become a popular approach in recent years [32,33]. For instance, ref. [33] proposed a semi-
automated framework for high-resolution benthic habitat classification and 3D mapping.
The approach involved utilizing Structure from Motion and Multi-View Stereo (SfM–MVS)
algorithms and automated machine-learning classifiers. Benthic habitat classification
was produced semi-automatically by extracting various attributes from labeled samples
using raw towed video camera image data, which were processed and analyzed by a
human annotator.

Although the previous research studies (e.g., ref. [33]) have provided promising
solutions for accurate and detailed 3D habitat mapping, they have mainly focused on
individual sensor data (e.g., LiDAR or aerial images) or lacked the synergistic integration
of multimodal datasets (e.g., active and multispectral passive remote-sensing images). This
limitation can hinder their ability to accurately map complex habitats that often exhibit
diverse and intricate characteristics. By leveraging the combined power of high-resolution
multispectral RS images and LiDAR data, our proposed research aims to bridge this gap
and deliver a more comprehensive and precise mapping of habitat structures in the selected
study areas. Considering the advantages of remote-sensing and ML models, various habitat
types in two different study areas were mapped in this study. To this end, an object-based RF
classification algorithm was applied to high-resolution Worldview-2 imagery and LiDAR-
derived products. Object-based classification considers spatial context and relationships
between neighboring pixels, leading to improved accuracy in identifying and delineating
habitat boundaries. Traditional pixel-based approaches used in some previous works may
not achieve the same level of precision [23]. The synergy of multispectral satellite imagery
and LiDAR data facilitated identifying vegetation structures more accurately. Furthermore,
a 3D habitat map for each case study was produced using the classified habitat map and
the Digital Surface Model (DSM) derived from LiDAR data.

2. Materials and Methods
2.1. Study Area

The study areas (Figure 1) were parts of two reservoirs of northern England, including
Colt Crag reservoir in Northumberland ((55◦05′57.6′′N, 2◦08′42.1′′W) and (55◦02′48.3′′N,
2◦03′38.4′′W)) and Grassholme reservoir in north Pennines ((54◦36′12.4′′N 2◦12’02.9′′W)
and (54◦34′27.8′′N 2◦07′24.4′′W)). Colt Crag is surrounded by wheatears, meadow pipits,
and rough grassland. Different animal species also live in the Grassholme reservoir. This
reservoir is primarily used as an angling centre for recreational purposes. In general, these
reservoirs have a rich biodiversity of benthal habitats and play a key role in supplying the
water for adjacent areas.

2.2. Field Data

Field data were collected by ecological experts using several field surveys with the
global positioning system (GPS). The collected data included 28 different land cover classes,
such as arable, bare ground, broadleaf woodland, improved grassland, marshy grassland,
mixed woodland, scrub, semi-improved acid grassland and calcareous grassland, wet
and modified bog, and open water. Among the collected classes, only those which were
important for the purpose of this study were considered. The information on the used field
samples and their distributions are provided in Table 1 and Figure 1, respectively. As is
clear, only a portion of the entire study area (e.g., 5–10%) was surveyed in the field, and
most portions were classified using desktop remote-sensing analysis. This considerably
reduced costs and time.
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Table 1. Information of the filed samples for different habitat types.

Study Area Habitat Class Area (Ha)

Colt Crag Reservoir

Arable 56.28

Bare Ground 0.22

Broadleaf Woodland 10.79

Building 0.92

Coniferous Woodland 17.39

Improved Grassland 41.26

Marshy Grassland 4.16

Mixed Woodland 12.10

Open Water 10.84

Quarry 25.01

Scrub 0.83

Semi-improved Acid Grassland 15.73

Semi-improved Calcareous Grassland 10.42

Wet Modified Bog 6.02

Total 211.96
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Table 1. Cont.

