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Abstract: The implementation of precise agricultural fields can drive the intelligent development
of agricultural production, and high-resolution remote sensing images provide convenience for
obtaining precise fields. With the advancement of spatial resolution, the complexity and heterogeneity
of land features are accentuated, making it challenging for existing methods to obtain structurally
complete fields, especially in regions with blurred edges. Therefore, a multi-task learning network
with attention-guided mechanism is introduced for segmenting agricultural fields. To be more
specific, the attention-guided fusion module is used to learn complementary information layer by
layer, while the multi-task learning scheme considers both edge detection and semantic segmentation
task. Based on this, we further segmented the merged fields using broken edges, following the
theory of connectivity perception. Finally, we chose three cities in The Netherlands as study areas for
experimentation, and evaluated the extracted field regions and edges separately, the results showed
that (1) The proposed method achieved the highest accuracy in three cities, with IoU of 91.27%, 93.05%
and 89.76%, respectively. (2) The Qua metrics of the processed edges demonstrated improvements of
6%, 6%, and 5%, respectively. This work successfully segmented potential fields with blurred edges,
indicating its potential for precision agriculture development.

Keywords: agricultural fields; remote sensing images; multi-task learning; edge detection; semantic
segmentation

1. Introduction

Agricultural fields serve as a vital pillar for the development of modern agriculture,
promoting the advancement of agriculture towards greater efficiency, intelligence, and
sustainability. Precise delineation of agricultural fields can provide basic data for agri-
cultural production and management [1]. This valuable information enables agricultural
producers to implement precision practices, such as targeted fertilization, precise irriga-
tion, and pest monitoring, maximizing crop yields while reducing resource wastage [2,3].
During the early stages, the agricultural fields extraction required manual delineation.
Although this way is capable of obtaining high-precision fields, it demands a considerable
investment of human resources and time, greatly limiting the application of the data [4,5].
In recent years, satellite technology has made significant progress and development, espe-
cially the successful launch of high-resolution satellites, which has provided powerful data
support [6–8].

Currently, there is growing interest in methods for extracting agricultural fields, which
can be broadly classified into edge detection and region segmentation methods [9,10].
The edge-based methods use predefined kernels to perform convolution operations on
images and detect object edges based on the change of spatial gradients. Turker et al. used
the Canny operator to detect edge pixels and divided the fields into several sub-regions
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using the extracted edges [11]. Yan et al. used a geometric contour model to segment
multi-temporal Landsat images and divided field parcels into multiple independent sub-
regions using the watershed segmentation algorithm [12]. Graesser et al. proposed a
time-series-based method for extracting agricultural fields, which used multi-directional
convolution kernels to obtain edge information of objects, the field parcels were segmented
by using morphologically processed edges [13]. However, the above methods are limited
by the type of convolution kernel and are sensitive to high-frequency noise. The region
segmentation methods divide images into several sub-regions based on the similarity and
mutual exclusivity of local features such as texture and color. Pedrero et al. used the simple
linear iterative clustering method for super-pixel segmentation and employed supervised
classification to merge adjacent regions [14]. Su et al. introduced a refined methodology
based on mean-shift for farmland segmentation, which utilized a hybrid filter to ensure
the homogeneity of internal pixels and the continuity of edges. This method improved
the accuracy of farmland segmentation by using region merging techniques [15]. The
region-based segmentation methods are highly dependent on parameters, which can lead
to over-segmentation of internal regions with large differences and under-segmentation of
smaller regions that may be overlooked [9].

Convolutional neural networks (CNNs) have played a pivotal role in the development
of intelligent interpretation of remote sensing, which has been greatly facilitated by the
rapid advancement of computer hardware and deep learning technology [16–19]. The
CNNs have received much attention in the extraction of agricultural fields. Waldner et al.
proposed a multi-task semantic segmentation model that could simultaneously perform
the tasks of field segmentation, edge detection and learning of boundary distance features.
Finally, the merged parcels were split by a watershed segmentation algorithm [20]. In
addition, Long et al. proposed a multi-task learning network named BsiNet, which also
learned segmentation, edge and distance tasks, this method enhanced the network’s repre-
sentation learning ability through a spatial grouping enhancement module [21]. To boost
the accuracy of boundary extraction, Jong et al. used a generative adversarial network as a
discriminator to assist in training ResUNet. Experimental results showed that this method
improved the adaptability of the network [22]. The aforementioned methods have played
important roles in agricultural fields extraction. However, they only use the high-level
features generated by the last layer of the encoder, ignoring the guiding ability of feature
aggregation [23,24]. Owing to the complex background, it is evident that the detected
edges are often incomplete or isolated, and the above methods do not fully consider the
respective advantages of segmentation and edge detection, making it difficult to obtain
fine-grained agricultural fields.

