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Abstract: Earthquake Disaster Assessment (EDA) plays a critical role in earthquake disaster preven-
tion, evacuation, and rescue efforts. Deep learning (DL), which boasts advantages in image processing,
signal recognition, and object detection, has facilitated scientific research in EDA. This paper analyses
204 articles through a systematic literature review to investigate the status quo, development, and
challenges of DL for EDA. The paper first examines the distribution characteristics and trends of
the two categories of EDA assessment objects, including earthquakes and secondary disasters as
disaster objects, buildings, infrastructure, and areas as physical objects. Next, this study analyses the
application distribution, advantages, and disadvantages of the three types of data (remote sensing
data, seismic data, and social media data) mainly involved in these studies. Furthermore, the review
identifies the characteristics and application of six commonly used DL models in EDA, including
convolutional neural network (CNN), multi-layer perceptron (MLP), recurrent neural network (RNN),
generative adversarial network (GAN), transfer learning (TL), and hybrid models. The paper also
systematically details the application of DL for EDA at different times (i.e., pre-earthquake stage,
during-earthquake stage, post-earthquake stage, and multi-stage). We find that the most extensive
research in this field involves using CNNs for image classification to detect and assess building
damage resulting from earthquakes. Finally, the paper discusses challenges related to training data
and DL models, and identifies opportunities in new data sources, multimodal DL, and new concepts.
This review provides valuable references for scholars and practitioners in related fields.

Keywords: earthquake disaster assessment; deep learning; damage detection; convolutional
neural network

1. Introduction

The 2023 Turkey-Syria earthquake has captured significant global attention. Earth-
quakes are among the most catastrophic and unpredictable natural disasters that severely
threaten human life. According to the significant earthquake database maintained by the
National Centers for Environmental Information of the National Oceanic and Atmospheric
Administration, earthquakes caused approximately 570,000 fatalities and 1 million injuries
worldwide from 2000 to 2018 [1]. The dominant functions of EDA lie in predicting the
probability of earthquakes to implement effective countermeasures, provide early warn-
ing systems, evaluate damage, and assess facility safety for evacuation and emergency
arrangements. EDA is critical in reducing casualties and minimizing economic losses.

DL, a significant branch of machine learning (ML), has become an essential research
topic in artificial intelligence (AI) with the advent of big data. The concept of DL originated
from the study of artificial neural networks (ANNs) and consists of multi-layer ANNs
covering the supervised and unsupervised learning parts of the ML [2]. Its purpose
is to find specific rules from large sets of sample data and use these rules to analyse
target samples. Traditional ML models have limitations in their capability and capacity to
process the increasing quantity and variety of data and quality of information requirements.
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At the same time, DL can automatically extract advanced features from big data with
higher effectiveness and efficiency. DL is superior to traditional ML in data processing [3],
especially in classification [4], recognition [5], segmentation [6], and detection [7] due to its
ability to handle more complex data.

DL has emerged as a powerful tool for analysing high-dimensional data and is widely
used in various scientific fields, including earthquake engineering, civil engineering, and
natural language processing [8,9]. Prevailing discourses show that DL can be applied in all
phases of EDA, ranging from earthquake prediction [10,11] and damage assessment [12,13]
to disaster information extraction [14] and risk analysis [15]. Additionally, DL can also
be used to assess secondary disasters caused by earthquakes, such as tsunamis [16] and
landslides [17,18]. DL’s ability to process large amounts of data and learn complex patterns
from them provides significant advantages in various EDA applications, which can lead to
more accurate and timely risk assessments and mitigation strategies.

Fifteen literature reviews have been retrieved on the topic of applying DL for EDA (see
the retrieval methodology in Section 2). Among them, eleven reviews focus on geological
hazards with earthquake-induced geological disasters as a sub-type [19–24], or on specific
secondary disasters related to earthquakes [25–29], with only four papers specifically ad-
dressing earthquakes [30–33]. Of these, three papers are scoped in AI [30] and ML [31,32],
which are more comprehensive than DL, while the third is limited to a specific DL algo-
rithm [33], and which may not be representative. Given this, a comprehensive literature
review on the explicit intersection of DL and EDA is needed. Such a review should include
bibliographic analysis dimensions of objects, data, models, stages, challenges, and opportu-
nities. Accordingly, we propose to review and summarise the application of DL algorithms
in EDA with the main concerns listed below. This paper will be the first comprehensive
review of the application of DL for EDA.

• What are the dominant research objects for EDA using DL—earthquakes, earthquake-
induced secondary disasters, buildings, infrastructure, or other objects—and how
about their trends? Which detailed functions prevail for each EDA’s assessment object?

• What are the data types and their obtaining methods for DL algorithms in the EDA?
Furthermore, what are the data sources (especially the publicly available ones), advan-
tages, disadvantages, and adaptability of these data types?

• What are the types of DL models commonly used in EDA? Moreover, what are the
corresponding advantages, disadvantages, adaptability, and characteristics of their
data sources?

• How is DL applied in different stages of EDA, i.e., the main functions of DL in pre-
earthquake, during-earthquake, and post-earthquake stages, respectively? What are
the models’ and data types’ distribution in the more detailed assessment sub-stages?

This paper reviews 204 published reports on the application of DL for EDA. The struc-
ture of the remaining sections is as follows: Section 2 presents the methodology used in this
study. Section 3 elaborates on EDA’s current research status analysis from the perspective
of assessment objects. Section 4 introduces three main categories of data used by DL for
EDA. Section 5 summarises the DL models most commonly adopted in EDA. Section 6
analyses the EDA emphasis in different temporal stages of an earthquake. Section 7 dis-
cusses current challenges and future opportunities in this field. Finally, Section 8 provides
a comprehensive summary of the entire paper.

2. Methodology

Web of Science (WOS) Core Collection is selected as the database for paper retrieval
due to its authority, popularity, and comprehensive coverage. Our preliminary survey
found that the CNN is the most widely adopted DL algorithm in EDA research. To improve
the articles’ relevance and highlight the current state of research, “CNN” is added to the
retrieval expression to clarify our search scope and include the papers that specifically
use CNN rather than DL in the text. As shown in Figure 1, the retrieval combination is
“(earthquake or seismic) and (risk or disaster or hazard or damage or destroy) and (analysis
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or assess* or evaluat*) and (“deep learning” or “CNN” or “convolutional neural network”)”.
A total of 304 articles were retrieved (as of 1 January 2023).
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tions. For example, assess* could find all articles that contain the term assess and assessment.

Based on the initial search results, we further clarified the scope of our literature
review by applying specific screening rules. First, we limited the types of literature to
four categories: article, review article, online publication, and data paper, while excluding
conference papers. Second, we screened out papers that were not closely associated with
our research content based on the title, abstract, and keywords. For example, we manually
deleted papers in the medical or physical fields. Third, we confirmed that the literature
was specifically about seismic hazards. In particular, we ensured that the causal factor
of secondary disasters was an earthquake, thus excluding articles related to secondary
disasters caused by non-seismic factors. Finally, we checked whether the algorithm used
was specified as DL, filtering out literature that focused on AI or ML in general. By applying
these screening rules, we selected 204 papers as the final dataset for our literature review.
Among these, 15 papers were literature reviews and were excluded from our subsequent
data analysis.

This paper summarises the most prolific journals in the field and their corresponding
publications. The analysis presented in Figure 2a reveals that REMOTE SENSING journals
are the leading contributors, accounting for 16.667% of the total publications in this area,
followed by APPLIED SCIENCES BASEL and SENSORS.
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As depicted in Figure 2b, the graph illustrates a rising trend in the application of DL
for EDA, which began in 2018 and has continued to grow. This upward trend indicates a
stable expansion of the DL’s application in EDA, highlighting the significance of this field
as a prominent research topic.

3. Assessment Objects

As shown in Supplementary Table S1, five main assessment objects are identified, i.e.,
earthquakes, earthquake-induced secondary disasters, buildings affected by earthquakes,
infrastructure affected by earthquakes, and regions affected by earthquakes. The sum of
the total number is 199, with 10 of them involving multiple categories.

3.1. Earthquakes

The evaluation of the earthquake itself is an essential component of EDA. Our analysis
of 59 articles in this field reveals two main categories of earthquake assessment: disaster
assessment for tectonic earthquakes and man-made earthquakes.

3.1.1. Tectonic Earthquakes

Among the 54 studies of tectonic earthquakes, the themes of earthquake prediction and
localisation comprise the majority, with 27 and 11 studies, respectively. Other studies focus
on seismic data processing, earthquake warning, and identification. Earthquake prediction
can be subdivided into mainshock prediction and aftershock prediction, with probabilistic
and magnitude predictions being the primary concerns. For example, Jain et al. [34]
designed an earthquake prediction model based on position and depth parameters using
ML and DL algorithms. Ding et al. [35] developed a DL-based ground motion prediction
equation (GMPE) for aftershock prediction after mainshocks. Perol et al. [36] proposed
ConvNetQuake for seismic detection and localisation based on a single waveform. Instead
of classifying waveforms based on similarity, the model uses a set of nonlinear local filters
to analyse waveforms. Compared to other seismic detection methods (autocorrelation
and FAST), ConvNetQuake achieves state-of-the-art performance in probabilistic event
detection and localisation using a single signal. In addition, the model’s accuracy improves
with the increase in the signal-to-noise ratio.

3.1.2. Man-Made Earthquakes

Man-made earthquakes mainly refer to earthquakes of anthropogenic origin, such as
blasting and mining. The five articles on man-made earthquakes can be summarised in
three aspects.
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One paper is about the localisation of microseismic events. Wu et al. [37] established a
dynamic model for locating shallow underground seismic sources based on the seismic
wave analysis technique and the deep reinforcement learning method.

Three papers are about the identification of microseismic events. Since microseismic
signals formed by mining events tend to have a smaller signal-to-noise ratio than tectonic
earthquakes, Wilkins et al. [38] conducted a study to identify such seismic events accurately.
The microseismic signals from the mines were recorded using geophones first. Then, a CNN
algorithm was used to identify the signals and classify them as true events and false-positive
events. This study proves that CNN is more efficient than humans in accurately classifying
microseismic signals. Peng et al. [39] proposed a method based on deep convolution neural
network inception (DCNN-Inception) for microseismic signal recognition. Comparing
the performance of DCNN-Inception and CNN shows that the proposed method has
better recognition accuracy than CNN. Xu et al. [40] proposed an automatic P-wave onset
time picking method for mining-induced microseismic data based on a long short-term
memory deep neural network. The proposed method can accurately extract data features
of microseismic waveforms and further improve the P-onset picking performance.

