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Abstract: Forecasts on transportation meteorology, such as pavement temperature, are becoming
increasingly important in the face of global warming and frequent disruptions from extreme weather
and climate events. In this study, we propose a pavement temperature forecast model based on
stepwise regression—model output statistics (SRMOS) at the short-term timescale, using highways in
Jiangsu, China, as examples. Experiments demonstrate that the SRMOS model effectively calibrates
against the benchmark of the linear regression model based on surface air temperature (LRT). The
SRMOS model shows a reduction in mean absolute errors by 0.7–1.6 ◦C, with larger magnitudes
observed for larger biases in the LRT forecasts. Both forecasts exhibit higher accuracy in predicting
minimum nighttime temperatures compared to maximum daytime temperatures. Additionally, it
overall shows increasing biases from the north to the south, and the SRMOS superiority is greater over
the south with larger initial LRT biases. Predictor importance analysis indicates that temperature,
moisture, and larger-scale background are basically the key predictors in the SRMOS model for
pavement temperature forecasts, of which the air temperature is the most crucial factor in the model’s
construction. Although larger-scale circulation backgrounds are generally characterized by relatively
low importance, their significance increases with longer lead times. The presented results demonstrate
the considerable skill of the SRMOS model in predicting pavement temperatures, highlighting its
potential in disaster prevention for extreme transportation meteorology events.

Keywords: pavement temperature; forecasts; model output statistics; Jiangsu highways

1. Introduction

Conspicuous global warming has brought plenty of weather extremes to the whole
world, which will continue and even intensify in the coming future [1,2]. Such extreme
events tend to pose severe threats to human beings and economic society [3,4]. Trans-
portation is one of the most important activities in the operations of public services, social
management, industrial operations, and city construction [5]. The vulnerability of the
transportation system to meteorological hazards endows the intelligent prediction of trans-
portation meteorology and pavement conditions with great importance [6,7]. As revealed
by previous studies [8,9], extremely high pavement temperatures might cause tire burst
events of the vehicles, which is one of the main factors in highway traffic accidents, while
low pavement temperatures are to induce pavement deformations and also to result in the
icing and snowing covers leading to surface slipperiness on the road. Therefore, effective
forecasts on pavement temperatures at multiple scales play vital roles in reducing traffic
accidents for the public and controlling road maintenance costs for the transportation
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departments [10]. For instance, accurate pavement temperature forecasts at higher res-
olutions are crucial to determining the timing and type of deicing treatments in winter,
while longer-term pavement temperature predictions over larger areas are necessary to
design durable infrastructure for pavement engineering purposes [11]. In this study, the
forecast experiments and associated discussions are mainly focused on the former, with an
emphasis on the short-term timescales within 36 h.

Up until now, it has been revealed that the potential predictors for pavement tempera-
ture forecasts include various meteorological variables such as air temperature, humidity,
wind speed, solar radiation, cloud cover, and precipitation, which directly modulate the
energy exchanges between the atmosphere and pavement surface [12,13]. Conventionally,
the statistical relationships between pavement temperatures and these meteorological pre-
dictors have been detected via historical observations, which help to reveal the variability
of pavement temperatures at the diurnal, daily, and even seasonal timescales [14,15]. Such
frameworks are relatively simple to implement for pavement temperature forecasts with
limited parameters and easy application procedures [16,17]. They have been widely used
in the early stages, while the lack of physical mechanisms tends to have negative impacts
on the accuracy of prediction results. Moreover, the surface energy balance is also applied
and has become increasingly popular in predicting pavement temperatures [13]. It gen-
erally uses transportation meteorological observations and assimilates various effective
parameters based on the radiation energy balance of the pavement surface with stronger
physical backgrounds. However, quite a lot of parameters and variables are necessary to
be determined in such models, resulting in a rather complex calculation system. More
recently, large eddy simulations have been employed to dynamically resolve the turbulent
flow structures near the surface and, hence, provide detailed information on heat transfer
processes and local variations in pavement temperature, whereas this always requires
significant computational resources [18]. Meanwhile, machine learning techniques such as
random forests and neural networks with considerable capability of capturing the complex
relationships between the predictand and various predictors have also shown promising
skills in improving pavement temperature forecasts, while relatively higher computational
requirements are necessary to realize the real-world applications [19,20].