The aim of this work is to explore the method of segmenting agricultural fields using
the advantages of representation learning in deep learning. To achieve this, a multi-mask
learning network with attention-guided mechanism (i.e., MLGNet) was proposed for
agricultural fields extraction, which can learn complementary details in a progressive
approach and improve the network’s representation capacity. The proposed approach
involves using a multi-task learning scheme to simultaneously train networks for semantic
segmentation and edge detection tasks, which facilitates the exchange of information
between different tasks, enabling the network to better generalize the acquired features.
Finally, the broken edges are utilized to divide the merged fields based on the Gestalt laws,
which helps rectify topological connectivity limitations of the network. To sum up, the
contributions can be summarized as follows:

(1) The MLGNet employs a guided attention fusion module to progressively learn edge
details, thereby guiding the network to enhance region of targets. The learnable
distance features are employed as a shared carrier for learning the segmentation and
edge detection tasks.

(2) A regional edge connectivity algorithm (i.e., ReCA) is designed based on principles of
visual perception, which employs broken edges from detect task to divide merged
fields into several sub-regions.
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(3) The effectiveness of various methods is compared, and the final results are evaluated
based on edge and region indicators.

2. Materials and Methods
2.1. Study Area and Data

The study area is located in The Netherlands, which is known for its efficient, modern
and sustainable agriculture. The government has established an agricultural informa-
tion system (Basisregistratie Gewaspercelen) for the purpose of regulating and managing
agricultural production. This system has made available fine-grained vector data on agri-
cultural fields (https://www.nationaalgeoregister.nl/geonetwork) that is highly suitable
for testing the effectiveness of the proposed method. This work utilized two cloud-free
synthesized google images (18,000∗18,000) with a resolution of 2 m to generate the samples,
the data (https://www.google.com/earth) was obtained from the period of 1 January 2019
to 31 December 2020, and the location of the images is depicted in Figure 1. The images
were sliced into 2400 patches, each with a size of 512∗512 pixels. Out of these patches, 1800
were employed for training, and 600 were kept for validation.
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Figure 1. The overview of the study area. Anna Paulowna, Wieringermeer and Niedorp are three
municipalities located in the province of North Holland in The Netherlands.

As experimental study sites, we selected three agricultural cities (i.e., Anna Paulowna,
Wieringermeer and Niedorp) with notable differences, and the selection considered factors
such as the size of fields, the density of fields, and the blurriness of edges. Anna Paulowna
covers an area of approximately 64 square kilometers, and it is known for its beautiful tulip
fields. In the northwest of Anna Paulowna, the agricultural fields show a characteristic of
dense distribution, and the size of them is relatively small. Due to resolution limitations,
the edges between these fields may appear blurry or less defined. Wieringermeer covers
an area of approximately 165 square kilometers. It is known for its agricultural industry.
In Wieringermeer, the agricultural fields present a fairly regular appearance, and the scale
is relatively large. Niedorp covers an area of approximately 86 square kilometers. It is
located in the northern part of North Holland and is known for its historic buildings and
beautiful countryside. In the western of Niedorp, the fields do not have such a regular
pattern, and the edges between the fields are blurry, making them difficult to be identified.
Moreover, the google imagery of these cities are from different time periods. Although

https://www.nationaalgeoregister.nl/geonetwork
https://www.google.com/earth
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color balancing has been applied to the synthesized imagery, color differences can still be
noticed. Thus, these experimental areas can effectively evaluate the performance of the
network. To enhance the variety of the samples, all training data were subjected to data
augmentation, including random rotation, scaling and flipping, the probability of each
augmentation strategy was set to 0.2 and the batch size of the training samples was set to 8.

2.2. Methods
2.2.1. Architecture of MLGNet

In the MLGNet network, adaptive channel fusion module (i.e., ACFM) and attention-
guided fusion module (i.e., AGFM) are designed to integrate multi-scale semantic and detail
information. As depicted in Figure 2, this architecture mainly consists of four parts: encoder,
decoder, multi-scale branches and multi-task learning scheme. The encoder mainly refers to
the architecture of ResNet34 [25], the residual block is followed by a corresponding down-
sampling layer, and the bottom layer of the encoder is input to stacked atrous convolution
module (SACM) to expand the model’s receptive field [26]. The SACM consists of four
layers of dilated convolution with a kernel size of 3 × 3, dilation factors are set to 1, 2,
4, and 8 respectively. Each decoder block contains two convolutional layers and one
deconvolutional layer. The encoder and decoder are connected through ACFM modules,
and the output features of each ACFM module are passed through a series of up-sampling
layers to the AGFM modules. In the multi-scale branches, the AGFM module is used
to guide the network to supplement edge details layer by layer. The multi-task learning
scheme (i.e., distance task, edge task and segmentation task) are added to the end of the
network to improve its generalization.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 23 
 

