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Abstract: Grassland ecosystems are an important component of global terrestrial ecosystems and
play a crucial role in the global carbon cycle. Therefore, it is important to study the carbon dioxide
(CO2) process in the Middle Tien Shan grassland ecosystem, which can be regarded as a typical
representative of the mountain grasslands in Xinjiang. Eddy covariance (EC) and the global car-
bon fluxes dataset (GCFD) were utilized to continuously monitor the Middle Tien Shan grassland
ecosystem in Xinjiang throughout the 2018 growing season. The findings revealed notable daily
and monthly fluctuations in net ecosystem exchange (NEE), gross primary productivity (GPP), and
ecosystem respiration (Reco). On a daily basis, there was net absorption of CO2 during the day and
net emission during the night. The grassland acted as a carbon sink from 6:00 to 18:00 and as a carbon
source for the remaining hours of the day. On a monthly scale, June and July served as carbon sinks,
whereas the other months acted as carbon sources. The accumulated NEE, GPP, and Reco during the
growing season were −329.49 g C m−2, 779.04 g C m−2, and 449.55 g C m−2, respectively. On the
half-hourly and daily scales, soil temperature (Ts) was the main contributor to CO2 fluxes and had the
greatest influence on the variations in CO2 fluxes. Additionally, air temperature (Ta) showed a strong
correlation with CO2 fluxes. The grassland ecosystems exhibited the strongest CO2 uptake, reaching
its peak at soil temperatures of 25 ◦C. Moreover, as the air temperatures rose above 15 ◦C, there was a
gradual decrease in NEE, while CO2 uptake increased. The applicability of GCFD data is good in the
grassland ecosystem of the Middle Tien Shan Mountains, with correlations of 0.59, 0.81, and 0.73 for
NEE, GPP, and Reco, respectively, compared to field observations. In terms of remote sensing spatial
distribution, the Middle Tien Shan grassland ecosystem exhibits a carbon sink phenomenon.

Keywords: CO2 fluxes; eddy covariance; GCFD; grassland ecosystem; Middle Tien Shan Mountains

1. Introduction

Carbon dioxide (CO2) fluxes in terrestrial ecosystems play a crucial role in the study of
the global carbon cycle and carbon balance. Changes in land–air carbon exchange can cause
significant fluctuations in CO2 concentrations, which have important implications for global
climate change [1,2]. Grassland ecosystems, as an important component of global terrestrial
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ecosystems, play a crucial role in the carbon cycle of global terrestrial ecosystems [3,4].
Among all of the terrestrial ecosystems worldwide, grassland ecosystems have the second
highest carbon stock after forest ecosystems, reaching 308 Pg C. Simultaneously, grasslands
play a critical role in maintaining both the global carbon cycle and the structural stability
of ecosystems [5]. Many scholars have explored the carbon sequestration capacity of
grassland ecosystems through various methods such as eddy correlation techniques [6],
experiments on the control of temperature and precipitation [7,8], as well as the coupling
of remote sensing and models [9]. However, at present, most of the research on CO2 fluxes
in grassland ecosystems in China is focused on desert grasslands, typical grasslands, and
alpine grasslands [10–12]. There is uncertainty in accurately estimating carbon flux in
mountain grasslands.

Xinjiang has abundant grassland resources, covering a total area of 572,590 km2 and
a net area of 480,070 km2, accounting for 34.68% of Xinjiang’s total area and 14.50% of
China’s total area. Furthermore, the natural grasslands in Xinjiang are mainly distributed
in mountainous areas, which account for 58% of Xinjiang’s total grassland area and are the
primary location for Xinjiang’s grassland animal husbandry operations [13]. Simultane-
ously, the diversity of grassland ecosystems, types, and species creates favorable conditions
for mitigating the natural shortcomings of grasslands and also provides opportunities for
the development of efficient livestock industries [14]. Global climate change and regional
human activities have significantly influenced the carbon cycling processes in the Middle
Tien Shan grassland ecosystem [15]. Currently, research on carbon fluxes in the Tien Shan
region of Xinjiang mainly focuses on studying soil carbon stocks in grasslands on the north-
ern slopes of the Tien Shan Mountains, with a lack of studies on ecosystem carbon fluxes
using the eddy covariance (EC) system [16]. Moreover, the grassland vegetation in the Tien
Shan Mountains of Xinjiang exhibits distinct vertical and horizontal zonal distribution pat-
terns. Furthermore, various types of grasslands can be found in the Tien Shan Mountains,
including mountain desert, mountain desert grassland, mountain grassland, mountain
meadow grassland, mountain meadow and alpine meadow grassland. Meanwhile, these
representative grassland types play a crucial role in maintaining ecological balance and
protecting biodiversity, serving as natural green barriers for the sustainable utilization of
desert oases. The EC system is a technique that can monitor carbon fluxes over an extended
period and is widely used in various ecosystem areas [17–19]. Therefore, utilizing the EC
system to measure changes in carbon fluxes in the Middle Tien Shan grassland ecosystem
and to investigate their relationship with environmental factors not only addresses the defi-
ciency of carbon flux data in this ecosystem but also provides a scientific basis for studying
the carbon cycle in grassland ecosystems throughout the region and even in China.