The left paper is about the classification of clustered microseismic events. Duan
et al. [41] investigated the feasibility of classifying seismic events distributed around the
main dike and longwall face of an underground coal mine. Four models—random forest
(RF), support vector machine (SVM), deep convolutional neural network (DCNN), and
residual neural network (ResNN)—were used for classifying seismic signal data. Among
them, DCNN is the most effective and reliable classifier.

3.2. Earthquake-Induced Secondary Disasters

Earthquakes could induce a series of secondary disasters, such as landslides, tsunamis,
subsidence, collapse, liquefaction, etc. According to Supplementary Table S1, landslides
and tsunamis are predominant earthquake-induced secondary disasters.

3.2.1. Earthquake-Induced Landslides

Earthquake-induced landslides (EQIL) are one of the most critical earthquake-induced
secondary disasters, and bring many adverse impacts such as blocking traffic and burying
houses. Therefore, assessing earthquake-induced landslides is of great significance for
mitigating post-earthquake losses.

In our reviewed papers, there are 30 articles related to EQIL assessment. Based on
the DL model, Zhang et al. [42] proposed a coseismic landslide identification model for
the rapid and automatic extraction of landslides caused by the 2018 Iburi earthquake
in Japan. Due to the spatial uncertainty in landslide areas and incomplete information
extraction, Li et al. [43] used high-resolution remote sensing images and digital elevation
models (DEMs) to extract the source area of an EQIL. In addition, a DL framework based on
Stacked Auto-Encoders (SAE) was also used to predict EQILs. By comparing the proposed
one with traditional prediction models, the DL-based model shows superiority in the
spatial prediction of an EQIL.

3.2.2. Earthquake-Induced Tsunamis

Earthquake-induced tsunamis (EQIT) often cause significant damage to coastal cities.
For EQIT assessment, the main concern lies in damage detection. Traditional damage
detection methods were based on ground-based observations and low-altitude imagery.
With the gradual maturity of remote sensing technology, tsunami-related data are more
often collected by satellite to significantly reduce acquisition time and cost. Furthermore,
combining DL with remote sensing images can detect EQIT damages and even subtle
changes, significantly improving efficiency and effectiveness.

In this review, there are six papers on EQITs. Adriano et al. [44] developed a global
multimodal and multitemporal dataset for building damage mapping. In addition, a
damage mapping framework based on modern Attention U-Net architecture is proposed to
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study the damage mapping problem of three natural disasters, including tsunamis, under
five data modality scenarios. This study shows that integrating the developed dataset
and DL methods provides acceptable prediction results for all data modality scenarios
with acceptable accuracy. Taking the 2011 Tohoku Earthquake-Tsunami as an example,
Bai et al. [45] and Sublime and Kalinicheva [46] studied DL-based change detection and
damage mapping using satellite images before and after the disaster. Due to the lack of
high-resolution radar images, Synthetic Aperture Radar (SAR) images were considered
a substitute to improve the model’s accuracy further. Considering that pre-disaster data
may be unavailable, Bai et al. [16] studied the problem of EQIT damage identification and
building damage mapping using only post-disaster SAR data.

3.3. Buildings Affected by Earthquakes

There are 74 articles assessing buildings affected by earthquakes. From the point of
view of the research object, they can be further divided into (1) buildings (43 papers) and
(2) building structures or components (31 papers).

3.3.1. Buildings

For buildings, the EDA focuses on three categories of seismic performance analysis
and safety assessment.

The first category is to classify the vulnerability of buildings before an earthquake
to analyse their seismic resistance or to carry out corresponding evacuation planning
in advance. Aiming at the problem of identifying soft-story buildings, Chen et al. [47]
developed a new method to overcome the occlusion problem of street view images to
improve the soft-story identification performance. Soft-story buildings are open spaces on
lower floors, mainly used for parking or commercial activities. The second category is the
safety assessment of post-earthquake buildings for countermeasure-making of structural
reinforcement or total reconstruction. Tsuchimoto et al. [48] used CNN and sparse accel-
eration measurement methods to assess the safety of post-earthquake buildings, whose
effectiveness is verified through the case study of a five-story steel structure building.

3.3.2. Building Structures or Components

For building structures or components, the EDA is primarily concerned with structural
damage detection and assessment.

By quickly detecting and locating structural damage during an earthquake, more serious
damage can be avoided, and subsequent rescue can be facilitated. Morales-Valdez et al. [49]
proposed a novel model for the automatic positioning of building structural damage.
Experimental verification using an aluminium two-story building prototype confirms
the development prospects of the proposed method, but more research is still needed to
evaluate its potential.

Damage assessment of building structures or components can measure their post-
earthquake residual capacity and assist in assessing the post-earthquake safety of buildings.
Miao et al. [50] proposed a DL-based approach for the evaluation of mechanical property
degradation of RC columns based on the visible seismic damage of the components.

3.4. Infrastructure Affected by Earthquakes

Infrastructure, including buildings, bridges, roads, railways, and ancillary pipe net-
work facilities, is an essential element for ensuring human daily production and life [51].
There are 21 articles assessing infrastructure affected by earthquakes, mainly referring to
public service facilities such as bridges and highways. Naser [52] combined DL with com-
puter vision to program a framework for self-diagnosis and assessment of infrastructure
under the impact of extreme events such as earthquakes. For highways, Hong et al. [53]
proposed a DL method for road crack detection based on post-earthquake unmanned aerial
vehicle (UAV) images. Experimental results indicate that the proposed method achieves
68.38% crack accuracy, surpassing U-Net and some traditional crack segmentation models.
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Mangalathu and Jeon [54] proposed a framework for rapid damage assessment
of bridge systems. Nine DL architectures—AlexNet, Inception, ResNet18, ResNet51,
ResNet101, Vgg16, Vgg19, InceptionResNet, and DenseNet—were applied to four-span
reinforced concrete box girder bridges designed in California before 1970. The comparison
reveals that AlexNet has the highest test set accuracy among all models. Except for AlexNet,
ResNet18, and Vgg19, all methods achieve greater than 70% accuracy on unknown test
sets. Yoon et al. [55] established a method for damage detection and seismic resistance
evaluation of deteriorating bridges.

3.5. Regions Affected by Earthquakes

In our review, nine articles focus on how to detect and assess post-earthquake damage
on a regional scale. The areas affected by an earthquake are characterised by complex
object components, including various buildings and infrastructures within a community
with multiple functions. The systematic evaluation of damage within the affected region
is crucial for effective emergency rescue work. Remote sensing technology has been
increasingly employed in such scenarios, in combination with deep learning methods, to
acquire and analyse regional data.

Bernabe et al. [56] performed fast seismic damage detection of regional very high-
resolution remote sensing images using the OpenVINO toolkit. Lu et al. [57] proposed
a method for rapid post-earthquake damage assessment in the region, which performs
well in efficiency and accuracy. Kim et al. [58] studied pre- and post-earthquake regional
loss assessments using DL models. Improvements in not only pre-earthquake prediction
accuracy of structural response, but also post-earthquake near real-time assessment and
decision-making were achieved. Conducting regional EDA allows for a more comprehen-
sive overall assessment of the extent and severity of damage, aiding in the planning and
execution of post-earthquake relief efforts.

3.6. Discussion

As shown in Supplementary Table S1, papers themed with assessing buildings affected
by the earthquake account for the most significant proportion, while relatively few studies
focus on infrastructure and regions. Among the 59 articles evaluating the earthquake, the
CNN algorithm (63%) and RNN algorithm (12%) are the most commonly used algorithms.
Among the 74 papers that evaluate buildings, the most applied algorithm is CNN (92%).
Among the 36 papers on secondary disaster assessments, the most widely used algorithm
is still CNN (67%). In the articles that evaluate infrastructure and regions, the application
rates of the CNN algorithm reach 52% and 67%, respectively. These results indicate that the
CNN algorithm is the most popular DL algorithm employed in EDA across all objects of
assessment considered in this study.

As shown in Table 1, through the structuralisation of literature by the fields of assess-
ment objects (earthquakes, earthquake-induced secondary disasters, buildings affected
by earthquakes, infrastructure affected by earthquakes, regions affected by earthquakes),
categories (disaster objects and physical objects), application stages (pre-earthquake stage,
during-earthquake stage and post-earthquake stage), and functions, damage detection
is identified as the application focus. The coexisting function of all disaster objects is
probabilistic prediction, and the coexisting functions of all physical objects are damage
detection, damage assessment, and risk assessment.
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Table 1. Detailed function distribution of EDA’s assessment objects.

Assessment Objects Categories Application Stages Functions

Earthquakes Disaster object

Pre-earthquake stage Probabilistic prediction and
magnitude prediction

During-earthquake stage
Earthquake localisation, disaster

situation analysis, and seismic data
processing

Post-earthquake stage Loss assessment

Earthquake-Induced
Secondary Disasters Disaster object Post-earthquake stage

Probabilistic prediction, risk
assessment, landslide extraction,

damage detection, disaster
identification, and landslide

susceptibility mapping

Buildings Affected by
Earthquakes

Physical object

Pre-earthquake stage Risk assessment

During-earthquake stage Damage detection and collapse
detection

Post-earthquake stage Safety and damage assessment

Infrastructure Affected
by Earthquakes

Physical object
Pre-earthquake stage Risk assessment

During-earthquake stage Damage detection
Post-earthquake stage Damage assessment

Regions Affected by
Earthquakes

Physical object
Pre-earthquake stage Risk assessment

During-earthquake stage Damage detection

Post-earthquake stage Multiple scene recognition and
damage assessment

In addition, we categorise the objects of EDA and create a trend chart for each assess-
ment object, as shown in Figure 3. The chart indicates that disaster objects and physical
objects are assessed in nearly equal proportions, and that there is an overall increasing
trend for almost all objects. In terms of disaster objects, studies of secondary disasters
affected by earthquakes are relatively few but have demonstrated steady growth. In terms
of physical objects, infrastructure and regions are currently less studied, potentially due
to factors such as the limitations of hardware and software capabilities, the complexity of
object components, high property density, and expansive spatial coverage. These findings
provide valuable insights into the current state of EDA research and indicate possible
regions for future investigation from the dimension of assessment objects.
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4. Data Types

The input data of DL models cover various types, including remote sensing images,
ground motion data, and social media data. Supplementary Table S2 shows the categori-
sation of reviewed papers by data types, with a total of 207 papers included, including
18 covering multiple data types. Moreover, data types that are unclear are considered “other”.

Access to reliable data resources, especially open-access ones, are valuable for EDA
and other related research. During the literature review, we identified authoritative data
sources available to the public that satisfy the retrieval and reference requirements. We
manually extracted this information from 189 papers with additional details on data types
and websites. These records are listed in Table 2.

Table 2. Publicly available data sources for EDA.