Study Area Habitat Class Area (Ha)

Grassholme Reservoir

Blanket bog 0.52

Bracken 0.07

Broadleaf Woodland 0.14

Built/Hardstanding 0.13

Coniferous Woodland 0.56

Disturbed Ground 0.02

Grassland 0.31

Marshy Grassland 0.26

Open Water 0.07

Scrub 0.04

Wet Modified Bog/Heath (High
Calluna Cover) 0.16

Total 2.28

2.3. RS Datasets

In this study, Worldview-2 multispectral satellite images were used to discriminate
various types of habitats. The images had a spatial resolution of 2 m and contained
different spectral bands (e.g., blue, green, red, Near Infrared (NIR), and Red Edge), which
are felicitous to distinguish various habitat types specified in this study. It is worth noting
that a pan-sharpening algorithm was applied to the Worldview-2 images to improve the
spatial resolution to 0.5 m. The Worldview-2 imagery was acquired on 5 May 2018 and
14 May 2018 over the Colt Crag and Grassholme reservoirs, respectively. Furthermore,
LiDAR data and their derived features, such as Digital Elevation Model (DEM) and DSM,
having one-meter spatial resolution with a vertical accuracy of +/−15 cm RMSE, were
employed to improve the classification accuracy and produce the 3D model of the study
areas. The UK Department for Environment, Food and Rural Affairs provided the LiDAR
products which resulted from the last return LiDAR signal and are accessible through
their website at ref. [34]. These products were also resampled to 0.5 m to conform with
the satellite images. The LiDAR data for both study areas were obtained on 20 May 2018.
Finally, all the layers of the satellite imagery and LiDAR datasets were layer-stacked to be
ingested in the classification algorithm.

2.4. Methodology

In this study, 3D habitat mapping was performed using several spectral, textural,
and topographic features derived from Worldview-2 and LiDAR data. The workflow of
the proposed method is illustrated in Figure 2, and its main steps are discussed in more
detail below.

The collected field samples were point-based. These samples were converted to
polygons using the high-resolution Worldview-2 images (see Table 1). Finally, all the
produced polygons were randomly split into two groups training (50%) and testing (50%).
The training data were employed for training the RF classification algorithm, and the test
samples were utilized for the statistical accuracy assessment.

Despite the partial pre-processing of Worldview-2 satellite images, geometric and
radiometric accuracies, as well as orthorectification, were investigated to make sure they are
suitable for producing 3D habitat maps. Pan-sharpening was also applied to the imagery to
increase its spatial resolution from 2 m to 0.5 m. The Lidar LiDAR data were pre-processed
by a lasnoise from the LAStools extension in ArcGIS to reduce potential negative blunders
and possible outliers.
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It is widely reported that object-based classification results have a higher classification
accuracy compared to a pixel-based method, especially when high-resolution images are
available [23,24,35–37]. Thus, habitat maps were produced using the object-based image
analysis. The first step in an object-based classification method is segmentation. Segmenta-
tion involves dividing an image into meaningful and homogeneous regions or segments
based on certain characteristics, such as color, texture, and intensity. The goal is to group
together pixels that belong to the same object or class while distinguishing them from other
objects in the image. In this study, the Worldview-2 multispectral image was first segmented
using the multi-resolution segmentation algorithm in the eCognition software package.
This algorithm applies relative homogeneity criteria over several resolutions/scales to
identify objects.

Obtaining higher mapping accuracy requires integrating spectral and elevation fea-
tures into the main datasets (e.g., the main spectral bands). Additionally, since object-based
image analysis was utilized in this study, various spatial and textural features were used
to improve the accuracy of the classification. After evaluating various spectral and struc-
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tural features, the most efficient attributes were incorporated into the classification system.
Table 2 shows the characteristics of the selected features in this study.

Table 2. The features used in the habitat classifications.