 

a characteristic of dense distribution, and the size of them is relatively small. Due to reso-
lution limitations, the edges between these fields may appear blurry or less defined. Wier-
ingermeer covers an area of approximately 165 square kilometers. It is known for its agri-
cultural industry. In Wieringermeer, the agricultural fields present a fairly regular appear-
ance, and the scale is relatively large. Niedorp covers an area of approximately 86 square 
kilometers. It is located in the northern part of North Holland and is known for its historic 
buildings and beautiful countryside. In the western of Niedorp, the fields do not have 
such a regular pattern, and the edges between the fields are blurry, making them difficult 
to be identified. Moreover, the google imagery of these cities are from different time peri-
ods. Although color balancing has been applied to the synthesized imagery, color differ-
ences can still be noticed. Thus, these experimental areas can effectively evaluate the per-
formance of the network. To enhance the variety of the samples, all training data were 
subjected to data augmentation, including random rotation, scaling and flipping, the 
probability of each augmentation strategy was set to 0.2 and the batch size of the training 
samples was set to 8. 

2.2. Methods 
2.2.1. Architecture of MLGNet 

In the MLGNet network, adaptive channel fusion module (i.e., ACFM) and attention-
guided fusion module (i.e., AGFM) are designed to integrate multi-scale semantic and 
detail information. As depicted in Figure 2, this architecture mainly consists of four parts: 
encoder, decoder, multi-scale branches and multi-task learning scheme. The encoder 
mainly refers to the architecture of ResNet34 [25], the residual block is followed by a cor-
responding down-sampling layer, and the bottom layer of the encoder is input to stacked 
atrous convolution module (SACM) to expand the model’s receptive field [26]. The SACM 
consists of four layers of dilated convolution with a kernel size of 3 × 3, dilation factors are 
set to 1, 2, 4, and 8 respectively. Each decoder block contains two convolutional layers and 
one deconvolutional layer. The encoder and decoder are connected through ACFM mod-
ules, and the output features of each ACFM module are passed through a series of up-
sampling layers to the AGFM modules. In the multi-scale branches, the AGFM module is 
used to guide the network to supplement edge details layer by layer. The multi-task learn-
ing scheme (i.e., distance task, edge task and segmentation task) are added to the end of 
the network to improve its generalization. 

 
Figure 2. Illustration of the MLGNet architecture. 

(1) Adaptive channel fusion module 

Figure 2. Illustration of the MLGNet architecture.

(1) Adaptive channel fusion module

The ACFM Module is mainly inspired by the Channel Attention Network [27]. The
structure of the ACFM is shown in Figure 3. The Global Average Pooling (GAP) is employed
to compress the encoder and decoder features in the spatial dimension. The compressed
features have a global receptive field, meaning that the entire spatial information on a
channel is compressed into a single global feature. Assuming that the output feature of the
l-th layer from the encoder is U(l)

e ∈ RH×W×B, and the output feature of the l′-th layer from
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the corresponding decoder is U(l′)
d ∈ RH×W×B, the compressed encoder feature z(l)e ∈ R1×B

and decoder feature z(l
′)

d ∈ R1×B can be formulated as:

z(l)e =
1

H ×W

H

∑
i=1

W

∑
j=1

U(l)
e (i, j) (1)

z(l
′)

d =
1

H ×W

H

∑
i=1

W

∑
j=1

U(l′)
d (i, j) (2)
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To learn more compact features, a fully connected network is used to capture the

non-linear relationships between channels in z(l)e and z(l
′)

d . The compact features can be
articulated by the following mathematical notation:

F (l)
e = ReLU

(
θ
(l)
a1 ×

(
z(l)e

)T
)

(3)

F (l′)
d = ReLU

(
θ
(l)
a1 ×

(
z(l
′)

d

)T
)

(4)

where θ
(l)
a1 ∈ Rd×B represents the parameters of the first fully connected layer in the

adaptive fusion module corresponding to the l-th layer encoder. ReLU(·) represents
a non-linear activation function, and T denotes the transpose symbol used for matrix
transposition. The fully connected network is a self-encoding structure, and the learning of
features primarily benefits from the intermediate hidden layer. This layer compresses the
dimensions to d = B/r using a scaling factor r, and then restores them back to the original
dimension B. Finally, the Softmax function is used to compute the weights connecting the
encoding layer and the decoding layer:

W (l)
e =

eθ
(l)
a2 ×F

(l)
e

eθ
(l)
a2 ×F

(l)
e + eθ

(l)
a2 ×F

(l′)
d

(5)

W (l′)
d =

eθ
(l)
a2 ×F

(l′)
d

eθ
(l)
a2 ×F

(l)
e + eθ

(l)
a2 ×F

(l′)
d

(6)

where θ
(l)
a2 ∈ RB×d represents the parameters of the second fully connected layer in the

adaptive fusion module corresponding to the l-th layer encoder. The fusion module
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combines the features of the encoder and decoder adaptively using weight indicators. As a
result, the fused feature V(l) ∈ RH×W×B can be expressed as:

V(l) =W (l)
e ·U

(l)
e +W (l)

d ·U
(l′)
d (7)

(2) Attention-guided fusion module

Shallow networks can capture low-level spatial details but tend to lose semantic
information, while deep networks are just the opposite. Existing studies have shown
that there are specific differences in details among features of different scales, auxiliary
supervised tasks encourage the network to learn hierarchical representations, leading to
better capture these differences [28,29]. For this purpose, the AGFM module is designed
to better fuse semantic and detail information of different scales, which adopts a forward
learning mechanism from deep to shallow layers to capture the lost detail information.
To be more specific, we use bottom-up predictions to gradually erase high-confidence
non-edge regions layer by layer, and steer the network towards learning complementary
features by using ground-truth masks, which are often distributed around the edges of
the targets.

The network architecture of the AGFM is visualized in Figure 4, assuming that the
fused feature from the l-th layer encoder and l′-th layer decoder is denoted as
V(l) ∈ RH×W×B, the segmentation prediction from adjacent bottom layers can be de-
noted as Q(l+1) ∈ R H

2 ×
W
2 ×1, which is a non-probabilistic logit. We generate the attention

weight featureW (l+1)
u based on Q(l+1)

u ∈ RH×W×1, which is upsampled by a factor of 2
using bilinear interpolation,W (l+1)

u is obtained by performing edge transformation with
the segmentation probability Q(l+1)

u . Supposing the predicted segmentation probability is
P(l+1)

u . The edge transformation can be written as:

W (l+1)
u = 1− 2×

∣∣∣P(l+1)
u − 0.5

∣∣∣ (8)
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It is evident from the Equation (8) that when the segmentation probability of a pixel
is close to 0.5, it indicates an unreliable segmentation prediction. In this case, the weight
value tends towards 1. On the other hand, when the segmentation probability of a pixel is
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close to 0 or 1, it indicates a high confidence in the prediction, and the weight value tends
towards 0. The fused feature V̂(l) ∈ RH×W×B can be described as:

V̂(l) =W (l+1)
u ×V(l) (9)

The unreliable predictions are usually found in the edge regions. We perform weight
fusion on adjacent shallow features and use the fused feature V̂(l) to perform convolution
to obtain the segmentation prediction Q(l)

v . To compensate for the lost detailed information
in the high-level features, we execute addition operation on Q(l)

v and Q(l+1)
u , and use the

ground-truth mask Ys ∈ RH′×W ′ to supervise the multi-level side outputs. Therefore, the
total loss of AGFM can be formulated as:

Lguide =
L

∑
l=1

lwce

(
B
(

P(l)
)

, Ys

)
+ ljac

(
B
(

P(l)
)

, Ys

)
(10)

where lwce(·) represents the weighted cross-entropy loss [30], which is advantageous for
semantic segmentation that involve class imbalance. ljac represents the jaccard loss [31],
and B(·) represents the bilinear interpolation function. The AGFM is a deep supervision
learning mechanism that not only accelerates the convergence of the model, but also
enhances the model’s representation ability.

2.2.2. Multi-Task Learning Scheme

In general, the agricultural fields extraction often adopts a single segmentation task.
Although this learning method can achieve acceptable results, which ignores other infor-
mation related to segmentation, and it is a formidable challenge to substantially improve
the accuracy [32]. The multi-task learning can explore the potential relationships between
different tasks, this scheme helps the network learn more general shared representations,
and improves the network’s generalization performance and inference speed. It has been
widely used in agricultural field segmentation [33,34]. To improve the accuracy of seg-
mentation, three learnable tasks (distance task, segmentation task and edge detection task)
are added to the end of the network. The distance map represents the nearest distance
from any pixel in the image to the target boundary. As a point moves away from the
target edge, the distance value increases, and as it approaches the edge, the distance value
approaches 0. Based on the learned distance map, we can not only obtain the boundary
information of the target, but also obtain more connected segmentation regions. Therefore,
the learnable distance features are used as a shared carrier for segmentation and edge
detection tasks. The accuracy of region segmentation and edge detection significantly
affects the learning of distance features, while distance features can improve the accuracy
of semantic segmentation and edge detection. This scheme ensures the correlation between
tasks to enhance their performance.