Data Sources Data Types Website

Pacific Earthquake Engineering Research
Center (PEER) Ground motion data https://ngawest2.berkeley.edu/,

accessed on 10 July 2022

Kyoshin Network (K-NET); Kiban
Kyoshin Network (KiK-net) Strong-motion data https://www.kyoshin.bosai.go.jp/,

accessed on 10 July 2022

Center for Engineering Strong Motion
Data (CESMD)

Earthquake metadata, stations metadata,
time series, and parametric data

http://www.strongmotioncenter.org,
accessed on 10 July 2022

Stanford Earthquake Dataset (STEAD) Seismic signals
https:

//github.com/smousavi05/STEAD,
accessed on 10 July 2022

Southern California Earthquake Data
Center (SCEDC) Earthquake catalogue

https://github.com/tso1257771/ARRU_
seismic_backprojection, accessed on 10

July 2022

The United States Geological Survey
(USGS) Geological data

https://earthquake.usgs.gov/, accessed
on 10 July 2022

Geological Hazard Information for New
Zealand (GeoNet)

https://www.geonet.org.nz, accessed on
10 July 2022

DIVA GIS https://www.diva-gis.org/, accessed on
10 July 2022

China Unicom Mobile phone signalling data http://www.smartsteps.com/, accessed
on 10 July 2022

Purdue University, United States Earthquake data
Datacenterhub.org, accessed on 10

July 2022
Earthquake Engineering Research

Institute (EERI)
http://www.eqclearinghouse.org/,

accessed on 10 July 2022

xBD Dataset Annotated high-resolution satellite
imagery for building damage assessment

https://xview2.org/dataset, accessed on
10 July 2022

Socioeconomic Data and Applications
Center (SEDAC) Population information https://beta.sedac.ciesin.columbia.edu/,

accessed on 10 July 2022

4.1. Remote Sensing Data

There are generally three types of remote sensing data retrieved in this paper: satellite
images, aerial images, and point cloud data. Remote sensing data covers a variety of
acquisition methods, such as UAVs, aerial photography, and satellite platforms. This
section sequentially introduces the characteristics and applications of satellite images,
aerial images, and point cloud data.

4.1.1. Satellite Images

There are 68 articles adopting satellite images, including the sub-types of optical
satellite images, SAR images, and Interferometric Synthetic Aperture Radar (InSAR) images.

https://ngawest2.berkeley.edu/
https://www.kyoshin.bosai.go.jp/
http://www.strongmotioncenter.org
https://github.com/smousavi05/STEAD
https://github.com/smousavi05/STEAD
https://github.com/tso1257771/ARRU_seismic_backprojection
https://github.com/tso1257771/ARRU_seismic_backprojection
https://earthquake.usgs.gov/
https://www.geonet.org.nz
https://www.diva-gis.org/
http://www.smartsteps.com/
http://www.eqclearinghouse.org/
https://xview2.org/dataset
https://beta.sedac.ciesin.columbia.edu/
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Optical satellite images are the first choice for post-earthquake damage detection and
assessment because they are easy to interpret [59]. Furthermore, given enough overlaps,
optical images may be able to generate 3D models to assess the damage to buildings
further [60]. Nevertheless, this approach requires sufficient time to collect images, which
is undoubtedly impractical in emergency relief work. The intrinsic limitations of satellite
images in identifying structural damages to buildings include their inability to aid in the
identification of damage within structures, as well as vertical perspective data poorly
identifying soft-story collapse [61,62]. It is also worth noting that optical satellite images
are highly susceptible to weather conditions.

SAR images have the advantage of being insensitive to atmospheric conditions [63].
The disadvantage of SAR images is that it is difficult to interpret and detect similar objects.
Nava et al. [64] explored the use of SAR data in a rapid mapping study of coseismic
landslides in the eastern Iburi sub-prefecture of Hokkaido, Japan. Their findings suggest
that combining SAR data with other data may help quickly map landslides.

InSAR has incomparable advantages in surface deformation monitoring, such as
all-weather detection, wide detection range, high detection accuracy, and low detection
cost [65]. It can provide data to support further earthquake event identification and risk
assessment. InSAR is a technique that can be used to generate DEMs. But the accuracy of
InSAR is greatly limited by geometrical distortions, atmospheric effects, and decorrelations,
particularly in mountainous areas [66]. Shakeel et al. [67] constructed an anomaly detector
of deformation in InSAR (ALADDIn) for earthquake detection.

4.1.2. Aerial Images

Aerial images are used in 28 articles, among which the most commonly used types
are UAV and airborne images. UAV images have more applications in damage detection,
mainly because of their portability and flexibility. Compared to satellite images, UAV
images are less expensive and more accessible. Moreover, UAVs can observe more subtle
damage due to the shorter sampling distance, such as cracks in roads and bridges [53,55].
The disadvantages of UAV acquisition mainly include the low quality of imaging, the small
coverage area, and the dependence on human control.

Since aerial (manned) systems can perform multi-view image capture, oblique views
can be obtained to detect building facade damage [68]. Therefore, airborne images can
be combined with optical satellite images to obtain more comprehensive data. The dis-
advantage of airborne images is that they cannot achieve rapid image acquisition after
the earthquake. Particularly in remote areas, it is challenging to obtain manned aircraft in
emergencies. Consequently, airborne images are unsuitable for post-earthquake emergency
response [61]. Duarte et al. [60] evaluated the combined use of airborne and satellite images
and studied three CNN feature fusion approaches with three resolution levels of images.
Such a multi-resolution feature fusion approach achieves better classification accuracy.

4.1.3. Point Cloud Data

Four articles are identified to use point cloud data in our review. LiDAR mainly
acquires point cloud data. Airborne LiDAR can effectively obtain the 3D geometry of
buildings (in the form of point clouds) and thus has more potential to be used to detect
various collapsed buildings after an earthquake [69]. Additionally, point cloud data can
be generated through photography software. When training DL models for soft-story
building classification, Chen et al. [47] used a well-developed photogrammetry software to
automatically register the shared points among images and calculate the distances in 3D
space. Ultimately, 1.1 billion point-cloud data points were generated in Santa Monica.

The advantage of LiDAR technology is that it can acquire data with higher speed
and accuracy. Moreover, LiDAR is not affected by light and can work all day. Its main
limitation lies in the difficulty and complexity of data interpretation. Hence, optical images
and LiDAR data can be combined to obtain more detailed information and achieve better
results than using a single data type [70].
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4.2. Seismic Data

In our review, 79 articles use seismic data. Seismic data includes ground motion data,
earthquake catalogues, and seismic signals.

4.2.1. Ground Motion Data

Ground motion data are mainly physical parameters that characterise the ground
motion caused by an earthquake, including peak ground acceleration (PGA), response
spectrum, and duration. To monitor ground motion triggered by seismic waves, seismic
stations are usually equipped with receivers (e.g., seismographs) and recorders (e.g., data
recorders). At present, many countries have established real-time seismic monitoring net-
works, such as the China Digital Seismological Observation Network (CDSN) [71], CESMD,
European Mediterranean Seismological Center (EMSC), Regional Earthquake-Tsunami
Monitoring Center (RETMC) [57], Hi-net, F-net, K-NET, and KiK-net [72]. Once an earth-
quake occurs, these networks can record ground motion and transmit it in real time. To
characterize the vector components of ground motion, earthquakes are generally monitored
by three-component seismographs equipped with one vertical and two orthogonal horizon-
tal sensors for ground motion in three directions (e.g., east-west, north-south, and vertical).
Open source databases of ground motion are also specially extracted and collected in this
literature analysis for data reference and requisition of related research, including STEAD
(containing nearly 1.05 million three-component seismic events) [73], the PEER database
(PEER NGA-East/West/West2 ground motion database) [74], CESMD [75], and so on.

Using appropriate methods to extract the features of the ground motion data can reflect
the destructive force of the ground motion on the structure. There are two types of ground
motion features—time domain features and frequency domain features. Time-frequency
distributions (TFDs) of ground motions generated by wavelet transform (WT) can be used
to describe seismic responses accurately. Lu et al. [57] used TFD as input data for a DL
model when performing regional rapid damage assessments. The TFD is generated by first
preprocessing (amplitude scaling and period adjustment) ground motion records obtained
from the PEER NGA-West2 and K-NET databases. A continuous WT is then performed,
resulting in the final TFD.

The encoding process of ground motion data requires a lot of time and resources.
Accordingly, Yuan et al. [76] proposed a 1D CNN for rapid damage assessment based on
1D ground motion data, avoiding the process of 2D image encoding. In addition, given the
above shortcomings, Yuan et al. [77] also conducted research from another perspective. That
is, they developed a new time-series segmentation (TS)-based image encoding technique to
convert acceleration (A), velocity (V), and displacement (D) ground motion records into
AVD images for seismic damage assessment.

4.2.2. Earthquake Catalogues

Earthquake catalogues often include time of occurrence, location of epicentre, depth
of source, magnitude, latitude, longitude, and intensity of the epicentre. Jena et al. [78]
used the distributed earthquake catalogue and data from USGS to train the model, predict
classifications, and generate the probability map in the study. Jena et al. [79] collected a
complete catalogue of historic events for probability mapping.

4.2.3. Seismic Signals

In this paper, seismic signals refer primarily to seismic waves and vibration signals.
Bilal et al. [80] proposed a deep learning model batch normalized graph convolutional
neural network for early earthquake detection from raw waveform data. Bao et al. [10]
investigated an electromagnetic sensor to assess earthquakes in advance by collecting
earthquake signals. Yu et al. [81] proposed a novel method based on DCNNs to identify
and localise damages of building structures equipped with smart control devices. Unlike
traditional DI algorithms, the proposed method runs directly on vibration signals captured
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from detected structures, avoiding extra time-consuming, denoising and handcrafted
feature-selection procedures.

4.3. Social Media Data

With the development of smartphones, browsing social media platforms and posting
information has become more prevalent. When encountering earthquake disasters, people
post help messages or personal feelings on various social media platforms (e.g., Twitter,
Sina Weibo, Facebook, and Instagram). Information such as text, images, videos, and
locations obtained from social media platforms is called social media data. Nine articles
in our review use social media data. The application of such data in EDA is mainly for
disaster identification [82], sentiment analysis [14], and disaster assessment [83].

There are three advantages to using social media data. (1) This type of data can reflect
disaster situations in near real time, which can help disaster response teams have more
comprehensive information when making relevant decisions. (2) Collecting this kind of
data makes it possible to obtain help messages in time and coordinate relevant resources to
carry out the emergency rescue. (3) Rescue teams can not only learn about the situation in
the disaster area from social media information but also be able to monitor the situation of
some rumours in time to avoid further panic.

4.4. Discussion

Combined with Supplementary Table S2, the association between each data type and
its corresponding algorithms are examined. The analysis reveals that remote sensing data
are most utilised for the CNN algorithm, with 80% of applications. Among the 80 papers
on seismic data, the percentage of CNN algorithms reaches 56%. Furthermore, out of the
nine papers that incorporate social media data, CNN algorithms are adopted in seven of
them, accounting for 44%.