From the perspective of meteorological forecasting businesses, numerical prediction
models containing plenty of complex physical processes are increasingly developed with
the improvement of data assimilation and computing resources, which have been uti-
lized as the mainstream form of meteorological operations in recent decades [21]. For
instance, based on the Advanced Research Weather and Research Forecasting (WRF-ARW)
model [22], the regional numerical weather prediction model Precision Weather Analy-
sis and Forecasting System (PWAFS) has been developed and operated by the Jiangsu
Meteorological Bureau, China, which serves the local real-time meteorological forecasts
and associated businesses over East China, especially the Jiangsu Province. The PWAFS
model has been demonstrated to have considerable performance in predicting both local
atmospheric circulations and multi-scale weather systems [23]. Under such circumstances,
based on numerical models with a physical background, forecasts of the meteorological
elements can be effectively realized. However, with respect to transportation meteorologi-
cal predictands such as pavement temperature, the model itself does not include them in
the forecast output. Appropriate conversions should be carried out from the forecasts of
meteorological predictors to pavement temperatures. At the same time, due to insufficient
configurations and parameterizations in the models as well as the chaotic characteristics
of natural dynamical systems, the numerical model forecasts are far from perfect [24–27],
which also result in certain deficiencies in forecasts of the pavement temperature. Thus,
statistical postprocessing is often necessary to add value to forecasts of derived associated
variables such as pavement temperatures [28,29].

Thus far, a number of postprocessing techniques have been devised and refined based
on the historical forecast performances of the models [30,31]. A simple linear regression was
first employed to build statistical relations between the observations and predictors derived
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from the model outputs, which have been known as the initial model output statistics
(MOS) [32,33]. It basically establishes the statistical relationship between the forecasts from
the numerical model as predictors and the observations of the target [34]. With numerical
forecasts being increasingly utilized in current business forecasts, plenty of efforts have
been made to apply model output statistics to forecasts of conventional meteorological
factors such as temperature and precipitation [35]. Meanwhile, the derivative methods
of model output statistics have been developed to enrich the forecast objects, such as
wind energy and soil moisture, and to improve the forecast qualities [29,36–38]. However,
the associated attempts at predictions of transportation meteorological factors such as
pavement temperature are still relatively lacking, which are to be investigated and examined
in the current study.

Taking the highways in Jiangsu, China, as examples, the paper constructs a pave-
ment temperature forecast model based on stepwise regression—model output statistics
(SRMOS) with the effective predictor selection of pavement temperature forecasts in the
numerical model. The conversions of model outputs to pavement temperature forecasts
are subsequently realized and examined. The remainder of the paper is structured as
follows: Section 2 describes the used datasets of model forecasts and observations and
the methodologies of postprocessing, verification, and diagnosis. Section 3 evaluates the
forecast experiments for pavement temperatures in detail and further investigates the
different roles of multiple predictors in the model. Finally, Sections 4 and 5 provide the
conclusions and associated discussions, respectively.

2. Data and Methods
2.1. Data

The numerical model outputs are derived from the regional forecast model PWAFS
developed and operated by the Jiangsu Meteorological Bureau, China, which has been
briefly introduced in Section 1. The model generally consists of the WRF-ARW model
Version 3.5.1 and the 3-Dimensional Variational data assimilation including the Advanced
Regional Prediction System (ARPS 3DVAR) and the Gridpoint Statistical Interpolation (GSI
3DVAR) localized for the Jiangsu province. The system benefits from assimilating various
observations and data sources. These comprise the surface and upper air observations,
multiple radar data, the Cross-track Infrared Sounder, and the Advanced Himawari Imager
radiance [39,40]. Moreover, it uses the land use and land cover data from the U.S. Geological
Survey (USGS) dataset to accurately represent the characteristics and properties of different
land surfaces. The model physical schemes are listed in Table 1.

Table 1. The physical parameterization schemes used in the PWAFS model.

Physics Scheme

Microphysics WRF Single-Moment 6-class scheme [41]
Surface layer Monin-Obukhov [42]
Land surface Noah Land Surface Model [43]

Planetary boundary layer Yonsei University scheme [44]
Longwave radiation Rapid Radiative Transfer Model [45]
Shortwave radiation Dudhia scheme [46]

Cumulus parameterization Kain-Fritsch scheme [47,48]

The PWAFS model utilizes the Lambert conformal conic projection and is configured
with the domain depicted in Figure 1. It is performed on a horizontal resolution of ~3 km
(840 × 840 grids) nested inside a 15-km resolution domain and has 42 vertical levels up to
50 hPa. The initial and boundary conditions are extracted from the Global Forecast System
(GFS) of the U.S. National Centers for Environmental Prediction (NCEP) with a resolution
of 0.25◦ × 0.25◦ and a time interval of 3 h. It is noted that only forecasts initialized at 00:00
UTC are investigated in the current study. The used meteorological variables extracted
from the model include the surface air temperature, precipitation, clouds, longwave and
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shortwave radiation, near-surface humidity, and winds, as well as the air temperature, dew
point temperature, geopotential height, and humidity at the multiple isobaric levels.
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domain marked by the inner brown box. The purple outline denotes Jiangsu Province, China.