Feature Type Source Utilized Features

Spectral bands WorldView-2 Coastal, Blue, Green, Red, Yellow, Red Edge, Near Infrared (NIR)-1,
Near Infrared-2

Ratio and spectral indices WorldView-2
Blue

Brightness , Green
Brightness , Red

Brightness , In f rared
Brightness ,

NDWI = Green−NIR
Green+NIR , and NDVI = NIR−Red

NIR+Red

Spatial WorldView-2 Shape, Size

Gray level Co-occurrence
Matrix (GLCM) WorldView-2 Mean, Variance, Contrast, Dissimilarity, Entropy, and Homogeneity

Elevation derivations LiDAR Digital Elevation Model, Digital Surface Model, Canopy Height Model,
Slope, and Aspect

After identifying the optimal features, they were ingested into an RF algorithm to
classify the input data. RF works by using a collection of decision trees, each of which is
comprised of nodes that divide pixels into groups of pixels that are most similar to each
other. The nodes are then grouped into habitat classes as the process of division continues,
leading to the formation of the final classification map. The algorithm was trained using
50% field samples. The result of this step was the two-dimensional (2D) habitat maps from
the study areas.

After producing the 2D habitat maps, two methods were used to evaluate the ac-
curacies of the maps. It was first examined whether the classes visually corresponded
to different habitats by analyzing high-resolution imagery. Subsequently, the confusion
matrices extracted from the test data (i.e., half of the field samples) were generated to
determine the statistical accuracies of the maps.

Finally, the 2D habitat maps and the LiDAR–DSM products were integrated into
ArcScene to generate the 3D maps of the study areas.

3. Results and Analysis

Figure 3 shows the classified 2D and 3D habitat maps produced using the object-based
RF algorithm and a combination of Worldview-2 and LiDAR data. The accuracy of the
2D maps was first visually assessed by comparison with high-resolution imagery. It was
observed that the identified regions matched well with the actual habitat categories of the
study areas.

The area of each habitat type in the produced habitat maps was calculated, and the
percentage area of each class is illustrated in Figure 4. The most populated habitats in the
Colt Crag reservoir were Improved Grassland, Arable, and Semi-improved Acid Grassland,
respectively. In the Grassholme reservoir, most areas were covered by Blanket Bog, Wed
Modified Bog/Heath, Grassland, and Marshy Grassland, respectively.

The classification accuracies were evaluated statistically, and the independent test data
and confusion matrices were used. The classification of the Colt Crag and Grassholme
reservoirs resulted in 91% and 82% overall accuracies, respectively. These high classification
accuracies showed the high potential of the proposed RS technique for habitat classification.
Figure 5 illustrates the producer and user accuracies for each class in the study areas. The
accuracy for each individual class was significantly high for most of the habitat categories.
In the Colt Crag reservoir, both producer and user accuracies were approximately 100%
for the following classes: Bare Ground, Arable, Buildings, Quarry, Water, and Coniferous
woodland, indicating that all the samples for these habitat classes were correctly classified.
Another reason for the high classification accuracy for the mentioned classes was that
these categories have distinct spectral responses in the multispectral satellite images. The
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Semi-improved Acid Grassland, Wet Modified Bog, and Broadleaved Woodland classes
also achieved high accuracy levels. However, the accuracy rates for a few of the classes
were relatively low. For instance, the Marshy Grassland class had low accuracy in both
study areas. This was mainly because most marshlands were incorrectly classified as
Semi-improved grassland.
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4. Discussion

The main reason for the incorrect classification of some of the habitat categories was
that they share similar ecological and spectral characteristics. Therefore, their spectral data
could be assigned to an incorrect class by an ML algorithm. This was particularly observed
for subclasses of a habitat type. For instance, it was difficult to discriminate different
types of grasslands, where they were interchangeably identified and, consequently, their
accuracies were reduced. It should be noted that the accuracy of discriminating grasslands
from other habitat types was high. However, there was confusion between the grassland
sub-classes. For instance, there were several Semi-improved Calcareous grassland areas
that were wrongly classified as the Semi-improved grassland class, and, therefore, the
producer accuracy of this class was reduced to 66% in the Colt Crag Reservoir.