To provide a more comprehensive overview of the application functions, advantages,
and disadvantages of different data types in EDA, we present a detailed summary in Table 3.
Remote sensing data are applied most, especially for damage detection and assessment,
as well as secondary disaster assessment. Seismic data, the second most prevalent data
type, are commonly used for earthquake prediction, localisation, and structural response
prediction. Social media data are the least frequently used data type, primarily for disaster
extraction, post-disaster sentiment analysis, and other related tasks.

Table 3. The advantages and disadvantages of several data types.

Data Types Data Sources Advantages Disadvantages Application Functions

Satellite Data

Optical Remote Sensing
Satellite

Optical satellite images
are more accessible to

interpret than other types.

Collecting images takes
much time.

Satellites are susceptible to
weather conditions.

The satellite can only
obtain vertical images.

Damage detection and
assessment

Synthetic Aperture Radar
(SAR)

SAR is insensitive to
atmospheric conditions

and independent of solar
irradiation.

It is hard to interpret and
detect similar objects.

Damage detection and
assessment

Interferometric Synthetic
Aperture Radar (InSAR)

InSAR data have wide
spatial coverage, high
spatial resolution, and

high accuracy.

InSAR is greatly limited
by geometrical distortions,
atmospheric effects, and

decorrelations.

Disaster detection
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Table 3. Cont.

Data Types Data Sources Advantages Disadvantages Application Functions

Aerial Images

Unmanned Aerial Vehicle
(UAV)

UAV images are cheaper
and easier to obtain.
The UAV can have a

smaller ground sampling
distance.

UAVs are portable and
flexible.

It can focus only on areas
of interest.

The coverage of UAVs is
small.

Rely on human control.

Damage detection and
assessment

Aerial (Manned) Systems
Aerial (manned) systems

allows for multi-view
image capture.

Aerial (manned) systems
do not enable rapid image

capture after an
earthquake.

Damage detection and
assessment

Point Cloud LiDAR

LiDAR has a solid ability
to obtain data with fast

speed, and high precision.
LiDAR can work all day

without being affected by
light.

LiDAR data are hard to
interpret. Building feature extraction

Seismic Signal Monitoring Systems It can record seismic
signals.

The process of encoding
ground motion data into
images consumes a lot of

time and resources.

Prediction, identification,
and localisation of

earthquakes and damage
assessment

Social Media Data Twitter, Sina Weibo, etc.

Social media information
can reflect the disaster

situation in near-real time
and assist in making

decisions.
Rescue teams can obtain
helpful information from
social platforms in time to

coordinate the rescue.
It helps monitor rumours
in time to avoid causing

panic.

Social media data are only
sometimes of high quality,

accurate, or timely.

Disaster information
extraction and sentiment

analysis

Based on Table 3, we further generalise the characteristics of data sources in four
aspects, including suitable application scopes, acquisition cost level, coverage level, and
precision level of data, as shown in Table 4. The presented distribution of these differenti-
ated data characteristics can support the conclusion of integrating multiple data to achieve
better results. For instance, combining airborne images with optical satellite images can
provide a more comprehensive view of post-earthquake building conditions. Likewise,
merging DEM data with SAR data can enhance the accuracy of landslide mapping.

Table 4. Characteristics of various data sources.

Data Sources Data Sub-Sources
Suitable

Application
Scopes

Acquisition Cost
Level

Data Coverage
Level

Data Precision
Level

Optical Satellite - Well-lit areas High Large High

Synthetic Aperture
Radar (SAR)

Airborne SAR Small-scale areas Relatively High Moderate Relatively High
Space-Based SAR Large-scale areas High Large High

Interferometric
Synthetic Aperture

Radar (InSAR)
- Large-scale areas High Large High
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Table 4. Cont.

Data Sources Data Sub-Sources
Suitable

Application
Scopes

Acquisition Cost
Level

Data Coverage
Level

Data Precision
Level

Unmanned Aerial
Vehicle (UAV) -

Hazardous areas
and small-scale

areas
Relatively Low Relatively Small Moderate

Aerial (Manned)
Systems - Large-scale areas High Relatively Large Relatively High

LiDAR
Airborne LiDAR Large-scale areas Relatively High Moderate Relatively High
Ground-Based

LiDAR Single building Moderate Relatively Small High

Vehicle-Mounted
LiDAR Boundary areas Moderate Small Relatively High

Monitoring
Systems - All the earthquake

areas Low Large High

Social Media
Platforms

Twitter, Sina
Weibo, etc.

Internet users in
earthquake-

stricken
areas

Low Large Relatively Low

5. Assessment Models

Supplementary Table S3 classifies reviewed papers by assessment models, with a
total of 289 papers, including 100 covering more than one algorithm. Algorithms adopted
less than twice are classified as “other DL models”. This section provides an overview of
commonly used models, including CNN, RNN, LSTM, GAN, and TL, and summarizes
their hybrid use.

5.1. Convolutional Neural Network

According to the induction and analysis of the literature, we find that the most fre-
quently used classical CNN architectures are AlexNet, VGGNet, ResNet, Inception, Xcep-
tion, DenseNet, SqueezeNet, and MobileNet. To further distinguish their respective features,
application functions, advantages, and disadvantages, we summarise these attributes in
detail, as shown in Table 5.

Table 5. Attributes of classical CNN architectures [84–88].

Models Dataset Example Advantages and Disadvantages Application Functions

AlexNet ImageNet
AlexNet can effectively avoid the overfitting

phenomenon.
AlexNet is computationally intensive.

Damage identification

VGGNet ImageNet The structure is relatively simple.
VGG is computationally intensive.

Damage identification;
Damage assessment; Building

classification; Disaster type
identification

ResNet ImageNet, CIFAR-10

ResNet can solve the degradation problem
caused by increasing the depth of the network.

It explicitly preserves information through
additive identity transformations, as many layers

may contribute very little or no information.

Damage identification;
Landslide detection
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Table 5. Cont.

Models Dataset Example Advantages and Disadvantages Application Functions

Inception
(i.e.,

GoogLeNet)
ImageNet

Inception requires less computational cost.
It can manage network resources more efficiently

and enhance the learning ability of
traditional CNNs.

The heterogeneous topology of GoogleNet
requires customisation from one module

to another.
A representation bottleneck can sometimes lead

to the loss of useful information.

Damage identification;
Damage assessment; Building

classification; Signal
recognition

Xception ImageNet

Depthwise separable convolution is used instead
of traditional convolution, thus reducing the

number of parameters and computational
complexity of the model more effectively.

Damage assessment; Building
classification

DenseNet CIFAR-10, CIFAR-100,
ImageNet

It can solve the problem of gradient
disappearance.

Deeper layers can directly use the features
extracted by some earlier layers through dense

connections.
It consumes a lot of memory.

Damage identification

SqueezeNet ImageNet SqueezeNet can simplify network complexity
while maintaining high accuracy. Damage identification

MobileNet ImageNet
MobileNet can reduce the number of parameters
and computational complexity with less loss of

classification precision.
Damage assessment

The CNN algorithm is the most frequently used DL method in EDA. A total of
139 articles use CNN algorithms in this review. The CNN architectures used in the literature
can be briefly summarised into classification, segmentation, and detection according to
their functions, as shown in Table 6.

Table 6. Summary of the functions of CNN architectures.

Functions Architectures

Classification Inception (i.e., GoogLeNet), ResNet, and Xception
DenseNet, SqueezeNet, MobileNet, AlexNet, and PointNet

Segmentation FCN (including U-Net), PSPNet, and DeepLab
Detection Mask R-CNN, Faster R-CNN, R-CNN, YOLO, and SSD

1. Classification

The architecture of CNNs can extract the scale, translation, and rotation-tolerant fea-
tures for classifying images or object categories [89]. From the literature, CNNs have shown
excellent performance in image classification. Compared to other models, CNNs have
greater accuracy in large-scale datasets. Yeum et al. [89] built a database of reconnaissance
images after natural disasters (including earthquakes, hurricanes, and tornadoes). Then,
they used CNNs for scene classification and object detection in an extensive collection of
images. The results show a high classification accuracy. Duarte et al. [60] evaluated the
performance of three multi-resolution CNN feature fusion methods for the image classifica-
tion of post-earthquake building damages (debris and rubble piles). Such an undertaking
is essential for assessing building safety and is greatly important to disaster management.

2. Segmentation

Remote sensing images often contain much valuable information that traditional
object-oriented evaluation methods may ignore. The image segmentation function of CNN
can extract the boundary information well, thus maximizing the use of information and
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improving the efficiency of EDA. Therefore, CNNs are widely used in EDA because of their
advantages in image segmentation.

Chen and Yu [90] used the network structure adapted from PSPNet as a semantic
segmentation model to construct a multi-task DL framework. They studied the problem
of earthquake-induced building damage mapping. Compared to the original PSPNet
detection effect, the shape of the damaged buildings detected by the proposed method
is more consistent with the shape in the original ground truth image. Song et al. [91]
introduced an efficient scheme combining the DeepLab v2 neural network and the Simple
Linear Iterative Clustering (SLIC) super-pixel segmentation method to extract information
about earthquake-damaged buildings. It mainly includes using a DeepLab v2 neural
network to extract the initial damaged building areas, and then further using the SLIC
method to extract the boundary information of the areas.

3. Detection

Usually, the difficulty of object detection lies in locating objects accurately in images
or videos and achieving fast and effective large-scale object detection [92]. With the de-
velopment of CNNs, the 2012 ImageNet Challenge became the turning point, and DCNN
achieved large-scale object detection [93]. Since then, CNN-based object detection has
become a hot research topic. Yeum et al. [89] studied the post-disaster spalling detection
problem using CNN. High detection accuracy is achieved in the cases of post-earthquake
columns and walls. Asif et al. [82] proposed an approach to analysing social media images
for disaster recognition automatically, and an object detection model based on the YOLO
algorithm was developed to detect disaster-related objects for emergency response.

In addition to object detection, text detection is also an essential application of CNN. Af-
ter an earthquake, people often post related messages on social media platforms, and these
text messages usually contain much valuable information, such as location and emotional
information. Taking the 2013 Ya’an earthquake in China as an example, Yang et al. [94] used
the advanced search function of Sina Weibo to obtain relevant data. Next, they processed
the text information to construct a word vector list. Then, a trained CNN model was used
to analyse the new text. Through text detection, the text information is classified into six
categories: positive, neutral, angry, anxious, fearful, and sad. Xing et al. [95] proposed
a character-level CNN (Char-CNN) model for social media data classification. For the
Jiuzhaigou earthquake in China, the Char-CNN model has good classification performance
in disaster-related text extraction. Such applications could be regarded as natural language
processing research in EDA.