The observations of pavement temperatures are taken from the transportation meteo-
rological observation stations along the highways in Jiangsu province. Some of them are
equipped with embedded sensors below the pavement. The others use non-invasive remote
sensing equipment relying on telemetry techniques like infrared spectrum and microwave
radiometry of road surfaces, which avoid damage to pavement or impacts on traffic [49].
These result in the more convenient and highway-friendly features of the remote sensing
observation stations [50]. In fact, the transportation meteorological observation stations
are unevenly distributed. At the same time, some of them can no longer be effectively
used due to maintenance difficulties, and some of the others might be characterized by
discontinuous records of the observations, which should both be weeded out from the
experiment samples. Aiming at a general investigation of the MOS forecasts of pavement
temperatures, a total of 101 stations were finally determined for the following experiments,
which are displayed in Figure 2. On the other hand, the year 2018 is used to determine
the hyperparameters (e.g., the training length) for calculation, and the 2-year periods of
2019–2020 are taken for forecast experiments.
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2.2. Methods
2.2.1. Pavement Temperature Forecasts

Model Output Statistics (MOS) is a statistical post-processing technique and has been
one of the most popular and valuable forecast tools used by plenty of businesses, such as
meteorological forecasts. It is primarily to statistically characterize the systematic depen-
dencies and deficiencies in a database of past forecasts made with a particular system and
then to use these dependency or deficiency characteristics to complete and correct future
forecasts made by that system. For specific forecast targets like pavement temperature
that are not included in the model output, the MOS intends to select the appropriate pre-
dictors from the model outputs according to the physical or historical relationships and
then establish a statistical relationship between the predictors and the target predictand.
Such a statistical relationship is subsequently employed by substituting the corresponding
model output for the actual forecasts. As a result, the MOS postprocessing could not only
generate the “new” variables not included in the model but also effectively eliminate the
systematic errors of the model forecasts at the same time. In meteorologically associated
forecasting, plenty of methods have been proposed and employed to construct the MOS
model, such as multiple linear regression, principal component regression, support vector
machines, and machine learning techniques, among which multiple linear regression is
one of the most basic methods considering multiple predictors to improve the forecast
accuracy [37]. Therefore, the multiple linear regression method is utilized in the current
study to investigate the applicability and capability of MOS in pavement temperature
forecasts. In detail, the corresponding MOS procedures are introduced as follows:

Assume that the predictand target y(ti) and p predictors x1(ti), x2(ti), · · · , xp(ti)
follow the linear statistic relationship of:

y(ti) = β0 + β1x1(ti) + β2x2(ti) + · · ·+ βpxp(ti) + e(ti) (1)
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where i = 1, 2, · · · , n represents the sample i in the total training capacity of n. β0, β1, β2, · · · , βp
denote the respective regression coefficients of the multiple predictors. e(ti) is a kind of
independent residual following a normal distribution. Taking advantage of the above
regression models, the estimation equation of multiple linear regression can be obtained:

ŷ(ti) = b0 + b1x1(ti) + b2x2(ti) + · · ·+ bpxp(ti) (2)

where ŷ(ti) is the forecast results corresponding to y(ti). b0, b1, b2, · · · , bp are the optimal
estimations of β0, β1, β2, · · · , βp, respectively, which is to minimize the sum of the squared
residuals Q over the n training samples.

Q =
n

∑
i=1

(y(ti)− ŷ(ti))
2

=
n

∑
i=1

(
b0 + b1x1(ti) + b2x2(ti) + · · ·+ bpxp(ti)− y(ti)

)2 (3)

Actually, the numerical model system always provides a huge amount of information,
not only on the variables of interest but also on the associated weather conditions, physical
processes, and feedbacks with local conditions [51]. In view of the introduced MOS theory,
despite the suite of parameter calculations in the equation, the effective determination of
predictors certainly plays a crucial role in the construction of the MOS models. Several
methods exist for predictor selection, such as stepwise backward or forward selection or
penalized regression techniques.

Normally, the stepwise forward selection begins with no predictors in the model,
tests each predictor as it is added to the model, then keeps those that are deemed most
statistically significant—repeating the process until the results are optimal—whereas the
backward elimination starts with a full set of available predictors, deletes one at a time,
then tests to see if the removed predictor is statistically significant. On that basis, we use a
bidirectional elimination stepwise selection for predictor selection, which is a combination
of the previous two methods that examine which predictors should be included or excluded.

In practice, the bidirectional elimination stepwise selection introduces the predictors
into the model one by one, conducts an F-test after each explanatory predictor is introduced,
and afterwards conducts a t-test on each of the explanatory predictors that have been
selected in the model. If it is no longer significant due to the introduction of the specific
predictor, it should be removed. That is, there are two basic procedures in the bidirectional
elimination stepwise selection: (1) to remove the predictors that are not significant by the
t-test from the model, and (2) to introduce new predictors that are significant by the F-test
into the model. Such processes are carried out repeatedly until no significant predictors
are inputted into the model equation and no insignificant predictors are removed either.
Overall, the bidirectional elimination stepwise selection not only takes the explanatory
power of newly introduced predictors into account but also considers the explanatory
power of existing variables after adding predictors [52,53]. As a result, it sufficiently
preserves the valid predictors and removes the unsuitable ones, which effectively keeps
the multi-predictor model optimal.