Remote sensing technology enables the transition from site-specific research to regional
scales. The development of satellite data for carbon monitoring has provided possibilities
for this research. GOSAT and OCO, as the main greenhouse gas satellites, are widely used
in the study of carbon flux spatiotemporal variations [20–23]. With the development and
integration between disciplines, carbon flux estimation methods based on machine learning,
satellite remote sensing data, and reanalysis data have been developed. Simultaneously,
large-scale land ecosystem model estimations have benefited from the development of
global flux sites, such as Ameri Flux, Euro Flux, and China Flux. These flux towers have
also promoted the study of carbon cycling in terrestrial ecosystems [24]. In recent years,
the development of data fusion techniques combining global flux site data, reanalysis data,
and remote sensing data has provided support for the fine-scale representation of carbon
flux on remote sensing scales [25,26].

Although research using EC systems and remote sensing data to study the carbon flux
and carbon cycling processes in grasslands is increasing, research on carbon flux in the
alpine grassland ecosystem of the Tien Shan Mountains is currently limited. In previous
studies, most research focused on either using eddy covariance data or remote sensing
data separately to study carbon flux [27,28]; there is a lack of research that combines both
approaches. Therefore, the objectives of our study are (1) to investigate the temporal
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variations in carbon flux in the alpine grassland ecosystem of the Tien Shan Mountains,
(2) to explore the main influencing factors of carbon flux in relation to meteorological
factors, and (3) to present a remote sensing spatial distribution map of carbon flux in the
Tien Shan region and analyze the spatial distribution pattern of carbon flux in the alpine
grassland ecosystem of the Tien Shan Mountains. The hypotheses of our study are as
follows: (1) the alpine grassland ecosystem of the Tien Shan Mountains has a strong carbon
assimilation capacity during the daytime and peak growing season, (2) temperature has a
significant influence on carbon flux absorption and emission, and (3) from the perspective of
remote sensing spatial distribution, the alpine grassland region of the Tien Shan Mountains
acts as a carbon sink during the growing season. This study focuses on revealing the spatial
and temporal patterns of carbon flux in the Central Tian Shan grassland ecosystem and the
influencing mechanisms. It provides a reference for the study of carbon flux in grassland
ecosystems in other regions and theoretical support for the study of carbon balance and
carbon mechanisms in other terrestrial ecosystems.

2. Materials and Methods
2.1. Study Site

The Tien Shan Mountains are located in the hinterland of the Eurasian continent,
spanning the entire territory of the Xinjiang Uygur Autonomous Region (Figure 1a). With a
total length of about 2500 km and a width of about 250–350 km from north to south, it is
the world’s largest independent latitudinal mountain system and also the farthest from
the ocean [29]. The region has a typical temperate continental climate with severe winters
and hot summers, a large annual temperature difference, an average annual temperature
of 7.26 ◦C, and average annual precipitation of 257.61 mm [30]. Due to the influence of
westerly circulation and the interplay of high Arctic air masses and warm and humid air
currents from the Indian Ocean, the regional temperature and humidity in the area are
highly variable. Ulastai station is situated in the central area of the Tien Shan Mountains
(43◦28′55.88′′N, 87◦12′5.76′′E) at an altitude of 2036 m (Figure 1c) and its unique topography
makes pasture the dominant grassland type in the area [31] (Figure 1b).

The footprint source area was analyzed using the Kljun footprint model [32] (Figure 2).
In the range of 90% of flux footprint, portions of the footprint occupied by mountain
grassland from April to September were 34%, 55%, 58%, 57%, 56%, and 55%, respectively.
The radius of the 90% flux footprint fell within 1000 m, which indicated that the measured
flux was majorly sourced from the mountain grassland surface and that the measured
fluxes are representatives of this mountain grassland.

2.2. Data Source
2.2.1. Measured Data Source

In 2016, the Urumqi Institute of Desert Meteorology, part of the China Meteorolog-
ical Administration, established the Middle Tien Shan Grassland Land–Air Interaction
Observation and Experimental Station in the Ulastai area of Baiyanggou, Urumqi. The
station is equipped with an eddy covariance system, a radiation observation system, and a
gradient detection system (Figure 3a). The data for this study were mainly obtained from
three systems: (I) The eddy covariance system, which consists of a 3D sonic anemometer
(CSAT3, Campbell Scientific, Logan, UT, USA) and an open-path infrared gas analyzer
(Li7500A, Licor, Lincoln, NE, USA) (Figure 3c); we measure carbon flux using these two
instruments. (II) The radiation observation system, which includes a net radiation sensor
(CNR01, Kipp&Zonen, Logan, UT, USA, Figure 3b), a soil moisture sensor (CS616, USA),
and a heat flow plate (HFP01, The Netherlands), was used to measure long-and short-wave
radiation, soil moisture, and soil heat flux at different depths, respectively. (III) The gradient
observation system includes a temperature and humidity sensor (HMP45C, Finland) for
monitoring meteorological elements, such as soil temperatures at depths of 0 cm, 5 cm,
10 cm, and 20 cm, as well as air temperatures at heights of 2 m and 10 m. Figure 3d displays
a 2D anemometer used to measure wind speed and wind direction. It is installed at a height
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of 2 m above the ground. It is worth noting that the underlying surface of the EC station is
primarily grass, with a relatively dense coverage and good representativeness (Figure 3e).
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Figure 3. (a) Ulastai station flux tower, (b) radiation observation system, (c) eddy covariance system;
(d) 2D anemometer, and (e) photo of the underlying grassland, taken on 8 May 2023.