5.2. Multi-Layer Perceptron

In broad terms, there are 18 papers on MLP (12 on DNN and six on MLP). Prevail-
ing discourses show that MLP is a reliable model for achieving short-text classification.
Behl et al. [14] used MLP to classify tweets during disasters as “resource needs”, “resource
availability”, and “others”. The model was applied to the Italian and Nepalese earth-
quake datasets and compared with four cutting-edge models (LR-TF, CNN-W, CNN-WF,
and MLP-TF). The results show that the proposed models exhibit the best performance.
Jain et al. [34] used MLP regression, RF regression, and support vector regression algo-
rithms to analyse and predict earthquake magnitudes, and MLP regression outperforms
the other algorithms.

Fayaz and Galasso [96] constructed a DNN framework for real-time on-site estimation
of the acceleration response spectra of earthquake ground motions. Su et al. [97] developed
a DNN model for evaluating earthquake disaster chains. The proposed DNN model
performs better in chain disaster prediction than the three ML models. Kim et al. [58]
introduced a probabilistic deep neural network (P-DNN) [98] model for predicting the
structural response at a given earthquake intensity measure (IM). An adaptive algorithm
using DNNs as a surrogate model was proposed for real-time assessment.
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5.3. Generative Adversarial Network

GAN is a generative model based on a zero-sum game between a generator and a
discriminator. The generator is used to generate lifelike samples from random noise and
tries to fool the discriminator. The discriminator is used to discriminate whether the sample
is real or generated by the generator. The generator and discriminator compete with each
other until the discriminator cannot discriminate between real and generated images [99].

Providing auxiliary information (such as class labels) to GANs helps to improve the
performance of GANs. For this reason, the conditional GAN (CGAN) is developed. The
characteristic of CGAN is that both the generator and the discriminator are constrained by
auxiliary information. The merits lie in reducing the stochasticity of the generated data and
accelerating its training [19].

Five articles adopt the GAN algorithm, and two are about CGAN. Ding et al. [100]
simulated the intensity measures (IMs) of aftershocks using the CGAN model. First,
mainshock-aftershock (MS-AS) sequence-type ground motions were selected from the PEER
NGA-West2 ground motion database. Then, the corresponding IMs of ground motions
were calculated and used for the training of CGAN. In addition, the Adam algorithm was
used to optimise the objective function update automatically. Ultimately, the CGAN model
can predict most of the IMs of AS well compared to real data. Tilon et al. [101] used a
state-of-the-art anomaly detection generative adversarial network (ADGAN) model for
post-disaster damage detection. The primary advantage of ADGAN is that it can identify
small anomalies in images. Additionally, the model could perform damage prediction
only based on pre-disaster data, making it a reliable tool for pre-disaster preparedness and
post-disaster emergency response and recovery.

5.4. Recurrent Neural Network

RNN is a neural network architecture that handles sequence information in the tem-
poral dimension. It disentangles irregular input features by exploiting the main internal
memory and changing the sequence of processes through recurrent layers [102].

The literature review shows that the most commonly used RNN model in EDA is the
LSTM. As a particular type of RNN model, the LSTM can handle long-term dependen-
cies [103]. In addition to the LSTM, two papers use gated recurrent unit (GRU), another
variant of RNN that has many similarities to the LSTM. The GRU architecture is simpler
than the LSTM, with only a reset gate and an update gate.

There are 18 articles on RNN (including LSTM, RNN, and GRU), which are mainly
applied to probabilistic prediction in EDA. Huang et al. [18] used three RNNs (simple-RNN,
LSTM, and GRU models) to predict the dynamic response of the co-seismic slope. Jena
et al. [79] estimated the probability of earthquakes in Odisha, India, using the RNN model
based on ten indicators. In the RNN model, the most valuable factors were sent first, and
the least valuable ones were sent last. The prediction results show that the model achieves
a prediction accuracy of 94%. Jena et al. [104] used the LSTM model to assess the seismic
vulnerability of Indian regions. The seismic vulnerability factors were input into the LSTM
model in order of importance from highest to lowest, and finally, a prediction accuracy of
87.8% is achieved. However, for future improvement, uncertainties still exist in the data
dependence, accuracy, and modelling.

5.5. Transfer Learning

TL is developed primarily to improve the performance of CNN-based models. Com-
pared to traditional learning methods, TL can be used in the case of a few datasets. Tradi-
tional ML methods try to train from scratch, while TL can transfer knowledge from previous
tasks to target tasks through pre-trained models when having less high-quality data with-
out training from scratch [105]. There are three main reasons for using a pre-trained model.
At first, high-priced computational power is required when using large models for complex
datasets. Secondly, the training process of the model is also time-consuming. Moreover,
pre-trained models could also help the network generalize and speed up convergence [84].
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There are two common strategies for TL in neural networks: feature extraction and
fine-tuning. In feature extraction, a model trained from a source domain can capture
features from a new domain without changing the pre-trained model parameters. Only the
fully connected layers before output are trained for the new task, significantly reducing the
training time and the number of epochs [47]. Fine-tuning allows modifying the pre-trained
network parameters while learning the target task. Typically, parameters at the bottom
layer of the network used for learning low-level features are frozen, and parameters at
the top layer of the network used for learning high-level features are fine-tuned. This
reduces the number of parameters to be trained and avoids overfitting, especially when
the amount of data for the target task is not large enough. In practice, fine-tuning is more
frequently adopted than feature extraction because it optimises the pre-trained network for
the new task.

There are 14 articles on TL. Chen et al. [47] developed a workflow for automatically
identifying soft-story buildings based on features extracted from 3D point clouds. TL was
adopted because of the limited dataset. They selected three deep CNN models (VGGNet,
Inception, and ResNet) for the study to implement TL in the target domain. The optimal
CNN model for the proposed workflow was investigated by feature extraction and fine-
tuning of the three models. Ultimately, it is found that VGGNet dominates in terms of
precision, recall, and F1 score. Aside from the feature extraction results of VGGNet, the
learning curves of all models show obvious overfitting. By comparing the naive CNN with
VGGNet, it is revealed that the TL can reduce overfitting.

Xu et al. [106] proposed a post-earthquake multi-scene recognition (PEMSR) model
based on a single shot multibox detector (SSD) approach. TL combined with data enhance-
ment and balancing strategies are used in the model to solve the problem of insufficient and
unbalanced data in the original dataset. The main function of TL here is to fine-tune the
layers of the pre-trained model obtained by training the SSD method for class prediction
and bounding box generation. Finally, TL greatly improves the overall accuracy of the
PEMSR model.

5.6. Hybrid Models

In addition to applying a single DL model, some articles combine multiple DL models.
A total of 31 articles use more than one research method. Aslam et al. [107] integrated
three ML models, namely SVM, logistic regression (LR), and random forest (RF), with CNN
models to form three hybrid models (CNN-SVM, CNN-LR, and CNN-RF). In the modelling
process of the hybrid model, CNN is mainly responsible for automatically extracting
valuable features from the raw data. Then, three ML classifiers are used to classify these
features, and the landslide and non-landslide regions are distinguished accordingly. In
terms of generating landslide susceptibility maps (LSMs), all hybrid models outperform
single ML models and are more accurate than the individual CNN model. The combination
of CNN and LR improves performance best among the three hybrid models.

Furthermore, using knowledge of physics can alleviate the overfitting problem of neu-
ral networks and reduce the need for large datasets, thereby improving model robustness
and accuracy. Eshkevari et al. [108] combined DL with physics to develop a physics-based
RNN to predict nonlinear structural responses. Zhang et al. [109] developed a physics-
guided convolutional neural network (PhyCNN) to estimate seismic response. It is verified
that the PhyCNN surpasses the non-physics-guided neural network.

5.7. Discussion

DL has demonstrated significant potential in facilitating rapid EDA, particularly in
signal recognition, image classification, object detection, and other related tasks. The lit-
erature review shows that the most commonly used DL models in EDA include CNN,
MLP, TL, RNN, MLP, GAN, as well as various hybrid models. We summarise the advan-
tages, disadvantages, application functions, and application stages of these commonly used
models, as shown in Table 7. CNN, MLP, RNN and TL are applied across all stages of
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earthquake assessment. Among these, CNNs are the most widely adopted algorithm for
various assessment tasks. Each model has its unique strengths and weaknesses and can
complement one another. Comparative evaluations are often engaged in model studies.
Consequently, hybrid models account for a considerable proportion of EDA. In the future,
as AI and computer technology continue to advance, the storage capacity and computing
power of algorithms will inevitably improve, leading to better performance of DL for EDA.

Table 7. The advantages, disadvantages, and application functions of several commonly used DL
models [14,21].

Models Advantages Disadvantages Application Functions Application Stages

Convolutional Neural
Network
(CNN)

It can extract advanced
features.

It can capture local
geometric features and

spatial patterns.

It can overfit the data.
CNN requires an

extensive training data
set.

Detection (secondary
disasters and damage);

Segmentation of the
captured features of

damage;
Classification of

damaged images;
Landslide susceptibility

analysis;
Damage assessment;
Disaster prediction;

Earthquake magnitude
prediction

All stages

Multi-Layer Perceptron
(MLP)

MLP can describe the
complicated non-linear
relations between the
inputs and outputs.

It ignores the
interdependencies
among the input

variables.

Landslide susceptibility
mapping;

Damage assessment;
Earthquake prediction

All stages

Transfer Learning
(TL)

It can avoid overfitting
problems.

It overcomes the
problem of insufficient

training data.
TL can improve the
generalisation of the

model.

TL can lead to
non-transferability or

negative transfer across
domains.

Damage detection;
Damage assessment;

Disaster identification
All stages

Recurrent Neural
Network
(RNN)

It captures temporal
dynamics.

It brings a vanishing
gradient and

short-term dependency.
It fails to represent, for

a short time, rapidly
changing and

non-periodical data.

Structural response
prediction;

Damage classification;
Damage detection;

Earthquake prediction

All stages

Generative Adversarial
Network
(GAN)

The model reduces
parameter tuning.

The algorithm
possesses an efficient
unsupervised training

approach
It is more efficient than
a single hidden layer.

Visualisation requires
extra information

processing.

Damage detection;
Earthquake prediction

Pre-earthquake stage
and during-earthquake

stage

Autoencoder It can cancel the noise
in the image.

It proves to be efficient
only when the

reconstructing images
are similar to training

images.