Hence, we combine the MOS method (Equations (1)–(3)) based on multiple linear re-
gression and the bidirectional elimination stepwise selection of model predictors, proposing
a stepwise regression—model output statistics model for pavement temperature forecasts,
which is hereafter abbreviated as SRMOS.

To assess the applicability and capabilities of the SRMOS model, the linear regression
based on surface air temperature (LRT) model is also carried out parallelly as a benchmark
throughout the experiments. It is noted that surface air temperature is widely recognized
as one of the most critical factors impacting pavement temperature variations and has
been extensively employed for pavement temperature forecasts [54]. Therefore, we employ
the LRT model utilizing surface air temperature for comparison purposes. The LRT is
established on each grid point during the training period to generate forecasts with specific
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lead times (i.e., the duration between the forecast issuance and the predicted weather
occurrence):

o(t) = a + bp(t) (4)

where o(t) and p(t) are the observed pavement temperature and the model predicted
surface air temperature, respectively, at the time t. a and b are constant terms and regression
coefficients in the linear regression, which can be obtained using the following equations:

a = o− bp (5)

b =
Σn

i=1 p(ti)o(ti)− npo

Σn
i=1 p(ti)

2 − np2
(6)

where p(ti) represents the surface air temperature forecast at the time ti in the training
set n, o(ti) represents the corresponding observed pavement temperature. p and o are the
temporal averages of the predicted surface air temperature and the observed pavement
temperature during the training phase. Hence, at the next step (t + 1), the best estimate
f (t + 1), i.e., the final LRT forecast result of pavement temperature, can be obtained based
on the parameters a and b and the model’s predicted surface air temperature p(t + 1) via:

f (t + 1) = a + bp(t + 1) (7)

It is noted that before the procedures of either SRMOS or LRT, the bilinear interpolation
is first performed via the following formulae to obtain the multiple predictors from the
transportation meteorological stations:

f (Xr, Ya) =
Xb − Xr

Xb − Xa
f (Xa, Ya) +

Xr − Xa

Xb − Xa
f (Xb, Ya) (8)

f (Xr, Yb) =
Xb − Xr

Xb − Xa
f (Xa, Yb) +

Xr − Xa

Xb − Xa
f (Xb, Yb) (9)

where Xa, Xb, Ya, and Yb represent the positions on the coordinate axes of the four grid
points in the respective directions surrounding the target station point (Xr, Yr), with
their corresponding variables represented by f (Xa, Ya), f (Xb, Ya), f (Xa, Yb), and f (Xb, Yb).
f (Xr, Ya) and f (Xr, Yb) denote the points obtained through linear interpolation in the
X-direction. Afterwards, the final interpolation is carried out for the target point:

f (Xr, Yr) =
Yb −Yr

Yb −Ya
f (Xr, Ya) +

Yr − Xa

Yb −Ya
f (Xr, Yb) (10)

Furthermore, in the establishment of both SRMOS and LRT models, we incorporate a
running training phase consisting of a 30-day period immediately preceding the forecast
day. This allows for the most up-to-date information from forecasts and observations,
effectively mitigating the systematic temporal biases in the forecasts [55]. It is pertinent
to mention that the determination of this 30-day training period is based on independent
trials conducted in 2018, separate from the forecast experiments presented in this study.

2.2.2. Verification Metrics

To quantitatively assess the forecast experiments on the pavement temperatures,
we basically employ the two metrics of the mean absolute error (MAE) and the pattern
correlation coefficient (PCC).

MAE =
1
N ∑N

i=1| fi − oi| (11)



Remote Sens. 2023, 15, 3956 8 of 20

PCC =
∑N

i=1

(
fi − f

)
(oi − o)√

∑N
i=1

(
fi − f

)2
∑N

i=1(oi − o)2
(12)

For the sample i in the total of N forecast targets (i.e., the transportation meteorological
stations), fi and oi are the forecast and observation, respectively. f and o represent the
averaged values of forecasts and observations from the samples. The calculated MAE is
a straightforward metric that intuitively measures the forecast errors, and the obtained
PCC is the temporally averaged Pearson product-moment coefficient of linear correlation
between two spatial sample fields. In principle, a lower MAE and a higher PCC denote
forecasts with higher skills.

In addition, on the basis of the MAE, the MAE skill score (MAESS) is also calculated
between the raw benchmark LRT model and the proposed SRMOS model with the following
formula:

MAESS =
MAESRMOS −MAELRT

0−MAELRT
= 1− MAESRMOS

MAELRT
(13)

MAESRMOS and MAELRT are MAEs of the evaluated object—SRMOS and the bench-
mark model—LRT, respectively. Therefore, the MAESS represents the superiority magni-
tudes of the SRMOS model relative to LRT, and it ranges from −∞ to 1. The higher the
MAESS, the greater the superiority of the SRMOS model.