(1) Signed distance loss

To achieve flexible conversion between distance maps and segmentation maps (or edge
maps), a Signed Distance Function (SDF) is employed for distance map calculation [35].
The SDF is defined as follows:

D
(→

m
)
=


inf
→
y∈Ω

||→m−→n || →
m ∈ Ωin

−inf
→
y∈Ω

||→m−→n || →
m /∈ Ωin

(11)

where
→
m represents an anchor point within the region, and

→
n represents an arbitrary point

on the boundary. When
→
m is inside the contour, the distance value is positive, and when m

is outside the contour, the distance value is negative. Deep learning possesses excellent
representation learning capabilities, enabling it to easily learn the mapping relationship
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of distance. In this mapping relationship, the distance map is uniformly encoded into a
one-hot format, and the encoded distance feature can be learned through classification.
To better adapt the network’s learning, the truncated SDF with an integer threshold τ is
adopted to calculate the distance of ground-truth, and these distance values are converted
into non-negative integers in a special way. Thus, the converted distance Dτ ∈ RH′×W ′×2τ

can be calculated using the following formula:

Dτ = (D + τ)× 1(−τ≤D≤0) + (D + τ − 1)× 1(0<D≤τ) + (2τ − 1)× 1(D>τ) (12)

where D ∈ RH′×W ′ representation signifies the signed distance map, 1(·) represents a hard
confidence threshold function. The value corresponds to 1 when the expression is satisfied,
and 0 otherwise.

The estimation of encoded distance can be viewed as a pixel-level classification task.
However, due to significant differences in the number of pixels between the interior
and exterior of the target, the distribution of truncated distance values becomes highly
imbalanced. To mitigate this imbalance, the weighted cross-entropy is also employed as
the loss function:

Ldists = lwce
(

Ĥτ , Hτ

)
(13)

where Hτ is the one-hot encoding of Dτ , and Ĥτ represents the predicted probabilities.
To ensure the accuracy of the edge positions in the predicted distance map, a heaviside
function [36] is used to convert the predicted distances into edge probabilities. Since Ĥτ

represents the predicted probabilities of distances, before performing the edge transforma-
tion, the predicted probabilities need to be converted into the expected distances using the
following formula:

E
(

D̂τ

)
=

2τ−1

∑
k=0

k× Ĥk
τ (14)

where Ĥk
τ represents the probability of the predicted label belonging to the k-th class. It can

be seen from the Equation (14) that the expected distance is calculated by taking a weighted
average of the predicted probabilities for the classification labels. Therefore, the probability
of the margin can be represented using the following Heaviside transform.

H
(
E
(

D̂τ

))
= 2− 2× tanh

(∣∣E(D̂τ

)
− τ

∣∣/ε
)

(15)

where ε represents a hyperparameter used to adjust the distribution of the edge probability.
The Equation (15) makes a simple adjustment to the original Heaviside function, where
the margin probability approaches 1 when E

(
D̂τ

)
→ τ , otherwise the function rapidly

increases to 0. This function has the desirable property of converting the truncated distance
function into an edge probability. To ensure the accuracy of the edge positions in the
predicted distance map, the following formula is used to constrain the margins of the
distance map:

Ldiste = lsmoothL1
(
H
(
E
(

D̂τ

))
,H(E(Dτ))

)
(16)

where lsmoothL1(·) represents the smooth L1 loss function [37]. Therefore, the final loss with
respect to the distance map can be expressed as:

Ldist = λdist1·Ldist_s + λdist2·Ldist_e (17)

where λdist1 and λdist2 represent hyperparameters used to balance the various loss terms.

(2) Segmentation loss

The segmented image is obtained through convolutional operations based on the
distance features. The segmentation loss function is calculated in the same way as
Equation (10), it can be expressed as:

Lseg_s = lwce
(

P̂s, Ys
)
+ ljac

(
P̂s, Ys

)
(18)
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where P̂s ∈ RH′×W ′ represents the final predicted segmentation probability. The boundary
information of the segmentation is obtained from the predicted segmentation map using
spatial gradients. The gradient convolution kernel uses the Laplacian operator. A consis-
tency constraint is added between the spatial gradient of the segmentation probability and
the true gradient to ensure the accuracy of the edges. The Smooth L1 loss is used as the
regularization term, and its expression is as follows:

Lseg_e = lsmoothL1
(
∇P̂s,∇Ys

)
(19)

where ∇ represents the Laplace operator. The complete segmentation loss can be
formulated as:

Lseg = λseg1·Lseg_s + λseg2·Lseg_e (20)

where λseg1 and λseg2 represent hyperparameters used to balance the various losses.