The measured data were output through a data collector (CR3000, Logan, UT, USA)
at time intervals of 10 s, 1 min, 30 min, and 1 h. The radiation observation system and
the gradient observation system were acquired at a frequency of 1 Hz, while the eddy
covariance system was acquired at a frequency of 10 Hz. The time scale of this study is
from April to September 2018, and all times used are local time.

2.2.2. Remote Sensing Data

The global carbon fluxes dataset (GCFD) is based on field carbon flux data, meteorolog-
ical data, and remote sensing data. It utilizes convolutional neural network models (CNNs),
artificial neural network models (ANNs), and random forest (RF) models to generate a
global carbon flux dataset that includes net ecosystem exchange (NEE), gross primary
productivity (GPP), and ecosystem respiration (Reco). The dataset has been validated and
analyzed, revealing that NEE has lower accuracy compared to GPP and Reco in terms of
temporal variability. However, the GCFD dataset fills in the gaps caused by the uneven
distribution of global flux sites and the shortage of data in certain regions. The dataset has
a spatial resolution of 1 km at three time steps per month from January 1999 to June 2020.
The GCFD can be a useful reference for various meteorological and ecological analyses and
modelling, especially when high resolution carbon flux maps are required [33] (Table 1).
As per the GCFD data, the time scale is from April to September 2018, with a step of every
10 days, totaling 18 remote sensing images. We downloaded the GCFD dataset through
the National Tibetan Plateau Data Center (https://dx.doi.org/10.11888/Terre.tpdc.300009,
(accessed on 1 June 2023)).

Table 1. Detailed information about the GCFD dataset.

Data Parameters Detailed Information

Variable NEE, GPP, Reco
Time coverage 1990–2020

Spatial resolution 1 km
Coverage area 180◦E~180◦W, 80◦N~60◦S

Data storage format NetCDF4
Data units 0.01 gc m−2 d−1

Missing values 0

https://dx.doi.org/10.11888/Terre.tpdc.300009
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2.3. Data Processing
2.3.1. Measured Data Processing

The EC system continuously observes CO2 flux, and the 30 min data observed via the
EC system is processed using the EddyPro 7.1 software to ensure the accuracy of the obser-
vations. The original data underwent several processes to ensure accuracy. Initially, any
outliers were removed. Subsequently, trend correction [34], the double rotation method [35],
frequency response correction [36], sonic temperature correction [37], and Webb–Pearman–
Leuning correction [38] were applied. Additionally, a turbulence stationarity test and an
overall turbulence characteristic test were conducted to assess the quality of the data. Any
data marked with flag 2 were excluded, and data with a frictional wind speed below the
nighttime threshold were also eliminated.

Data imputation is particularly important due to various reasons, such as weather
conditions, instrument failure, and quality control, which led to 22% of the CO2 flux data
being missing from April to September of 2018. This issue causes inconvenience in the
application of flux tower data. In the current investigation, an online data interpolation
tool developed by the Biochemistry Department of the Max Planck Institute (https://
www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb, (accessed on 15 April
2023)) was used to interpolate the CO2 flux data. The method employs REddyProc in
the R language package for data interpolation, which relies on meteorological data: total
radiation, air temperature, and saturated water vapor pressure deficit (VPD) [39]. The data
interpolation process consists of the following four steps: (I) Detection and rejection of
(NEE) outliers. (II) Estimation of the night-time friction wind speed u* threshold. When
the atmospheric turbulent motion is weak, the friction wind speed decreases, and the
NEE measured via the eddy covariance system underestimates; therefore, the NEE data
below the night-time friction wind speed u* threshold needs to be removed [40,41]. (III)
Interpolation of NEE data by screening out data with time gaps and interpolating NEE
using relevant meteorological and flux data [39]. (IV) The night-time data splitting method
assumes that Reco is only related to temperature changes and that night-time vegetation
only undergoes respiration. Therefore, the night-time NEE response curve to temperature
can be used to infer the changes in vegetation Reco during the daytime. Finally, GPP can
be calculated using Formula (1). The daytime data splitting method for NEE assumes that
the relationship between daytime NEE and total radiation (Rg) and vapor pressure deficit
(VPD) affects GPP, as well as the effect of temperature on Reco.

NEE = Reco− GPP (1)

Due to the lack of instrumentation to observe saturated water vapor pressure, the
empirical Tetens Equation (2) was used to indirectly estimate the saturated water vapor
pressure from the air temperature using the relationship between the saturated water vapor
pressure and the air temperature, as follows [42],

e0(T) = 0.6108 exp
[

17.27T
T + 237.3

]
(2)

where T (◦C) is the air temperature and e0(T) (ka) is the saturated water vapor pressure at
temperature T.