2.2.3. Predictor Importance Analysis

Similar to the investigations on machine learning interpretability, the permutation
predictor importance method, which was first introduced for random forests [56,57], is
used to obtain the relative importance of predictors based on their impacts on the trained
model. In practice, it measures the changing magnitudes in the prediction error of the
model after we permute the predictor value, which breaks the relationship between the
feature and the true outcome. Afterwards, the contribution of a specific predictor to the
SRMOS model can be calculated via the changing error divided by the total error, which is
formulated as:

Importancek =
MAEk −MAEbase

MAEbase
(14)

where Importancek represents the importance of the predictor k. MAEbase is the original
MAE of the pavement temperature forecast experiments, and MAEk denotes the MAE
of the pavement temperature forecast experiments after permuting the predictor k. The
greater metric Importancek indicates the greater importance of the specific predictor k in
the multi-predictor SRMOS model. The permutation predictor importance method benefits
from being model-agnostic, and the importance can be calculated many times with different
permutations of the predictors.

3. Results
3.1. General Evaluations

The overall assessments of the multi-variate SRMOS model and the benchmark of
the univariate LRT are presented in Figure 3, including the MAE and PCC variations of
pavement temperature forecasts at lead times of 3–36 h averaged over the transportation
meteorological observation stations along the Jiangsu highways in 2020.

The MAE trends are generally consistent between the two forecast models of pavement
temperatures, which show increasing (decreasing) MAE for lead times of 3–6 h and 21–30 h
(6–15 h and 30–36 h). At the 3-h lead time, the LRT model has a MAE of 4.3 ◦C, which then
rises to 5.1 ◦C at the 6-h lead time. It then decreases to a great extent until the lead time of
15 h reaches 2.2 ◦C and thereafter stabilizes gradually for 9 h. From the lead time of 24 h, the
MAE further increases rapidly to the lead time of 30 h, reaches up to 5.6 ◦C, and afterwards
decreases to 2.6 ◦C at the lead time of 36 h. By contrast, the SRMOS evidently reduces
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the MAE for all lead times by 0.7–1.6 ◦C. It is noted that among the lead times of 3–36 h,
towards the pavement temperature forecasts with larger biases in LRT, the SRMOS model
shows greater magnitudes of effective calibrations. It generally shows a stable capability
for improving the forecasting skills of pavement temperatures. Consequently, the SRMOS
forecasts are characterized by the largest MAE of 4.0 ◦C at the 30-h lead time and the lowest
of 1.5 ◦C for lead times of 15–21 h, indicating general superiority to the previous models on
pavement temperature forecasts [54,58].
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From the perspective of forecasts on spatial distributions of pavement temperatures,
the two forecast models display generally similar PCCs. At a lead time of 3 h, the LRT
and SRMOS have PCCs of 0.71 and 0.74, respectively. With the increasing lead times,
although the models feature overall decreasing PCCs, they remain capable of forecasting the
pavement temperature distributions, showing PCCs ranging from 0.66 to 0.75. Furthermore,
the results imply higher forecast skills for the SRMOS model than the LRT, which further
demonstrate the extensive superiority of the proposed SRMOS model in grasping the
spatial distribution of pavement temperature forecasts.

It is worth noting that no matter the simple LRT model or the improved SRMOS
models, the lead times of 6 h and 30 h are both characterized by higher forecast errors and
lower correlation coefficients, indicating less skillful forecasts of the pavement temperatures
at the two lead times than the others. In fact, in the forecast experiments examined here in
the manuscript, we take the initialization time of 00:00 UTC, and the lead times of 6 h and
30 h both denote 06:00 UTC, i.e., 14:00 CST (UTC+8). That is, the forecasts at these two lead
times almost represent the maximum temperatures during the daytime, while the lead time
of 18 h denotes the minimum temperatures during the nighttime. These are consistent with
the previous studies revealing more skillful forecasts on the minimum temperatures than
the maximums [59,60]. On the one hand, the climatology analysis shows the higher inherent
uncertainties (represented by the observational variability without forecast impacts) of
the maximum temperature than the minimum, which intends to generate higher biases
in forecasts of the maximums [61]. On the other hand, compared with the nighttime with
zero solar irradiance, the additional solar radiation in the daytime would increase the net
radiation and induce higher biases over the planetary boundary layer in the numerical
prediction models [62–64]. Combined with the non-perfect physical parameterizations, it
results in less skillful forecasts of maximum temperatures than minimums [65,66].