(3) Buffered edge Loss

Differing from conventional edge loss, a buffered distance is introduced to the edge
as the target for network learning. When the absolute value of the distance is less than or
equal to the buffer threshold η, it indicates the edge region, otherwise, it is considered a
non-boundary region. Smaller distance values indicate closer proximity to the edge.

Similarly, the distance map with one-hot format is more readily accepted by the
classifier. The buffered distance can be computed using the following formula:

Dη = |D| × 1(|D|≤η) + η × 1(|D|>η) (21)

The edge detection task is considered as an optimization of the buffer distance loss.
To alleviate the issue of loss imbalance, the weighted cross entropy is used for bound-

ary distance loss, and the expected transformation (i.e., edge distance) is added to the
regularization constraint term. Its formula is defined as follows:

Ledge_d = lwce
(

Ĥη , Hη

)
(22)

Ledge_e = lsmoothL1
(
E
(

D̂η

)
, E
(

Dη

))
(23)

where Hη represents the true boundary distance, which is the one-hot encoded format of
Dη , and Ĥη represents the predicted probability. Therefore, the final loss with respect to
the distance map can be expressed as:

Ledge = λedge1·Ledge_d + λedge2·Ledge_e (24)

where λedge1 and λedge2 denote hyperparameters used to balance the losses.
The above formulas involve many hyper-parameters, and it is difficult to find the

optimal value unless we try many manual adjustments. To reduce manual parameter
setting, a multi-task learning method is used to adaptively adjust the balanced parameters
in all loss terms [38], which is a measure of the importance of each task by homoscedastic
uncertainty, and the optimization process considers maximizing the Gaussian likelihood
function and introduces the uncertainty noise parameters σ. The objective function can be
written as:

L = ∑k
1

2σ2
k
·Lk + log

(
∏k σk

)
(25)

where Lk denotes the loss term corresponding to λk, σk > 0 means the noise parameter to be
learned, σk can be understood as a learnable parameter corresponding to λk, the parameter
σk can be optimized by minimizing the formula so that the tasks can be balanced. It can be
seen from the Equation (25) that the homoscedastic uncertainty for this task increases as
σk increases, and small weights are assigned to corresponding tasks that are hard to learn
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due to high noise. This type of multi-task learning approach can significantly decrease the
reliance on parameters and enhance the network’s automated learning ability.

2.2.3. Dividing Fields with Broken Edges

Although semantic segmentation can obtain complete field information, the detection
results for fuzzy edges are often interrupted, resulting in multiple sub-regions being merged
together. To obtain refined fields, a regional edge lines connectivity algorithm (ReCA) is
proposed, in which we divide the field units into several sub-regions using interrupted
edge lines. Some of the edge lines are broken but can still be used, which can be joined
or extended so that they can form closed sub-regions. To ensure the continuity of the
edge lines, some perceptual rules are developed in the ReCA algorithm. According to
Gestalt laws [11,39], humans are capable of organizing and arranging the position of objects
in vision, and perceiving wholeness and continuity of the environment. Therefore, the
designed method also follows some rules of the Gestalt laws when constructing sub-regions,
including proximity, continuity, and closure.

Before connecting the edge lines, the whole external contours need to be extracted from
the segmented probability map. Firstly, the initial segmentation mask is obtained using
the morphological segmentation algorithm [40]. Then, the border following algorithm is
applied to detect the external contours of all fields. [41]. Finally, the extracted contours are
fused with an outer buffer to suppress the elongated edges, and the original boundaries are
restored utilizing an inner buffer. Although these edges are isolated or interrupted, they
can still be used to split the fields. In the ReCA algorithm, several rules are developed to
connect and extend these broken edge lines to form closed sub-regions. Note that these
edge lines are the skeleton lines of the edge, and the internal edge lines require individual
processing for each field, rather than calculating all fields together.

Rule 1: For some shorter edge lines, forcing closure or connection may result in
erroneous results, so it is necessary to remove these lines. Figure 5a shows an unbranched
edge line AB. If its length satisfies the condition len(AB) < ε, then AB is removed.
Figure 5b shows a branched edge line that is decomposed into several unbranched lines
(OA, OB and OC) based on the crossing point O. If the decomposed line OA satisfies the
condition len(OA) < ε, then OA is removed. Here, the length refers to the number of pixels
in a connected edge line.