2.3.2. Remote Sensing Data Processing

The GCFD data primarily utilize remote sensing and meteorological data as predictive
factors. Remote sensing variables include the fraction of absorbed photosynthetically active
radiation (FAPAR) and leaf area index (LAI), while meteorological variables include 2 m
temperature (Ta), surface solar radiation downward (SW_IN), latent heat flux (LE), and
sensible heat flux (H). FLUXNET 2015, FLUXNET-CH4, and Drought-2018 were used as
site datasets, which include meteorological data and carbon flux variables. The remote
sensing data, including FAPAR and LAI, were sourced from the Copernicus Global Land

https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb
https://www.bgc-jena.mpg.de/bgi/index.php/Services/REddyProcWeb
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Service (CGLS) version 2 dataset, which has a 1 km resolution and covers the period from
January 1999 to June 2020. The meteorological variable reanalysis data were sourced from
the EAR5-Land dataset. With the above data, machine learning models are employed to
predict global-scale NEE, GPP, and Reco.

Therefore, using GCFD data, the corresponding data for the Ulastai station is extracted
and compared with the field-measured data for validation. The suitability of the GCFD
data in the Ulastai region was evaluated using Pearson correlation coefficient (R), root
mean square errors (RMSEs), and Bias indicators.

R =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

(3)

RMSE =

√
1
n

n

∑
i=1

(xo,i − xm,i)
2 (4)

Bias =
1
n

n

∑
i=1

(xo,i − xm,i) (5)

In the equation, xi represents the measured values and yi represents the GCFD data. x
and y are the average values of the GCFD data and measured values, respectively; and xo,i
and xm,i represent the measured values and GCFD data at each time step, respectively.

The specific methodological flow is shown in Figure 4.
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3. Results
3.1. Variation in CO2 Fluxes
3.1.1. Diurnal Variation in CO2 Fluxes

The results from the current investigation indicated the diurnal variations in CO2
fluxes during the growing season in the Middle Tien Shan grassland from April to Septem-
ber of 2018. NEE and GPP showed a “U”-shaped and inverted “U”-shaped trend, re-
spectively, while Reco remained relatively constant with a mean value of 0.1 mg m−2 s−1

(Figure 5a). At 5:00, NEE showed a decreasing trend, while GPP showed an increasing
trend. As the absorption rate of CO2 increased, the concentration of CO2 in the air gradually
decreased, eventually causing NEE to reach a minimum value of −0.37 mg −2 s−1 at 11:00.
After that, GPP gradually decreased as solar radiation weakened and photosynthesis in
the grassland ecosystem slowed down, causing Reco to become the main source of CO2
fluxes at night and the concentration of CO2 in the air to rise. Overall, from 6:00 to 18:00,



Remote Sens. 2023, 15, 4091 8 of 21

the grassland ecosystem acted as a carbon sink, while for the rest of the time, it acted as a
carbon source.
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NEE, GPP, and Reco varied in each month of the growing season (Figure 5b–d). As
solar height and solar radiation are stronger from June to August than in other months,
the changes in NEE and GPP were most pronounced in June and July, while the changes
in Reco were most pronounced in July and August. Thus, carbon sources and sinks in
grassland ecosystems showed greater changes in June and July than in other months. The
daily average values of NEE ranged from −0.24 to 0.004 mg m−2 s−1, GPP ranged from
0.03 to 0.37 mg m−2 s−1, and Reco ranged from 0.03 to 0.17 mg m−2 s−1 from April to
September of 2018.

3.1.2. Daily and Monthly Variations of CO2 Fluxes

Figure 5 shows the daily and monthly variations in CO2 fluxes during the growing
season in the Middle Tien Shan grassland from April to September of 2018. NEE, GPP,
and Reco all exhibit significant seasonal variation, with NEE and GPP showing opposite
trends (Figure 6a). The maximum CO2 uptake occurred on 17 June, at −9.73 g C m−2 d−1,
and NEE showed CO2 uptake from 15 May to 6 August, during which time the grassland
ecosystem acted as a carbon sink. GPP varied from −2.48 to 13.18 g C −2 d−1, with a
mean value of 4.26 g C m−2 d−1. Reco variation was relatively stable, ranging from 0.12 to
5.63 g C m−2 d−1, with a mean value of 2.46 g C m−2 d−1, which was significantly lower
than GPP. In addition, Reco showed a slow upward trend in June and July, due to increased
solar radiation and vigorous grass growth compared to other months, resulting in enhanced
ecosystem respiration.
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Figure 6. (a) Daily variation in net ecosystem exchange (NEE), gross primary productivity (GPP), and
ecosystem respiration (Reco) in grassland ecosystems from April to September of 2018, (b) monthly
variations of net ecosystem exchange (NEE), gross primary productivity (GPP) and ecosystem
respiration (Reco) in grassland ecosystems from April to September of 2018.

The monthly variation in CO2 fluxes in grassland ecosystems is shown in Figure 6b.
The maximum monthly accumulation of NEE and GPP occurred in June, with
−170.01 g C m−2 mon−1 and 261.27 g C m−2 mon−1, respectively, and the maximum
monthly accumulation of Reco occurred in July, with 121.80 g C m−2 mon−1. During
June and July, grassland ecosystems were in their peak growing season, showing CO2 flux
uptake, which was manifested as carbon sinks, while the rest of the months acted as carbon
sources. April and September, the beginning and end of the growing season, respectively,
were the months when photosynthesis and respiration were weaker in grass compared
to other months. Therefore, the uptake or release of CO2 fluxes was lowest throughout
the growing season. The overall accumulation of NEE, GPP, and Reco during the growing
season was −329.49 g C m−2, 779.04 g C m−2, and 449.55 g C m−2, respectively.