Remote Sens. 2023, 15, 3956 10 of 20

3.2. Details of the Forecast Biases

The above section has investigated the general capabilities of the two models of LRT
and SRMOS for forecasting pavement temperatures in terms of MAE and PCC. Aiming at
more details of the forecast analyses, Figures 4 and 5 present the spatial distributions of
pavement temperature forecast MAEs and the corresponding MAESSs, with the lead times
of 6 h, 18 h, and 30 h taken as examples. It is noted that to provide more perspicuous and
more readable spatial distributions of the forecast assessments, the MAEs and MAESSs at
the transportation meteorological observation stations along the highways are interpolated
into the whole Jiangsu province.
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In terms of the simple LRT model, almost all the areas are characterized by MAEs
of greater than 4.0 ◦C at the lead time of 6 h, and it generally shows an increasing MAE
trend from the north to the south. At the lead time of 18 h, the MAEs decrease to ~2.5 ◦C,
distributing evenly across the whole experiment area. When the lead time increases to
30 h, the forecast errors are again increased to a great extent, with the MAEs reaching
up to 5.0 ◦C. By contrast, the multi-factor SRMOS model effectively reduced the errors
throughout the whole forecast experiment on the pavement temperature. At the early stage
of the 6-h lead time, the MAEs are reduced to less than 4.0 ◦C, and the temporally averaged
MAEs are mainly less than 3.0 ◦C over the northern part. As for the lead time of 18 h, it
shows MAEs ranging from 1.0–2.0 ◦C over the whole area and generally resembles the
evenly distributed features of the LRT model. When the lead time rises to 30 h, the MAE
generally shows similar distributions to the lead time of 6 h, i.e., lower MAEs at the north
and higher MAEs at the south. However, the magnitudes are definitely higher than the
MAEs at the 6-h and 18-h lead times, but still lower than those of the LRT model.

With respect to the forecast improvement features of the SRMOS for LRT, the positive
MAESSs denote the consistent and stable calibrations of the SRMOS model. At the lead
time of 6 h, the MAESS shows an increasing trend from north to south, indicating that the
SRMOS superiority is greater over the southern part of Jiangsu Province. Meanwhile, the
MAESSs at the 18-h lead time do not show large spatial differences. Furthermore, for such
a lead time with lower forecast biases evenly distributed, the SRMOS remains positive
and moderately improving magnitudes to LRT over the whole area, although the MAESSs
are generally smaller than those at the 6-h lead time. At the longer lead time of 30 h with
larger biases, the MAESSs are predominantly distributed between those of the 6th and 18th
lead hours. On the other hand, the spatial distributions indicate that over the areas with
larger errors in LRT forecasts, the SRMOS model is characterized by greater improvement
magnitudes, while for lower raw errors, it implements relatively fewer improvements
based on the LRT results. The considerable calibration capability of the SRMOS model is
therefore demonstrated in forecasting pavement temperatures over the Jiangsu highways.

Furthermore, in order to detect the forecast error distributions, Figure 6 exhibits the
different proportions of multiple MAE thresholds for the pavement temperature forecasts
derived from the LRT and SRMOS models, taking the lead times of 6 h, 12 h, 18 h, 24 h,
and 30 h as examples. At the lead time of 6 h, the simple LRT model shows proportions of
only ~7% for MAEs of 0–2 ◦C, and the majority of MAEs are mainly concentrated over 4 ◦C
and even higher than 5 ◦C. On the other hand, the SRMOS model slightly increases the
proportions of 0–2 ◦C MAEs to ~10% while reducing the larger MAEs to a greater extent and
displaying the MAEs concentrating between 3 ◦C and 5 ◦C. With the lead times increasing
until 18 h, the proportions of smaller (larger) MAEs become larger (smaller). At the 18th
lead hour, the LRT shows a ~42% (~54%) proportion of 0–2 ◦C (2–3 ◦C) MAE, whereas
in the SRMOS model, most MAEs are distributed among 0–2 ◦C with a proportion of
~91%. Afterwards, the proportions of smaller (larger) MAEs gradually decrease (increase).
Moreover, it is notable that for the lead times except 30 h, the MAEs of >5 ◦C are almost
cleared. That is, towards the pavement temperature forecasts, the significant improvements
of the SRMOS model are reflected by the notably more concentrated lower biases and the
decreasing proportions of larger biases.

In more detail, Figure 7 displays the corresponding scatter diagram describing the
observations (X-axis) and forecasts (Y-axis) of LRT and SRMOS in the forecast experiments
of pavement temperatures at multiple lead times. To be noted, the samples from upper
left (bottom right) to the diagonal denote warm (cold) biases of the pavement temperature
forecasts, and the distance of individual points to the diagonal refers to the deviation of the
forecast from observation. In the LRT forecasts, the error distributions are asymmetric, with
warm biases occurring more frequently than cold ones. By contrast, the samples become
closer and more concentrated around the diagonal in the SRMOS postprocessing output.
Even for the extreme cases with samples distributed at the bottom-left and upper-right
ends of the sample cluster, the SRMOS is also characterized by considerable improvements
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over the LRT results. That is, the forecast errors can be sufficiently reduced and become
convergent and symmetric to zero after the SRMOS postprocessing, which is particularly
evident for the lead times with larger initial biases (e.g., 6 h and 30 h). It further indicates
the generally higher skill of the SRMOS model than LRT in predicting pavement tempera-
tures and also implies the potential capability of SRMOS in improving forecast skills for
extreme events.
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Figure 7. Scatter plots in pavement temperature for observations (X-axis; units: ◦C) and forecasts
(Y-axis; units: ◦C) of LRT (a–e) and SRMOS (f–j), respectively, over Jiangsu at lead times of 6 h (the
first column), 12 h (the second column), 18 h (the third column), 24 h (the fourth column), and 30 h
(the fifth column). The distance of an individual point to the diagonal refers to the deviation of
the forecast from observation. The shading represents the kernel density estimation of the forecast
biases. The greater kernel density estimation of a specific point denotes the higher data density of its
surroundings, and vice versa.