EQIL prediction;
Damage detection;

Data denoising

During-earthquake
stage and

post-earthquake stage

The input data of CNN can be 2D images, 3D data, or 1D data. Remote sensing data,
ground motion data, and social media data have been used as training data for CNNs.
Remote sensing data are the most widely used data (52%), while social media data are
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the least used (3%). In terms of MLP algorithms, all three types of data are adopted, with
ground motion data being used the most (61%) and social media data the least (5%). In
the research on the RNN algorithm, three kinds of data are also used, among which the
motion ground motion data are dominant (78%), and the social media data are the least
used (11%). For TL studies, remote sensing data are the most (71%), and social media data
are the least (7%). In the studies of GAN, only remote sensing data and ground motion
data are involved, of which the ground motion data are up to 80%.

6. Assessment Stages

The earthquake development process can be divided into three stages, namely the pre-
earthquake, during-earthquake, and post-earthquake stage, as per the prevailing discourses
in earthquake engineering. The pre-earthquake stage is primarily focused on prevention
measures, including building seismic resistance assessment, earthquake prediction, and
localisation. Its function is targeted at preparation for the earthquake mitigation work. The
during-earthquake stage begins with the occurrence of an earthquake and ends with the
completion of emergency response efforts. It generally encompasses the determination
of earthquake parameters, real-time disaster situation acquisition and analysis, and rapid
detection and assessment of structural damage. The primary objective of this stage is
to ensure rapid earthquake response, emergency rescue, and provision of temporary
shelter. The post-earthquake stage involves secondary disaster evaluation, disaster area
reconstruction, and post-earthquake damage assessment, with the main aim being to
expedite the recovery of the affected region and help the affected population return to their
normal lives as soon as possible.

According to the above concepts, we further elaborate on the evaluation work required
at each stage. The pre-earthquake stage encompasses earthquake prediction and risk
assessment, while the during-earthquake stage consists of damage detection, disaster
analysis, earthquake localisation, and seismic data processing. The post-earthquake stage
contains loss, safety, and secondary disaster assessment. In the research process, the
training data are pre-earthquake and post-earthquake data, which are classified as multi-
stage. Damage detection and damage assessment are classified based on whether they focus
on detecting the presence of damage or measuring the severity of the damage, respectively.
Supplementary Table S4 provides an overview of the four stages of EDA based on the
time dimension.

6.1. Pre-Earthquake Stage

As shown in Supplementary Table S4, this section reviews the literature from the
perceptive of the assessment stages of EDA.

6.1.1. Earthquake Prediction

Earthquake prediction is an essential component of EDA, with 27 articles in this
specific field of the pre-earthquake stage. In academia and engineering practice, earth-
quake prediction usually contains earthquake probability estimation, earthquake early
warning, earthquake damage prediction, and aftershock prediction. Currently, there are
four main earthquake prediction methods, namely DL, which is the focus of this paper,
mathematical analysis, precursors signal study, and ML [110]. Mathematical analysis uses
mathematical tools for earthquake prediction [111]. Precursors signal study mainly refers to
earthquake prediction based on electromagnetic signals [10,112], aerosol optical depth [113],
the lithosphere-atmosphere-ionosphere [114], cloud images [115], etc. ML methods mainly
refer to methods such as decision trees and SVMs [116], which are used to discuss data
mining and time series analysis.

The advantage of the DL approach over the other three methods is that it can cap-
ture the complex nonlinear correlation between the various factors of the earthquake [110].
Ding et al. [35] used DNN and CGAN to predict aftershock spectral acceleration.



Remote Sens. 2023, 15, 4098 21 of 41

Kuang et al. [117] used an FCN-based magnitude neural network (MagNet) for magnitude
prediction. Jena et al. [78] used a CNN for earthquake probability estimation.

6.1.2. Risk Assessment

A total of 23 articles investigate risk assessment in the pre-earthquake stage. To assess
the seismic risk of road network systems, Silva-Lopez et al. [118] developed a neural
network surrogate model to quickly evaluate the performance of complex road networks
and accurately estimate traffic disruptions caused by earthquakes.

To assess the seismic risk of buildings, Pelizari et al. [119] introduced a method for
the automatic classification of structural features of buildings based on deep CNNs and
street images. This study is valuable for the vulnerability analysis of buildings under
earthquakes. Chen et al. [47] focused on the automatic classification of soft-story buildings.
These buildings are characterised by inconsistent structural stiffness, inducing a greater
risk of earthquakes.

To assess the seismic risk of bridges, Yoon et al. [55] proposed a method for damage
detection and seismic resistance assessment based on UAVs. The method includes damage
detection using the Mask R-CNN model and seismic resistance assessment using a finite
element model based on the damage detection results.

To assess seismic risk in earthquake-prone regions, Jena et al. [120] developed a DL
model for probabilistic assessment of the Palu earthquake in Indonesia. Two types of
calculations were used: (1) Risk A was generated using an earthquake probability assess-
ment (EPA), susceptibility to seismic amplification (SSA), and earthquake vulnerability
assessment (EVA). (2) Risk B was generated using EDA, SSA, and EVA. By comparison,
the results of risk B are more reasonable than risk A. This study is limited to a few specific
factors due to data availability. However, the method is transferable and can be applied to
other regions or other disasters with only minor modifications to the data.

6.2. During-Earthquake Stage

This paper holds that the during-earthquake stage is characterised by “real-time (or
rapidity)”. Therefore, the rapid damage detection after an earthquake is considered to
be in the during-earthquake stage. The main tasks are to rapidly localise earthquakes,
detect damage, and analyse disaster situations in the during-earthquake stage. In addition,
seismic data processing is also included in this stage, because efficient data processing is an
essential part of the process to respond quickly to earthquakes.

6.2.1. Damage Detection

In our review, 36 articles investigate damage detection in the during-earthquake stage.
The destructiveness of earthquakes is often reflected in the damage to buildings, such as
cracks and collapses. Damage detection is a significant task in EDA and an important part of
structural health monitoring. Damage detection of the structure allows further assessment
of the damage’s location, extent, and remaining service life. Commonly used methods for
damage detection can be divided into two categories: vision-based and vibration-based
methods [121]. Vision-based methods mainly rely on damaged images for detection. In
recent studies, the analysis of damaged images is highly reliant on DL algorithms, such as
the YOLO algorithm [122], CNN algorithm [123,124], and GAN algorithm [101]. Figure 4
shows the general process for damage detection using DL models. Vibration-based methods
mainly rely on the vibration signal obtained by the sensor. These vibration signals are
used for damage detection and localisation through signal processing techniques, such as
WT [125] and short-time Fourier transform [126]. Due to the relatively high installation
cost of sensors, many buildings are not equipped with sensors. Therefore, vibration-based
methods are often not suitable for damage detection problems caused by earthquakes. In
addition, with the development of UAV and remote sensing technology, damaged images
are more and more easily obtained. Therefore, the vision-based method is far superior to
the vibration-based method.
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A crucial task in damage detection is the detection of collapsed buildings. Earthquakes
often lead to dilapidated and cluttered regions, and it is often difficult to distinguish
collapsed buildings from complex backgrounds when using DL for collapse detection.
Thereupon, Shi et al. [127] used an improved YOLOv4 algorithm for collapse detection.
The improvements are mainly: (1) replace Resblock with ResNext block in CSPDarkNet53;
and (2) replace the loss function with Focal-EOIU. These two improvements increase the
average accuracy of YOLOv4 collapse detection from 88.23% to 93.76%.

6.2.2. Earthquake Localisation

Eleven papers were identified about earthquake localisation in the during-earthquake
stage. Earthquake localisation refers to determining the location and time of energy re-
lease from an earthquake. DL can significantly reduce the localisation time compared to
traditional methods that rely on manual selection.

Kriegerowski et al. [128] used a deep CNN model for earthquake localisation based
on multistation full waveforms, which is suitable for accurate earthquake localisation
problems. Zhang et al. [129] adopted an FCN to achieve the real-time localisation of
earthquakes. The method takes three-component waveform data as input, and outputs a
3D image that can predict the probability of earthquake localisation.

6.2.3. Disaster Situation Analysis

Drawing upon the screened results, 14 articles are about disaster situation analysis
in the during-earthquake stage. After the earthquake, in addition to obtaining relevant
information from the official, we can also analyse the disaster information from social
platforms. This paper focuses on the utilisation of DL algorithms to extract earthquake-
related content from social media data for named entity recognition [103], as well as the
analysis of road congestion [130] and public sentiment [94].

Taking the Jiuzhaigou earthquake as an example, Xing et al. [131] established a spatial
distribution detection method for emergency information using blog posts published by
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users on Sina Weibo. (1) Char-CNNs were used as classifiers for text urgency scoring and
classification. (2) according to the results of emergency classification, spatial autocorrelation
analysis was carried out to determine the degree of earthquake impact in different regions.
(3) the spatio-temporal analysis of earthquake emergency information was also carried out,
which could assist in making emergency decisions. Taking the earthquake that occurred
in Ya’an, China, in 2013 as a case study, Yang et al. [94] used a CNN model to extract and
classify emotional information from social media data. Eliguzel et al. [103] introduced a
named entity recognition (NER) method based on an RNN model to extract information
related to the Nepal earthquake from Twitter. Named entity recognition refers to locating
and classifying named entities in text into predefined entity categories [132]. The results of
this study reveal that uploading relevant tweets to the model when an earthquake occurs
can extract relevant location, people, and organisation information from the tweets with
92% accuracy.

6.2.4. Seismic Data Processing

Five articles are about seismic data processing in the during-earthquake stage. Ran-
dom noise is unavoidably generated in seismic data acquisition due to anthropogenic or
environmental influences. Seismic data processing therefore mainly refers to seismic data
denoising. In addition, the review also includes waveform extraction and seismic imaging.

In terms of data denoising, Qian et al. [133] proposed a deep tensor convolutional neu-
ral network-based ground truth 3-D seismic random noise attenuation in the time-frequency
domain. Dong et al. [134] proposed a multiscale spatial attention denoising network to
tell weak reflected signals apart from strong seismic background noise. Zhou et al. [135]
developed a deep denoising convolutional autoencoder network based on self-supervised
learning to attenuate seismic random noise. In terms of waveform extraction, Xu et al. [40]
proposed an automatic P-wave onset time picking method for mining-induced microseis-
mic data based on a long short-term memory deep neural network. In terms of seismic
imaging, Siahkoohi et al. [136] developed a systematic approach to translating uncertainty
due to noise in seismic data to the confidence intervals of automatically tracked horizons in
the image.

6.3. Post-Earthquake Stage

On the one hand, the assessment of the post-earthquake stage is mainly about the
prevention and mitigation of secondary disasters. The first is the landslide susceptibility
analysis [137,138]. Landslide susceptibility analysis is a crucial way to predict landslides
after earthquakes. The process mainly collects landslide influence factors in landslide-
prone regions, calculates the probability of landslide occurrence, and draws LSMs [139].
The second is the damage mapping for tsunamis [44]. On the other hand, the assess-
ment of the post-earthquake stage also includes post-earthquake safety assessment and
damage assessment.