3.2. Impact of Meteorological Factors on CO2 Fluxes
3.2.1. Seasonal Variation in Meteorological Factors

Figure 6 illustrates the changes in the growing season characteristics of the main
meteorological factors in the grassland ecosystem from April to September of 2018. Wind
speed (WS) changed relatively smoothly, with a range of 0.01–4.48 m/s and an average
of 2.42 m/s. The largest change occurred in April (Figure 7a). Relative humidity (RH)
generally exhibited a slowly fluctuating downward trend, with smaller fluctuations from
June to August. Meanwhile, the water vapor mass in the saturated air at the same tem-
perature and pressure remained constant or increased, resulting in a slowly fluctuating
downward trend in RH (Figure 7b). Photosynthetic active radiation (PAR) exhibited rela-
tively minor variations in June, July, and August compared to other months (Figure 7c).
The saturation water vapor pressure difference (VPD) increased with rising temperatures
in June, July, and August (Figure 7d). In June, July, and August, both air temperature
(Ta) and soil temperature (Ts) were higher, while they were lowest in April. The air tem-
perature (Ta) overall showed a normal distribution, with mean values of 10.85 ◦C and
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10.86 ◦C at 2 m and 10 m, respectively. The soil temperature at 0 cm varied more, while
the soil temperature at 20 cm varied less, and the soil temperature was similar in all strata
(Figure 7e,f). Soil moisture content (SWC) varied significantly among the strata, with the
highest value at 5 cm, the lowest at 20 cm, and the second-highest at 10 cm, with mean
values of 0.22 m3/m3, 0.18 m3/m3, and 0.12 m3/m3, respectively (Figure 7g). Soil heat flux
(SHF) showed a slowly decreasing trend overall, with significant changes in April and May,
and then leveled off in the remaining months (Figure 7h).
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Figure 7. Seasonal variation in meteorological factors in grassland ecosystems from Apr to Sept
of 2018. (a) Seasonal variation in wind speed (WS); (b) seasonal variation in relative humidity
(RH); (c) seasonal variation in photosynthetic active radiation (PAR); (d) seasonal variation in vapor
pressure difference (VPD); (e) seasonal variation in air temperature (Ta); (f) seasonal variation in soil
temperature (Ts); (g) seasonal variation in soil moisture content (SWC); and (h) seasonal variation in
Soil heat flux (SHF).

3.2.2. Contribution of Meteorological Factors to CO2 Fluxes

The machine learning algorithm, random forest (RF), has the advantage of being able
to handle large amounts of mixed data with high noise immunity and assess the importance
of each variable factor [43]. Therefore, the contribution of meteorological factors to CO2
fluxes at half-hourly and daily scales was calculated using the RF model.

As shown in Figure 8, at the half-hourly scale, the 0 cm soil temperature had the
greatest contribution to NEE and GPP, while the 20 cm soil temperature had the largest
contribution to Reco. It is noteworthy that for the studied seasonal variations and control
factors of water and CO2 flux in alpine meadows in Lijiang, southwestern China, using
eddy covariance technology on half-hourly and daily scales, photosynthetically active
radiation (PAR) and air temperature are the primary meteorological factors determining net
ecosystem production (NEP) [44]. At the daily scale, the 20 cm soil moisture contributed
the most to NEE and GPP, followed by the 10 cm and 20 cm soil temperature, and the 5 cm
soil temperature contributed the most to Reco. This indicates that soil temperature is a
prerequisite for the variation in CO2 fluxes in the Middle Tien Shan grassland ecosystem
because temperature affects the enzyme activity of plant physiological processes, which in
turn affects photosynthesis in the ecosystem. It also suggests that the meteorological factor
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of soil temperature has the most significant influence on CO2 fluxes, both at the half-hourly
and daily scales.
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3.3. Response of CO2 Fluxes to Temperature
3.3.1. Relationship between CO2 Fluxes and Temperature

To further characterize the effect of soil temperature on CO2 fluxes, we fitted the
function curves of soil temperature and CO2 fluxes for each stratum (Figure 9). The study
showed that soil temperature and CO2 fluxes at different depths exhibited a univariate
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linear regression, and the correlation between soil temperature and CO2 fluxes improved
with the increasing soil temperature. Soil temperature and NEE at different depths exhibited
a negative correlation, meaning that NEE decreased as the soil temperature increased. The
correlations between Ts0cm, Ts5cm, Ts10cm, and Ts20cm with NEE are 0.04, 0.09, 0.10, and 0.11,
respectively (Figure 9a–d). The correlation between soil temperature and GPP at different
depths was positive, indicating that the respiration of the grassland ecosystem increased
more than photosynthesis with the increase in soil temperature, leading to increased GPP.
The correlations between Ts0cm, Ts5cm, Ts10cm, and Ts20cm with GPP are 0.16, 0.25, 0.26, and
0.27, respectively (Figure 9e–h). The relationship between soil temperature at different
depths and NEE and GPP was tested for significance, effectively demonstrating that soil
temperature is an important indicator influencing carbon flux in the Middle Tien Shan
grassland ecosystem.
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Figure 9. Relationship between CO2 fluxes and soil temperature at different depths. (a) The relation-
ship between 0 cm soil temperature and NEE, (b) the relationship between 0 cm soil temperature
and GPP, (c) the relationship between 5 cm soil temperature and NEE, (d) the relationship between
5 cm soil temperature and GPP, (e) the relationship between 10 cm soil temperature and NEE,
(f) the relationship between 10 cm soil temperature and GPP, (g) the relationship between 20 cm soil
temperature and NEE, and (h) the relationship between 20 cm soil temperature and GPP.