Rule 2: It is clear from the principle of continuity that people tend to perceive continu-
ous objects rather than discrete forms. To maintain the continuity of the edge, we connect
two approximately collinear edge lines and extend the edge lines in the direction of the
endpoints to the outer boundary of the field, forming a closed sub-region. Collinearity
is determined based on the angle between the broken lines and the distance from the
endpoints to the line on which they lie. Figure 5c shows a set of isolated edge lines (AB
and CD). Assuming that the minimum angle between AB and CD is α, the maximum
distance from break points A and B to the line on which CD lies is dAB→CD, and the
maximum distance from break points C and D to the line on which AB lies is dCD→AB.
If α < ϑ & max(dCD→AB, dAB→CD) < ε, then AB and CD are considered collinear, where
collinear means that they share the same equation of a straight line. The break point is
determined by counting the number of 8-neighborhood on the skeleton line with a value of
1. If the number of pixels is equal to 1, then the point is a break point.

Rule 3: The principle of closure shows that the visual system automatically tries to
close up open graphics. Figure 5d represents an unbranched edge line. Suppose all points
on the contour line AD have a maximum distance dAD→L to the fitted straight line L. If
dAD→L < ε, the edge line AD can be considered as a straight segment. The edge line is
extended to the outer boundary along the direction of the straight segment. Otherwise, we
calculate the directions of points A and D based on their neighboring points and extend
them to the outer boundary. Figure 5e represents a branched edge line. The branch line
is decomposed into multiple unbranched lines at the branch point O, and then extend
the contour lines in the same manner as in Figure 5d. The branch point is determined
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by counting the number of 8-neighborhood on the skeleton line with a value of 1. If the
number of pixels is greater than or equal to 3, then the point is a branch point.
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Rule 4: According to the proximity principle, the perceptions of objects in a perceptual
field are grouped together according to the proximity. Figure 5f illustrates two adjacent
breakpoints (B and C), if the distance dBC between points B and C satisfies dBC < ε, the two
points can be joined directly, here ensuring that the breakpoints are non-connected.
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Rule 5: Figure 5g,h illustrate a complex situation concerning multiple edge lines. In
Figure 5g, the extension lines of edge lines AB and EF intersect at point M. It should be
noted that there is also an intersection point N between EF and CD. However, since there
is no edge line between M and N, and N is not adjacent to any other breakpoints along
the direction of FE, N needs to be removed. Given the proximity of M and E, it is essential
to maintain their connection, while ensuring the interconnectivity between AB and EF, so
they are no longer extended after the intersection. In Figure 5h, as both M and N have
neighboring breakpoints A and B along the AB direction, it is necessary to preserve both
intersection points M and N. Moreover, since point N establishes a connection between AB
and CD, so they are no longer extended after the intersection.

To provide a clearer description of the ReCA algorithm, a detailed step-by-step process
is provided. The first step is to traverse each whole field and obtain its internal skeleton
lines, then connect the closer breakpoints according to Rule 4. To avoid interference with
the results, some short lines have been removed according to Rule 1. After that, we detect
the break points of the skeleton lines and calculate the equation for the corresponding
points. The breakpoints are grouped based on collinearity, and the intersection points are
calculated between non-collinear equations. The collinearity here is based on Rule 2. The
second step is to sort all points within the same group along a common direction, and then
delete pseudo-intersection points according to Rule 5. If the intersection points are inside
the field, they will be inserted into the corresponding group. If the points on either side of
the sorted sequence are not intersection points, the points on both sides need to be extended
to the boundary according to Rule 3. Otherwise, only connect the sorted points without
extending the line. Finally, the whole field is divided into several sub-regions based on the
connected lines.

3. Results
3.1. Experimental Settings

(1) Network architecture

Our network design was inspired by the DLinkNet architecture, with the key difference
being that the encoding layer consisted of five residual modules with channel sizes of 32,
64, 128, 256, and 512, respectively. The first residual block was set to 1, while the remaining
blocks followed the ResNet34 configuration with numbers of 3, 4, 6 and 3. The ACFM
module used a uniform scaling factor of 8, and the output dimensions of the features from
the four branches were all set to 32.

(2) Parameter settings

For all experiments, a momentum-based SGD optimization algorithm with a “poly”
learning rate decay strategy was adopted to optimize the network [17], in which the initial
learning rate, decay coefficient, total epochs and max epoch were set to 0.01, 0.9, 300 and
300 respectively. In the loss term, the distance threshold τ and the edge buffer threshold
η were set to 32 and 8 respectively. In the ReCA algorithm, the distance error ε and angle
error ϑ were set to 10 and 15 uniformly.