6.3.1. Secondary Disaster Assessment

In our review, 33 papers are on secondary disaster assessment, 14 of which are about
landslide susceptibility analysis and landslide prediction. The role of landslide suscep-
tibility analysis is to quantify the spatial differences and distribution characteristics of
landslide incidence. Gao and Ding [140] studied landslide susceptibility in Wenchuan,
China, using a CNN model incorporating ML algorithms (SVMs, quadratic discriminant
analysis, Bayesian optimised gradient boosting tree, and Bayesian optimised RF). Wei
et al. [141] proposed a DL framework that combined spatial response features and ML
classifiers (SR-ML) for landslide susceptibility analysis. Compared to the ML method, the
proposed model is more reasonable and reliable in landslide susceptibility analysis, which
can improve the accuracy of disaster prediction. Chowdhuri et al. [142] created LSMs using
an ANN model and three novel DL approaches, namely deep boosting (DB), deep learning
neural networks (DLNN), and the deep learning tree (DLT).
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In addition, 12 of them are about the identification and extraction of EQILs. At
present, landslide identification methods based on remote sensing are broadly classified into
(1) visual interpretation, (2) change detection, (3) ML, and (4) DL. The features of the data
and processing parameters are not required to be set artificially except for the necessary
parameters in DL, which greatly enhances the portability of landslide detection [143].
Yu et al. [144] proposed a hierarchical attention deconvolution neural network, HADeenNet,
which is specifically designed to detect landslides from high spatial resolution images.
The method avoids the omission of small landslides. The traditional way of landslide
extraction is a field survey, which is time consuming and labour intensive. Later, with
the development of remote sensing technology, visual interpretation-based, object-based,
and pixel-based methods appeared. Visual interpretation-based methods rely on human
resources. Object-based methods cannot handle complex and large-scale data and are less
efficient. Pixel-based methods are prone to noise and cannot fully use remote sensing
data. Compared to the above methods, the DL-based landslide extraction approach can
automatically extract features, which can both free up the workforce and improve accuracy
to a certain extent. Yang et al. [145] used Mask R-CNN and background enhancement
methods for landslide extraction, which can better distinguish background information
from landslide information.

Two of them are about the damage mapping of EQITs. Take the 2011 Tohoku
earthquake-tsunami as an example, Bai et al. [45] combined U-Net with satellite remote
sensing damage mapping technology for tsunami damage mapping. At the pixel level,
the damage categories were set to three categories, namely “wash away”, “collapse”, and
“survival”. Finally, the verification shows that the proposed method achieves an overall
accuracy of 70.9% on three damage categories. Sublime and Kalinicheva [46] proposed a
damage mapping method that can perform quickly and efficiently without supervision
based on the changes brought about by the 2011 Tohoku tsunami. Although the final result
is not as good as supervised algorithms, it provides a good research idea.

6.3.2. Safety Assessment

Seven papers in our review focus on safety assessment. After an earthquake, a building
needs to be assessed for safety before it can be returned to service. Therefore, assessing
the safety of buildings is of great significance for post-earthquake resettlement and the
reconstruction of disaster areas. The traditional building safety assessment is mainly
an expert investigation method. The disadvantages of this method are that it is time-
consuming, labour-intensive, subjective, and poses a potential threat to the personal safety
of experts.

As a result, post-earthquake safety assessments based on DL have been widely studied.
Tsuchimoto et al. [146] studied the problem of rapid post-earthquake safety assessment
for high-rise buildings based on the collected sparse acceleration data. A CNN algorithm
was used to classify the safety of buildings as safe, restricted use, and unsafe based on the
inter-story drift angle. The model achieves an accuracy of more than 97.1%. Mangalathu
and Burton [147] used LSTM to assess the safety of buildings based on the collected textual
descriptions. The safety of the buildings was classified as apparently safe, restricted use,
and obviously unsafe based on the damage condition and marked in green, yellow, and
red, respectively. The model achieves an overall accuracy of 98%.

6.3.3. Loss Assessment

There are 25 papers related to loss assessment. Loss assessment mainly includes the
assessment of economic losses, building damage, and casualties caused by the earthquake.
The literature survey found that the current applications of DL in loss assessment focus
mainly on the latter two cases.

(1) Building Damage Assessment

Classifying the extent of damage to buildings and infrastructure caused by seismic
events is essential for enhancing post-earthquake reconnaissance and ensuring safe and
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efficient recovery efforts. Regarding the classification standard of damage grades of build-
ings after earthquakes, the most commonly used damage grades are as follows. One of the
earliest and most commonly used damages classification guidelines is the 1998 European
Macroseismic Scale (EMS98) [148]. It indicates five damage grades, including negligible
to slight damage (Grade 1), moderate damage (Grade 2), substantial to heavy damage
(Grade 3), very heavy damage (Grade 4), and destruction (Grade 5), usually used for the
damage classification of masonry and reinforced concrete buildings. EMS98 is mainly
used for ground inspection. Since the building features extracted from remote sensing
images differ from those observed in ground inspection, EMS98 guidelines do not apply
to remote sensing data [32]. For wood frame buildings, the Japanese Prime Minister’s
Office [149] proposed four damage levels: no damage, moderate damage, heavy damage,
and major damage. For frame structures, the Architectural Association of Japan [150]
proposed six damage ranks, namely no damage (Rank 0), negligible damage (Rank 1),
slight damage (Rank 2), moderate damage (Rank 3), major damage (Rank 4), and collapse
(Rank 5). According to China’s “Classification of earthquake damage to buildings and
special structures”, earthquake damage to buildings could be divided into five levels:
basically intact (including intact), minor damage, moderate damage, heavy damage, and
collapse. Figure 5 shows the general process for damage assessment using DL models.
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Damage assessment is one of the most critical tasks in EDA. Song et al. [91] established
a damage assessment method combining the DeepLab v2 neural network, super-pixel
segmentation, and mathematical morphology. The results indicate that the proposed
method outperforms other methods. Thus, the method is expected to save much time by
quickly assessing damaged buildings after an earthquake.
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Due to the dense distribution, small size, and uneven data of satellite remote sensing
optical images, Wang et al. [151] developed a two-stage assessment method for densely
distributed small buildings. These two stages include YOLOv4-based object detection
and SVM-based damage classification. The results show that the accuracy of object detec-
tion and damage classification assessment of buildings after the earthquake is 95.7% and
97.1%, respectively. Furthermore, the research results show that the method can identify
and detect buildings on the boundary, densely distributed buildings, and occluded build-
ings. Therefore, this method could make up for the disadvantages of unbalanced optical
image samples. In addition to the above, damage assessment could also shorten the time
of post-earthquake assessment through prediction. For the Bayrakli area of Izmir, Turkey,
which was most severely affected by the Samos earthquake, Kaplan and Kaplan [152] pro-
posed a post-earthquake structural damage prediction method based on response spectra.
The main objective is to predict the damage to a building by comparing the fundamental
vibration period estimated from the building height with the collected ground vibration
response spectrum. The significance of the proposed method is that it can predict post-
earthquake damage so that the damage assessment can be coordinated after the earthquake
according to the order of priority of the predicted results. This method also allows the
field assessment team to move directly to the buildings expected to suffer severe damage,
significantly reducing the time for site investigation.

(2) Personnel Casualty Assessment

The purpose of personnel casualty assessments is to predict the distribution of casual-
ties and to rationally deploy rescue plans. Many factors cause death in earthquakes, but
each factor has different effects on death. In the past, linear models were often used to
determine the correlation between features and death. Jia et al. [153] used DL models to
study the correlation between features and casualty and to assess the loss. First, RF, CART,
and AdaBoost were used to evaluate the correlation between nine influencing factors and
death. Then, RF was used to assess the relationship between 43 structural types and death.
Finally, a four-layer back-propagation network was used to predict personnel casualty
assessment. This study is invaluable for predicting earthquake fatalities and reducing
personnel casualties.

6.4. Multi-Stage

Since pre-earthquake data are often difficult to obtain during EDA, many studies are
based on post-earthquake data. However, there is no doubt that the efficiency and accuracy
of EDA will be greatly improved if the data before and after the earthquake can be used at
the same time. Therefore, this paper classifies EDA studies using simultaneous pre- and
post-earthquake multi-temporal data as multi-stage studies.

A total of eight papers in this paper are concerned with multi-stage assessments.
Ji et al. [154] used pre-earthquake and post-earthquake satellite images in a study on
detecting collapsed buildings after an earthquake. Kalantar et al. [124] considered the
multi-temporal data before and after the mainshock in building damage detection. Shen
et al. [13] proposed a two-stage CNN for damage assessment. The first stage is mainly used
for building segmentation. In the second stage, pre- and post-disaster images are used for
damage assessment.

6.5. Discussion

We organise the bibliographic statistics by assessment stages, sub-stages, publications,
models, and data types, as shown in Table 8 and Supplementary Table S4. The assessment
sub-stages are listed in a timing sequence. We identify during- and post-earthquake stages
as the most studied stages, and find that damage detection is the hot topic across all stages.
Research on the probabilistic prediction of earthquakes (mainshocks), the most crucial
aspect of the pre-earthquake stage, turns out to be relatively few. The three most researched
assessment tasks are damage detection, damage assessment, and secondary disaster as-
sessment. Remote sensing data is the dominant data type for these three tasks, while the
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CNN algorithm is the most commonly used DL method. DL methods have demonstrated
advantages in seismic data processing (seismic denoising and image processing) and mag-
nitude prediction. However, the reliability of neural network-based prediction models
lacks scientific consensus and requires further verification through simulations to assess its
accuracy, precision, and applicability.

Table 8. DL models and data types commonly used in all stages of assessment tasks.

Assessment Stages Assessment Sub-Stages Models Data Types

Pre-Earthquake Stage

Earthquake Prediction CNN, MLP, RNN, LSTM,
DNN, TL, and GAN

Ground motion data,
earthquake catalogues,

electromagnetic precursors,
and seismic signals

Risk Assessment CNN, DCNN, and LSTM

Ground motion data, UAV
data, street-level images, point

cloud data, and
vehicle-mounted video

During-earthquake Stage

Damage Detection CNN, MLP, DNN, DCNN, TL,
and GAN

Satellite images, UAV images,
airborne images, aerial

images, ground motion data,
and seismic signals

Disaster Situation Analysis CNN and RNN Social media data

Earthquake Localisation CNN, DCNN, LSTM, and
autoencoder

Seismic signal and ground
motion data

Seismic Data Processing Autoencoder and CNN Seismic signals

Post-Earthquake Stage

Secondary Disaster
Assessment

Mask R-CNN, CNN, DBN,
RNN, LSTM, and autoencoder

Aerial images, ground motion
data, satellite images, UAV

data, and SAR data

Loss Assessment CNN, DCNN, TL, and DNN
Ground motion data, social

media data, and satellite
images

Safety Assessment CNN, TL, and LSTM
Ground motion data, point
cloud data, satellite images

and aerial images

Multi-Stage - DNN and CNN
Ground motion data, satellite
images, point cloud data, and

aerial images

6.6. The Application Framework of DL for EDA

Based on the analysis of application of DL in EDA from four dimensions, i.e., as-
sessment objects, data types, assessment models, and assessment stages, its application
framework could be further constructed accordingly, as shown in Figure 6. The key func-
tions of EDA lie in prediction, detection, classification, identification, and assessment.