3.3. Predictor Importance Analysis

According to the analyzed results on multiple statistics, the SRMOS model has been
demonstrated to be effective in pavement temperature forecasts. However, the model has
only been a “technical toolbox” until now, and the predictability sources of the model have
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not yet been revealed. Therefore, to make the model clearer and more explainable, Figure 8
presents the importance metric distributions of the 10 most important predictors employed
in the SRMOS model established in the above-analyzed experiments for lead times of 6 h,
12 h, 18 h, 24 h, and 30 h. Associated predictor abbreviations can be referred to in Table 2.
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Figure 8. Boxplot diagrams summarizing the importance distributions (X-axis) of the 10 most
important predictors (Y-axis) in the SRMOS model for lead times of 6 h (a), 12 h (b), 18 h (c), 24 h (d),
30 h (e), and 36 h (f). The yellow line across each box and the left and right boundaries of the box
refer to the median, lower, and upper quartiles of the importance metrics, respectively. The predictor
names can be found in Table 2. The predictors on the Y-axis are sorted in descending order of mean
factor importance from top to bottom.

Table 2. Several of the most important predictors in the model and the corresponding abbreviations.
p denotes the multiple isobaric levels of 1000 hPa, 950 hPa, 925 hPa, 850 hPa, 700 hPa, 500 hPa, and
down to 100 hPa.

Predictor Variables Abbreviation

Temperature at 2 m t2m
Specific humidity q2m

Dew point temperature at 2 m dpt2m
Relative humidity at 2 m rh2m

Temperature at p hPa tp
Geopotential height at p hPa ghp
Relative humidity at p hPa rhp

Dew point temperature at p hPa dptp
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Notably, the predictor’s importance is different for different lead times. According to
the boxplot distributions, the importance scores of the individual predictors also maintain
a great extent of dispersion among the samples. Detailed analyses show that the key factors
could generally be classified into three categories associated with temperature, moisture,
and larger-scale background at multiple levels, respectively.

Specifically, the surface air temperature at the 2-m level (t2m) always remains the
most critical predictor at all lead times. The importance scores of t2m reach greater than
0.8 at multiple lead times, which is much higher than those of the other predictors. The
following several important factors also focus on the temperatures at higher levels, such
as 1000 hPa and 925 hPa. That is, the pavement temperature forecast skills of the SRMOS
model could preliminarily be attributed to the air temperature forecasts in the numerical
prediction model.

Besides, considering that the dew point temperatures are also an effective factor
featuring the comprehensive conditions of temperature and moisture and combining the
importance distributions of dew point temperature (dpt), specific humidity (q), and relative
humidity (rh), the moisture-related predictors, particularly at the lower levels, also play
important roles in the pavement temperature forecasts. On average, they count each
importance metric at 0.1–0.2, although the scores are slightly decreased with the increasing
lead times. These demonstrate that, following air temperatures, moisture factors are the
second-most important predictors in the SRMOS model for pavement temperature forecasts.

Moreover, it is also noted that the larger-scale backgrounds, such as geopotential
height (gh), also make certain sense in the model construction. At the early stage of
the forecast, it has not yet been included in the top 10 predictors at the lead time of
6 h (Figure 8a). Afterwards, the associated predictors are generally characterized by
importance scores of ~0.1, accompanied by an overall increasing trend at lead times from
12 h to 36 h. It might be associated with the consistently promising forecasts of larger-scale
backgrounds in the numerical prediction models at the short-term timescale, while the
specific parameters (e.g., precipitation, wind, etc.) could not always be represented so
stably or sufficiently [67,68].

In summary, temperature, moisture, and larger-scale background are basically the
key predictors in the SRMOS model of pavement temperature forecasts. Figure 9 further
describes the spatial distributions of the typical predictor importance metrics for lead
times of 6 h, 18 h, and 30 h. Based on analyses of Figure 8, the predictors of t2m, q2m,
and gh100 are determined to express aspects of temperature, moisture, and larger-scale
background, respectively.