To further investigate the effect of temperature on carbon fluxes in grassland ecosys-
tems, a curve was fitted as a function of temperature and CO2 fluxes using different
temperature gradients (Figure 10). From the figure, it can be observed that, similarly to
the relationship between soil temperature and CO2 fluxes, the temperature of different
gradients showed a univariate linear regression with a negative correlation between NEE
and temperature, and an exponential distribution with a positive correlation between GPP
and temperature. The correlation between air temperature and CO2 fluxes was significantly
higher than that of soil temperature, indicating that air temperature is also an important
factor in regulating CO2 fluxes in grassland ecosystems. However, the contribution of air
temperature to CO2 fluxes was significantly lower than that of soil temperature (Figure 8).
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Figure 10. Relationship between CO2 fluxes and air temperature with different gradients. (a) The
relationship between 2 m air temperature and NEE, (b) the relationship between 2 m air temperature
and GPP, (c) the relationship between 10 m air temperature and NEE, and (d) the relationship between
10 m air temperature and GPP.

3.3.2. Critical Values of Temperature Effects on CO2 Fluxes

The soil and air temperatures were divided into eight and six intervals, respectively, to
investigate CO2 fluxes in different temperature ranges (Figure 11). The study showed that
as the temperature increased, NEE tended to decrease and then increase, with a “turning
point” at 25 ◦C (Figure 11a). When the soil temperature reaches 25 ◦C, it provides an
optimal temperature for vegetation growth, and the stomata of vegetation roots open to
efficiently absorb photosynthetic radiation and increase the photosynthetic absorption
rate [16]. At this point, photosynthesis is greater than respiration in grassland ecosystems,
leading to a relatively low concentration of CO2 in the air and causing the grassland to
generally act as a carbon sink. When the soil temperature drops to below 15 ◦C, vegetation
is vulnerable to cold stress, and prolonged low temperatures are detrimental to crop
growth and development, leading to reduced photosynthesis in the grassland ecosystem.
This, in turn, weakens photosynthesis, causing CO2 fluxes in the air to begin rebounding
(Figure 11b). The trend of GPP is opposite to that of NEE, and the critical soil temperature
for GPP is 25 ◦C (Figure 11c). The critical soil temperature for the effect on Reco is 10 ◦C.
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Reco begins to increase when the soil temperature exceeds 10 ◦C and reaches its maximum
value when the soil temperature is above 40 ◦C (Figure 11e).
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the effect of air temperature on CO2 flux.

NEE decreases gradually with increasing air temperature, and changes more smoothly
when the air temperature is below 15 ◦C. However, it decreases more rapidly when the
air temperature exceeds 15 ◦C (Figure 11b). Conversely, the trend of GPP is opposite to
that of NEE, with GPP showing an increasing trend when the temperature exceeds 15 ◦C
(Figure 11d). Nonetheless, Reco increases with temperature and does not demonstrate a
critical value due to its unique geographical location with relatively low temperatures.

3.4. The Trend of Carbon Flux at the Regional Scale
3.4.1. Assessment of the Applicability of GCFD Data

Figure 12 shows a comparison between the field-measured values of carbon flux and
the GCFD data during the 2018 growing season in the Tian Shan grassland. The field-
measured values of NEE, GPP, and Reco show a high correlation with the GCFD data.
Compared to GPP and Reco, the correlation between the field-measured values of NEE and
the GCFD data is relatively low at 0.59, while the correlation between the field-measured
values of GPP and Reco and the GCFD data is 0.81 and 0.73, respectively. The RMSEs are
5.21, 4.99, and 2.20, and the Bias values are 0.41, 0.19, and 0.94, respectively (Figure 12a–c).
The variations in the field-measured values and the GCFD data are generally in phase.
The field-measured values of NEE and the GCFD data show a reversed “U”-shape trend,
reaching their minimum values in June and July. However, the field-measured values have
a larger magnitude of variation compared to the GCFD data. The field-measured values
of GPP and Reco exhibit the same trend as the GCFD data. Starting from April, both the
field-measured values and the GCFD data show an increasing trend, reaching their peak
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values in July, followed by a decreasing trend. However, the field-measured values have
a larger magnitude of variation compared to the GCFD data. The trend of Reco in the
field-measured data is similar to that of GPP, with both reaching their maximum values in
July. However, the GCFD data overall tend to overestimate compared to the field-measured
values (Figure 12d–f).
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Figure 12. Comparison and validation of the GCFD data and the measured value at the Ulastai
Station from April to September of 2018. (a–c) The correlation and error between GCFD data and
measured value of CO2 flux data, and (d–f) comparison of the trend changes between GCFD data
and measured value of CO2 flux data.