LiDAR data were crucial for the classification of the habitat categories that had similar
spectral responses but different heights. To illustrate this, the habitat classification of the
Colt Crag region was implemented by the sole use of the Worldview-2 satellite image
(Figure 6), and the results were compared with those produced from a combination of
satellite imagery and LiDAR data (Figure 5a). It was observed that excluding LiDAR data
notably decreased the accuracy levels of most classes, especially the elevated classes, such as
Scrub woodlands. For example, the producer (user) accuracies of the scrub class decreased
from 75% (41%) to 62% (30%) when LiDAR data were not considered in the classification
model. Additionally, the averaged producer (user) accuracies of the woodland classes (i.e.,
Mixed woodland, Broadleaved woodland, and Coniferous woodland) decreased from 89%
(95%) to 83% (84%) when LiDAR data were removed from the classification model. In fact,
the vertical attribute of LiDAR data served as a crucial discriminator, making LiDAR an
invaluable tool in overcoming the limitations of spectral-only approaches. Nonetheless,
there were instances where the discrimination of scrubs from other woodlands using
LiDAR data faced challenges. In specific cases, the relatively low resolution of the LiDAR
data (i.e., 1 m) limited its ability to capture fine-scale variations in vegetation height,
leading to reduced accuracy in distinguishing these classes. Despite this limitation, the
overall contribution of LiDAR to habitat classification remained substantial. By providing
valuable vertical structure information, LiDAR enhanced the precision and reliability of
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differentiating between various habitat types, especially when height played a pivotal role
in delineating distinct ecological zones.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 14 
 

 

resolution of the LiDAR data (i.e., 1 m) limited its ability to capture fine-scale variations 
in vegetation height, leading to reduced accuracy in distinguishing these classes. Despite 
this limitation, the overall contribution of LiDAR to habitat classification remained sub-
stantial. By providing valuable vertical structure information, LiDAR enhanced the preci-
sion and reliability of differentiating between various habitat types, especially when 
height played a pivotal role in delineating distinct ecological zones. 

 
Figure 6. Producer and user accuracies for the habitat classes in the Colt Crag reservoir using only 
Worldview-2 satellite image. 

Although DSM was created from LiDAR point cloud data, it can be generated from 
photogrammetric methods applied to stereo aerial and satellite imagery. Although pho-
togrammetric methods usually have lower accuracy compared to LiDAR-based methods, 
they are more cost-effective. Therefore, to reduce cost in future studies, it is suggested to 
use DSM generated from photogrammetric methods [38].  

Both the quality and the quantity of the field samples had a significant impact on the 
classification accuracy of the proposed RF model. In this study, the numbers of field sam-
ples for most of the habitat classes were determined to be statistically significant. How-
ever, there was a limited number of samples for a few classes yielding low accuracies of 
the corresponding classes. For example, one of the reasons for the low producer accuracy 
of the Marshy grassland class could be rooted in the low number of field samples for this 
class. 

One of the limitations in increasing the accuracy of the linear features, such as wet 
ditches or narrow running water bodies, was the spatial resolution of the RS images. De-
spite achieving a high-resolution pan-sharpened image with a resolution of 0.5 m in this 
study, we encountered limitations in effectively discriminating certain linear features 
from each other. While it is possible that the limitations in discriminating certain linear 
features can be attributed to the quality of the pan-sharpening method, these issues are 
primarily caused by the combined effects of the Modulation Transfer Function (MTF) on 
the edge sharpness of the imagery [39]. This MTF influence results in blurring and re-
duced contrast of the linear features within the pan-sharpened image. Hence, despite 
achieving a high-resolution pan-sharpened image, the inherent characteristics of the im-
aging system, influenced by the MTF, contribute to the challenges in accurately discrimi-
nating specific linear features. This might be one of the reasons for the low accuracy of the 
wet ditches and narrow roads (Hardstanding). If a higher accuracy for linear features is 
required, higher-resolution images, such as those collected by drones, should be pur-
chased in future works.  