From the perspective of objects, the input of earthquake-related actions could be
tectonic earthquakes, man-made earthquakes, and earthquake-induced secondary disasters,
and the hazard-affected bodies could be buildings, infrastructures, and areas. From the data
dimension, remote sensing data, seismic data, and social media data should be input for the
corresponding detailed requirements of EDA functions, methods, and applications. Various
DL models with different capacities in data processing are available for specific application
scenes from the pre-earthquake stage, during-earthquake stage, or post-earthquake stage.
These interrelated four dimensions synergistically describe the whole EDA process.
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7. Challenges and Opportunities
7.1. Challenges
7.1.1. Collection of Training Data

Insufficient and unbalanced training data pose significant obstacles to using DL for
EDA. Scholars have attempted to solve these data problems through three primary methods:
data-level, algorithm-level, and hybrid methods [155]. Data-level methods aim to balance
the class distribution in the training data using resampling methods. In contrast, algorithm-
level methods assign different costs to samples from different classes. One of the most
commonly used algorithm-level methods is the cost-sensitive method. Ensemble learning
is another important method for improving the class imbalance problem [156].

Several approaches address the challenge of insufficient training data for DL models:
(1) TL can be employed (refer to Section 5.5). (2) Researchers can take advantage of publicly
available datasets. For example, Ci et al. [157] made available an open-source dataset
consisting of over 13,000 optical aerial images of labelled damaged buildings, which can
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be downloaded for free from https://github.com/city292/build_assessment, accessed on
8 August 2022. Hong et al. [53] developed a benchmark dataset for highway crack seg-
mentation to capture road damage under earthquake hazards, which is accessible at https:
//github.com/zhhongsh/UAV-Benchmark-Dataset-for-Highway-Crack-Segmentation, ac-
cessed on 8 August 2022. Cheng et al. [158] introduced a large-scale remote sensing image
dataset, NWPU-RESISC45, containing 31,500 images with 700 images per class that cover
45 scene classes (see Table 2 for additional official websites and databases). (3) Data
augmentation techniques can be used to increase the size of the dataset. Common data
augmentation methods include flipping, rotation, random translation, image normalisation,
and image upsampling and downsampling. (4) Combining DL with physical models can
mitigate the reliance of DL on large-scale data.

In addition, data quality is another critical factor. Insufficient image resolution, limited
information conveyed by images, and noise are among the key challenges. Advanced
data collection techniques, such as mobile lidar scanning and LiDAR, can improve image
resolution. Additionally, oblique views of buildings obtained from UAVs can compensate
for the limitations of remote sensing and optical images. The fusion of multiple data
can also be considered to take advantage of each data type (refer to Table 3). Moreover,
social media data contain high levels of noise. For example, social media users are not
representative of all the population affected. Therefore, cross-validation with information
extracted by other means, such as alarm and fire calls, can improve data quality.

7.1.2. DL Models

(1) Generalisation

The primary goal of developing relevant models is to contribute to earthquake pre-
vention and mitigation efforts. Thus, the generalisation of the model is crucial. The
inconsistency between the experimental environment and real-world conditions is the main
factor that can affect the model’s generalisation. Earthquakes vary significantly in terms
of their regions, magnitudes, and destructive powers, further adding to the complexity
of generalisation.

The model’s parameter issues can also have an impact on generalisation. Therefore,
it is essential to consider new activation functions, dropouts, and batch normalisation
techniques to address these challenges. Ensemble learning is another approach that can
improve a method’s performance by integrating multiple previously trained models. Fur-
thermore, fine-tuning the model is also a critical tool to enhance its generalisation ability
(see Section 5.5 for details).

(2) Interpretability

A potential weakness for DL models is interpretability, meaning that it is difficult
to explain how these high-performing models achieve these results. This lack of inter-
pretability undermines the applicability of deep learning models, even in situations where
it outperforms human experts [159]. One feasible solution is to adopt techniques from
the field of computer vision. For example, differentiating the contributions of different
components in a deep learning model by exploiting ablation experiments, or explaining the
functionality of model components by visualization [19]. Another approach is to combine
physics-based models with DL models to exploit the theoretical advantages of physics
modelling for interpretability.

(3) Uncertainty

Uncertainty can be described as a situation involving incomplete or unknown informa-
tion [160]. Accurately dealing with associated uncertainties can be another future focus to
achieve a good assessment in the field of EDA. To quantify uncertainty, three sources should
be considered, including physical variability of equipment, data, and model error [161].
Traditional methods normally used statistical methods, the polynomial chaos expansion
method, Perturbation method, and Monte Carlo simulation, which are common methods
for uncertainty quantification. In DL, the Bayesian neural network is commonly used for

https://github.com/city292/build_assessment
https://github.com/zhhongsh/UAV-Benchmark-Dataset-for-Highway-Crack-Segmentation
https://github.com/zhhongsh/UAV-Benchmark-Dataset-for-Highway-Crack-Segmentation
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uncertainty quantification. Additionally, other methods in Bayesian theory, Markov chain
Monte Carlo (MCMC), Monte Carlo Dropout (MC dropout), etc., also play an essential role
in assessing parameter uncertainty and model fitting.

7.2. Opportunities
7.2.1. New Data Sources

In response to the aforementioned data challenges, using new data sources in the
future can also solve problems such as insufficient data or poor data quality. Emerging
technologies, such as the Internet of Things (IoT), computer vision, and wireless remote
sensing, can be leveraged as they develop. Online news data is a reliable source of disaster-
related information. In wireless sensor networks and other relevant technologies deployed
in disaster-affected areas, effective disaster response can be achieved by using web crawling
or web scraping to obtain data information.

7.2.2. Multimodal Deep Learning

Currently, most models in EDA are developed for single-modal data, which can
limit their performance due to insufficient training samples, especially in detection tasks.
Multimodal DL has emerged as a promising solution, where the input data consists of
training samples from multiple data sources.

Multimodal data has significant advantages, such as enabling heterogeneous data
fusion to compensate for the lack of a single data source sample, as well as improving
performance and reliability. However, our review finds that only ten articles consider the
joint usage of multiple data, and most of them focus on 2D images. In the future, more
consideration can be given to fusing various data types, including images, text, video, and
3D data. For example, post-earthquake damage assessment can benefit from combing social
media text data with remote sensing images. Multimodal DL presents a promising avenue
for further development in EDA.

7.2.3. New Concepts

The emerging concepts of knowledge graphs and digital twins have presented new
opportunities for DL in assessing earthquake disasters. A knowledge graph is a structured
representation of facts consisting of entities, relations, and semantic descriptions [162]. It en-
ables the creation of a knowledge base and inference engine for earthquake disaster analysis
involving DL, including mining and constructing relationships among various seismic-
related factors, analysing the characteristics of seismic hazards, and using DL models for
prediction [19]. Knowledge graphs are increasingly being applied in the seismic field.

With the rapid advancement of technologies such as the IoT, AI, and big data, digital
twins have tremendous potential for further development. Digital twins can create virtual
models based on real-time data from the physical world. Its value lies in providing a broader
environment for deploying DL models. As digital twins offer a more comprehensive
representation of the physical world, their integration with DL models can lead to more
accurate and efficient EDA.

8. Conclusions

This paper presents a systematic review of the application of DL for EDA from four di-
mensions: assessment objects, data types, assessment methods, and assessment stages, and
further discusses current challenges and opportunities. The review process follows a well-
designed scientific methodology. The major conclusions of this research are summarised
as follows.

(1) A statistical analysis of assessment objects is conducted, encompassing disaster
objects (earthquakes and earthquake-induced secondary disasters) and physical objects
(buildings, infrastructure, and areas affected by earthquakes). Based on this analysis,
temporal trends and detailed function distributions of the assessment objects are examined.
In terms of temporal trends, all objects show upward trends and earthquakes are always
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the primary focus for disaster objects. Buildings are the most researched physical object.
However, further breakthroughs are anticipated in infrastructure and affected areas. In
terms of function, probabilistic prediction is a major area of research for disaster objects,
while damage detection is the focus for physical objects.

(2) We perform a preliminary statistical analysis of the data types, including remote
sensing data (satellite images, aerial images, and point cloud data), seismic data, and social
media data. We then generalise the advantages and disadvantages of each data type. Based
on this, we further analyse their detailed characteristics across four dimensions. Currently,
satellite images are the most popular data type in EDA. However, integrating multiple data
types is expected to become a growing trend, as it allows complementary strengths and
weaknesses to be leveraged.

(3) We carry out a bibliometric analysis of assessment models using CNN, MLP,
GAN, RNN, TL, and hybrid models, including their sub-models. We further analyse their
advantages, disadvantages, functions, and application stages in EDA. The CNN is currently
the most widely adopted algorithm in EDA. However, the integration of DL models or DL
with other methods (e.g., physics and ML) will be a crucial research trend.

(4) We conduct a detailed statistical classification of the sub-stages in the four as-
sessment stages (pre-earthquake stage, during-earthquake stage, post-earthquake stage,
and multi-stage) of the EDA. Additionally, we summarise the DL models and data types
commonly used across all stages and sub-stages. During- and post-earthquake stages are
the current focus of research. However, with the advancement of social awareness and
technologies, pre-earthquake prediction is expected to gain more attention in order to
unlock its potential functions.

(5) Challenges and opportunities are determined based on bibliometrics and discus-
sions (see Sections 3.6, 4.4, 5.7 and 6.5). Despite the advancements in DL, the complexity of
neural networks and the uncertainty of earthquake hazards still pose significant challenges,
including the collection of high-quality training data and the generalizability of models.
Nevertheless, there are potential opportunities for future development, such as the inte-
gration of multimodal DL, knowledge graphs, and digital twins, which can enhance the
accuracy and efficiency of EDA.

The main limitations of this paper are:

(1) Its exclusive reliance on the WOS platform and the inclusion of only English literature.
(2) Some relevant research may have been missed due to the possibility that certain

articles’ topics (title, abstract, and keywords) did not include the search terms used.

DL has significantly advanced the technical capabilities of EDA, and further enhance-
ments can be achieved through the development of multimodal DL, knowledge graphs,
and digital twins, especially in the pre-earthquake stage and with regard to infrastructure
and area assessment.
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