3.4.2. Remote Sensing Distribution of the GCFD Dataset

Figure 13 shows a remote sensing distribution map of the average carbon flux during
the growing season in the Tien Shan region of Xinjiang in 2018. The minimum overall
change in NEE occurs in the Ili River Valley, which is −5.91 mg m−2 s−1. This is because
the Ili River Valley has a significantly warmer and moister climate compared to other
regions from April to September, leading to vigorous vegetation growth. During this
time, photosynthesis exceeds respiration, resulting in a lower CO2 flux in the air and the
occurrence of a carbon sink phenomenon. In contrast, in the eastern and western regions of
Tien Shan, where there are more high mountains and glaciers, the sparse vegetation leads
to a less pronounced carbon sink phenomenon. Ulastai station shows a more significant
carbon sink phenomenon, with an average NEE value of −1.48 mg m−2 s−1 during the
growing season. This is due to the thriving grassland ecosystem in the Ulastai station
from April to September. The overall changes in GPP and Reco in the Tien Shan region
exhibit an opposite trend to NEE, with the maximum values occurring in the Ili River Valley
at 11.58 mg m−2 s−1 and 12.35 mg m−2 s−1, respectively. The average values in the Ulas
Plateau during the growing season are 4.44 mg m−2 s−1 for GPP and 3.22 mg m−2 s−1

for Reco.
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4. Discussion
4.1. Variations inCO2 Fluxes

The NEE of the Middle Tien Shan grassland ecosystem showed an overall “U” curve
change from April to September 2018. The ecosystem acted as a net carbon sink during the
day and a net carbon source during the night. At 5:00, NEE showed a decreasing trend,
while GPP showed an increasing trend due to the increase in solar height and radiation,
leading to greater levels of photosynthesis than respiration in the grassland ecosystems [45].
This conclusion is consistent with the findings of previous research conducted by Du et al.
in wetlands [18]. In terms of daily variation, NEE and GPP showed opposite trends, with
the maximum CO2 uptake occurring on June 17 at −9.73 g C m−2 d−1. Similar findings
were reported in a study of a rice ecosystem in the Khorqin grassland; the difference is that
Bao et al. found that in the rice ecosystem, the maximum CO2 uptake occurs on August 15th,
with a value of−17.89 g C−2 d−1 [19]. In terms of monthly variation, the overall cumulative
CO2 flux in the growing season of the Middle Tien Shan grassland ecosystem from April
to September was −329.49 g C m−2, 779.04 g C m−2, and 449.55 g C m−2, respectively.
Compared to the reported CO2 flux of −183.45 g C m−2 in the growing season of the desert
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ecosystem in the Gurbantunggut Desert by Gulnur et al. [46], this indicates that the carbon
sequestration capacity of grassland ecosystems in the arid region of northwest China is
higher than that of desert ecosystems.

Compared to other terrestrial ecosystems (Table 2), the Middle Tien Shan grassland
ecosystem has a weaker carbon sink capacity than the forest [47] and meadow-rice ecosys-
tems [19], but a stronger capacity than marsh and Siberian bog ecosystem [18,48]. The
hydrothermal conditions play a crucial role in affecting the strength of carbon sequestra-
tion [49]. The sandy grassland of Horqin has a substratum dominated by fine sand and
clay-powder grains that strongly absorb solar radiation, resulting in an increased potential
evapotranspiration, and combined with less precipitation; this leads to a stronger carbon
sequestration capacity of the Middle Tien Shan grassland ecosystem compared to the sandy
grassland ecosystem of Horqin [50]. In comparison to the grassland ecosystem of the
Yunnan–Guizhou plateau [12], the carbon sequestration capacity of the Middle Tien Shan
grassland ecosystem is weaker. The Yunnan–Guizhou plateau belongs to the subtropical
climate zone with abundant water and heat conditions, while the Middle Tien Shan grass-
lands belong to the typical temperate continental climate with less precipitation and a dry
climate. This weaker capacity of carbon sequestration in the Middle Tien Shan grassland
ecosystem is due to the lack of water and heat conditions.

Table 2. Comparison of CO2 fluxes in different types of terrestrial ecosystems (values marked with *
indicate that the study time scale is one year).

Type Study Period Position CO2 (g C m−2) Reference

Grassland April 2018~September 2018 43◦28′N, 87◦12′E −329.49 This study
Grassland July 2017~August 2018 27◦46′N, 107◦28′E −425.14 * [12]

Sandy grassland May 2015~September 2015 42◦55′N, 12◦42′E −120.54 [50]
Siberian bog May 2015~August 2015 60.90◦N, 68.70◦E −202 [48]

Floating blanket marsh January 2016~December 2016 25◦07′N, 98◦33′E −233.8 * [18]
Forest January 2015~December 2015 30◦06′N, 78◦12′E −526.87 * [47]

Meadow—rice May 2020~October 2020 43◦20′N, 122◦37′E −769.24 [19]

4.2. The Relationship between CO2 Fluxes and Meteorological Factors and Their Response
to Temperature

The RF model was used to calculate the correlation between CO2 fluxes and mete-
orological factors in the Middle Tien Shan grassland ecosystem, and it was found that
soil temperature was the main meteorological factor affecting CO2 fluxes. As the soil
temperature increased, the NEE of the Middle Tien Shan grassland ecosystem decreased,
while GPP and Reco increased. This study is consistent with the previous conclusion that
GPP and Reco increase significantly with global warming [51]. The carbon sink during
the growing season occurs in June and July, which is consistent with favorable water and
thermal conditions, despite the highest temperature occurring in August. This result may
be attributed to the extreme drought climate in August, indicating that water and thermal
conditions are important factors limiting photosynthesis in arid vegetation [52]. In August,
grassland ecosystems were susceptible to high-temperature stress due to enhanced solar
height and solar radiation, which, together with low precipitation, accelerated the shorten-
ing of the grassland phenological cycle, leading to increased potential evapotranspiration
and respiration in the grasslands. Enhanced evapotranspiration could lead to water stress
in plants [53], resulting in weaker CO2 flux uptake and release in grassland ecosystems,
as well as weaker GPP and Reco. Previous studies have shown that drought or high
temperatures cause the CO2 balance of arid and semi-arid ecosystems to shift from carbon
sink to carbon source [54–57].