The importance metric distributions of t2m correspond well to its remarkable and
largest contributions to the model forecast skills shown in the boxplots. With the grow-
ing lead times, the importance slightly decreases by ~0.1 for every lead time interval of
6 h. From the perspective of spatial distribution, the t2m importance generally shows a
decreasing trend from north to south. It indicates strong consistency with the SRMOS
forecast skill distributions, which are higher in the north and lower in the south (Figure 4).
That is, in the SRMOS model, the higher predictor importance of t2m always corresponds
to more skillful pavement temperature forecasts. On the other hand, the forecast skills
of pavement temperature are also jointly impacted by forecasts of the air temperature
itself and the other predictors. As for the moisture-associated and larger-scale background
predictors of q2m and gh100, they both do not show significant regional characteristics
or consistently changing distributions. Meanwhile, q2m features greater importance than
gh100 throughout the whole lead period in the pavement temperature forecast experiments.
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4. Conclusions

In this study, we propose a pavement temperature forecast model based on step-
wise regression—model output statistics (SRMOS) at the short-term timescale, using the
highways in Jiangsu, China, as examples. The linear regression based on the surface air
temperature (LRT) model is also conducted in parallel as a benchmark. The conversions
from the numerical prediction model outputs to the pavement temperature forecasts are
therefore effectively realized. The conclusions obtained are summarized as follows:

The SRMOS model shows effective calibrations towards the pavement temperature
forecasts based on the LRT model. The mean absolute errors are generally reduced by
0.7–1.6 ◦C, with greater magnitudes for larger biases in the LRT model. At lead times of
15–21 h, the biases are only ~1.5 ◦C for the proposed SRMOS model. Both the LRT and
SRMOS models are capable of well predicting the spatial distributions of the pavement
temperatures, although they both exhibit decreasing trends for pattern correlation coeffi-
cients. The SRMOS model slightly outperforms the LRT in terms of spatial representation.
It is worth noting that the forecast performance for maximum daytime temperatures is
inferior to that for minimum nighttime temperatures. The discrepancy could be attributed
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to the higher inherent uncertainties of maximum temperatures and the imperfect physical
parameterizations of additional solar radiation during the daytime.

No matter whether the simple LRT model or the SRMOS model is used, they generally
indicate increasing forecast biases from north to south. The SRMOS model exhibits greater
superiority in the southern part of Jiangsu Province, where initial LRT biases are larger.
That is, the SRMOS model is characterized by notably more concentrated lower biases and
decreasing proportions of larger biases. It further demonstrates the overall higher skill of the
SRMOS model compared to the LRT model in predicting pavement temperatures and also
suggests the potential capability of SRMOS in improving forecast skills for extreme events.

Predictor importance analysis shows that temperature, moisture, and larger-scale
background are basically the key predictors in the SRMOS model, of which the air tempera-
tures are the most crucial factors in the model construction of the pavement temperature
forecasts. Although the larger-scale circulation backgrounds are generally characterized
by lower importance metrics, they are accompanied by an overall increasing trend with
increasing lead times, which might be associated with the consistently promising forecasts
of larger-scale backgrounds in numerical prediction models at the short-term timescale.

5. Discussion

Accurate pavement temperature forecasts are essential for various applications, such
as transportation planning, road maintenance, and weather impact assessments, which
help optimize road treatments, prevent accidents, and enhance overall infrastructure
safety. The current study presents the stepwise regression—model output statistics (SR-
MOS) model for pavement temperature forecasts based on the numerical prediction model
PWAFS. Although the model itself is still characterized by specific forecast biases according
to the examinations conducted in Jiangsu Province, China, it could be considered able
to well forecast pavement temperatures and has been demonstrated to be effective in
practical applications.

It is important to note that the study only utilizes and tests one numerical prediction
model, i.e., the Jiangsu regionally operated forecast model PWAFS. This might introduce
certain uncertainties and biases due to the model’s properties. Since the SRMOS model
is constructed based on dynamical-model training data and observations, the selected
predictors may differ across different models. Therefore, it is necessary to attempt more
numerical prediction models to assess their applicability and capability in transportation
meteorological forecasts, particularly for pavement temperatures. Meanwhile, given the
multi-model outputs, the ensemble techniques, which have been successfully utilized
in weather forecast scopes [69], are worth examining in transportation meteorological
forecasts to exploit the benefits of multiple models.

Furthermore, advanced statistical postprocessing procedures, including state-of-the-
art machine learning methods, should be employed to achieve transportation meteoro-
logical early warnings and forecasts and to reduce the biases of numerical prediction
models [70,71]. Probability forecast systems can also be developed to provide more de-
tailed information from multi-model ensembles [72]. Moreover, bias decompositions are
to be investigated to reveal more comprehensive insights into the behavior of multiple
forecast models for pavement temperatures and other factors [73], which would also aid in
the intelligent establishment of associated forecast models.

Reliable transportation meteorological observations also play crucial roles in ensuring
refined and accurate forecasts of transportation meteorological factors such as pavement
temperature. For instance, remote sensing measurements feature the advantages of their
high versatility, scalability, sensitivity, reliability, and stability, making them helpful for not
only more accurate forecasts but also investigations on associated physical mechanisms [74].
These should never be overlooked in either the business forecasts or operational services of
the transportation or meteorology agencies [75]. Furthermore, more reasonable planning
and layout of future multi-source transportation meteorological observation networks
would also benefit from the integration of remote sensing observations [76].
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