It should be noted that the multispectral satellite images (e.g., Worldview-2) cannot 
see under trees and, thus, it was not possible to detect any features like water bodies and 
ponds that were beneath the tree canopies. Some RS datasets, such as those acquired by 
L-band RADAR satellites, could be an effective solution for this problem.  

Figure 6. Producer and user accuracies for the habitat classes in the Colt Crag reservoir using only
Worldview-2 satellite image.

Although DSM was created from LiDAR point cloud data, it can be generated from
photogrammetric methods applied to stereo aerial and satellite imagery. Although pho-
togrammetric methods usually have lower accuracy compared to LiDAR-based methods,
they are more cost-effective. Therefore, to reduce cost in future studies, it is suggested to
use DSM generated from photogrammetric methods [38].

Both the quality and the quantity of the field samples had a significant impact on the
classification accuracy of the proposed RF model. In this study, the numbers of field samples
for most of the habitat classes were determined to be statistically significant. However,
there was a limited number of samples for a few classes yielding low accuracies of the
corresponding classes. For example, one of the reasons for the low producer accuracy of the
Marshy grassland class could be rooted in the low number of field samples for this class.

One of the limitations in increasing the accuracy of the linear features, such as wet
ditches or narrow running water bodies, was the spatial resolution of the RS images. Despite
achieving a high-resolution pan-sharpened image with a resolution of 0.5 m in this study,
we encountered limitations in effectively discriminating certain linear features from each
other. While it is possible that the limitations in discriminating certain linear features can be
attributed to the quality of the pan-sharpening method, these issues are primarily caused
by the combined effects of the Modulation Transfer Function (MTF) on the edge sharpness
of the imagery [39]. This MTF influence results in blurring and reduced contrast of the
linear features within the pan-sharpened image. Hence, despite achieving a high-resolution
pan-sharpened image, the inherent characteristics of the imaging system, influenced by
the MTF, contribute to the challenges in accurately discriminating specific linear features.
This might be one of the reasons for the low accuracy of the wet ditches and narrow
roads (Hardstanding). If a higher accuracy for linear features is required, higher-resolution
images, such as those collected by drones, should be purchased in future works.

It should be noted that the multispectral satellite images (e.g., Worldview-2) cannot
see under trees and, thus, it was not possible to detect any features like water bodies and
ponds that were beneath the tree canopies. Some RS datasets, such as those acquired by
L-band RADAR satellites, could be an effective solution for this problem.

5. Conclusions

RS techniques are highly beneficial for monitoring habitats. Different RS datasets
with various spectral, spatial, and temporal characteristics complement each other in
habitat mapping applications. The majority of current research on 3D habitat mapping
has tended to focus on utilizing features derived from a single sensor or a combination
of similar sensors, such as multibeam LiDAR, hydrographic LiDAR, and aerial images.
These approaches often overlook the potential advantages of integrating data from multiple
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sensors. To bridge this gap, our study introduced a novel methodology for generating 3D
habitat maps by a combination of Worldview-2 images and LiDAR products in two different
study areas using an object-based RF classification method. The image was first segmented
into objects, and then each object was assigned to a habitat class. The LiDAR-derived DSM
was then used to create 3D habitat maps by adding height information to each pixel of
the 2D classified maps. It was concluded that the maps had high classification accuracies,
indicating the great potential of the proposed RS method for habitat classification. The
results also indicated that a combination of high-resolution multispectral imagery and
LiDAR data could provide valid 3D information on habitat classes. LiDAR data were
also very helpful in distinguishing the habitat classes with similar spectral responses but
different elevations. For example, including LiDAR data increased the averaged producer
and user accuracies of the woodland classes by 6% and 11%, respectively.
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