The grassland ecosystem had the strongest carbon sequestration capacity when the
soil temperature is 25 ◦C. Above this temperature, the grassland ecosystem is prone to heat
stress, while below this temperature, it is susceptible to cold stress. The current investigation
confirms this conclusion, finding that when soil temperature rises above 35 ◦C, extreme
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drought conditions are highly likely to occur. Drought and high temperatures lead to
dehydration of grass cells, and the lack of water and heat conditions adversely affect the
photosynthesis of grassland [58]. When the soil temperature exceeds 10 ◦C, the Reco of
grassland ecosystems begins to increase. As the soil temperature surpasses 40 ◦C, Reco
reaches its maximum value. Air temperature also had a strong correlation with carbon
fluxes in the grassland ecosystems, which was consistent with previous studies [59–61].
In our research, we have discovered that the temperature threshold for the occurrence of
carbon sinks in grassland ecosystems is 15 ◦C. This further demonstrates that vegetation
requires the most suitable temperature for growth through photosynthesis [62].

4.3. Remote Sensing Carbon Flux

Through a comparison and analysis of field measurement data from the Ulastai
Station in the Middle Tien Shan grassland ecosystem, it was found that the GCFD data
are applicable to the Ulastai region. The correlation coefficients between GCFD data and
the measured values of NEE, GPP, and Reco are 0.59, 0.81, and 0.73, respectively. The
accuracy of GPP and Reco in the GCFD dataset was higher than NEE, which is consistent
with the conclusions reached by Shangguan et al. [33]. The RMSE values for the GCFD
data compared to the measured values of NEE, GPP, and Reco are 5.21, 4.99, and 2.20,
respectively, the Bias values are 0.41, 0.19, and 0.94. The reason for this error may be due to
the fact that the training samples were selected from 280 global sites, mainly distributed in
Europe and North America. Additionally, there may be regions with a lack of observational
data, resulting in inaccurate simulated accuracy and errors between the site measurements
and the GCFD dataset. Furthermore, there is an imbalance in the temporal and spatial
resolutions of the remote sensing data, meteorological data, and carbon flux data used in
the GCFD dataset. To unify the spatiotemporal resolution, the time resolution for these
three types of data is set to 10 days per step, and the spatial resolution is set to 1 km. This
process may introduce deviations in the dataset results [63,64].

Figure 12 presents the remote sensing spatial distribution of carbon flux in the Tien
Shan region of Xinjiang. The Ulastai area shows a significant carbon sink from April to
September 2018, with the highest carbon sink value occurring in the Ili River Valley, which
is consistent with previous studies [65]. Therefore, through the verification analysis of field
measurement data from the eddy correlation system and GCFD data, it was shown that
the errors in the GCFD dataset resulting from the uneven distribution of training sample
sites and unified spatiotemporal resolution are not significant for evaluating global carbon
cycling. The example of Ulastai Station provides a scientific basis for the application of
GCFD data in other regions. It also verifies the feasibility of using a machine learning
fusion algorithm to construct a carbon flux dataset and provide data support for areas with
sparse measurements.

5. Conclusions

The focus of this study was on the characteristics of carbon dioxide fluxes during
the growing season and their response to temperature in the grassland ecosystems of the
Middle Tien Shan Mountains in Xinjiang. The grassland ecosystems acted as carbon sinks
during the daytime from 6:00 to 18:00 and as carbon sources during the rest of the day.
Due to the increase in solar altitude and solar radiation, the carbon dioxide flux of the
grassland ecosystem changed most in June, July and August, with June and July showing
significant carbon sinks. The soil temperature and air temperature at different depths were
negatively correlated with NEE and positively correlated with GPP and Reco. The carbon
sequestration capacity of the grassland ecosystems was strongest when the soil temperature
was 25 ◦C.

The GCFD data were compared and analyzed with the data from the Ulastai station.
They show a high correlation and small errors compared to the measured value. This
dataset is highly applicable in the Ulastai region and has consistent remote sensing spatial
distribution. The GCFD dataset can clearly demonstrate the characteristic changes in
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carbon flux in the Tien Shan region, providing possibilities for the future application of
GCFD data in other areas.

This study only used the 2018 growing season eddy covariance data to explore the
carbon flux balance. The carbon flux variation characteristics of grassland ecosystems
during the non-growing season is worth further investigations. Additionally, this study
only utilized site-specific data to reveal the influencing mechanisms of carbon flux in
grassland ecosystems, which implies the need for further exploration of the influencing
mechanisms of carbon flux in remote sensing space.
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