(3) Evaluation metric

To better evaluate segmentation performance, F1 score, intersection over union (IoU),
recall and precision were used as evaluation metrics. Moreover, a buffer zone analysis
was carried out on the edges of the fields, and the performance of the splitting edges was
assessed using completeness (Com), correctness (Cor) and quality (Qua) [42], where Com
and Cor represent the recall and precision of the edge buffer zones, respectively, and Qua
is a comprehensive metric that encompasses both Com and Cor. Finally, the number of
fields was used as an additional indicator, which evaluated the difference in the quantity of
actual parcels and segmented parcels.
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3.2. Agricultural Fields Extraction

Figure 6 shows the extraction results of agricultural fields. The composite map is a false-
color representation created by overlaying distance feature, edge feature, and segmentation
feature. The extracted fields are vectorized polygons using the ReCA algorithm. From
a global perspective, it can be seen that the structures of extracted fields are complete
through comparison with the imagery, and many small fields have been successfully
segmented, the extracted fields exhibit high similarity with the ground truth map in terms
of details. It is worth noting that the composite map is created by truncated distance
map, buffered edge map and segmentation probability map, in which the semantic and
detailed information of agricultural fields are more highlighted. To be more specific,
it indicates that both large-scale and small-scale fields are capable of capturing edge
details and holistic semantic information. The proposed network effectively integrates
features encompassing a range of scales, leveraging the advantages offered by features
at different scales. Specifically, the AGFM module is utilized to enhance the assimilation
of complementary information, the network can be constrained and guided by different
tasks, which facilitates the dissemination of information and enables the learning of more
robust representations.
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From a local perspective (Figure 7), it is evident that there exists a certain correlation
and complementarity among edge detection, distance estimation, and segmentation tasks,
the segmentation map can obtain relatively complete fields, mainly because using the
distance map as a carrier can ensure the integrity of the fields structure. Upon careful
observation, edge detection is more capable of highlighting the edge details between
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different fields, whereas the segmentation task primarily focuses on semantic information,
potentially overlooking some faint intricacies. Hence, edge detection holds a relative
superiority in highlighting edge details. Actually, it is evident that the significant edges
between fields have been effectively extracted. However, some hard-to-discern edges
are difficult to be fully captured, these edges are still interrupted. This is mainly due to
the complexity of the scene, which weakens some texture features and makes it difficult
to obtain continuous edges. In this scenario, it is challenging to split the merged fields
no matter how the segmentation threshold is chosen. Actually, these broken edges are
still very useful, as they can obtain connected fields based on the direction of the broken
skeleton lines.
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Figure 8 displays the final results using the ReCA algorithm. The whole fields needed
to be obtained based on the segmentation mask with special topology processing, this
way involved buffering only the external contours to merge some elongated edges. The
potential benefit is to acquire whole fields without considering internal noise, and our
primary focus was on how to effectively employ the available edge lines for segmenting
the fields. The final processing results are shown in the white region in Figure 8b. To obtain
reliable split lines, the skeleton lines were extracted from the buffered edges using a lower
threshold (i.e., one-third of the buffered edge distance). This approach took advantage
of the fact that values closer to the center of the buffered edge were lower, which helped
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filter out a greater amount of noisy edges. The red lines in Figure 8b represented the final
extracted skeleton lines. From Figure 8c, it can be clearly seen that many small fields had
been divided, and they matched the actual parcels very well. Additionally, the algorithm
had also detected some undivided fields that were not delineated in the ground truth. After
verification, it was found that the detected results were correct. This indicated that the
ground truth also had some omissions due to manual interference.
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Table 1 displays the evaluation results from three different cities. With the implemen-
tation of ReCA, the Com demonstrated improvements of approximately 7%, 6.5%, and
6.5%, respectively. A high value of Com indicates that the model is better at capturing true
positives located at the edge regions, while the Qua simultaneously exhibited increases of
around 6%, 6%, and 5%. This also indicates that the proposed method helps to improve the
overall accuracy of the edges. A higher Cor signifies that the model can accurately detect
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true positives located at the edges, and it is noticeable that there is a slight decrease in the
Cor metric from Table 1. This suggests that the initial segmentation edges have higher
accuracy. However, the refined results involved connecting or extending edges, which may
introduce some errors when supplementing the edges. Nonetheless, the overall change in
the Cor metric remains negligible. It is also observed that the number of extracted fields
(Pre-N) was 1858, 3385, and 1602, while the corresponding reference counts (Ref-N) were
1750, 3367, and 1513, indicating a very small discrepancy in quantity. From a numerical
perspective, the results of Pre-N exceeded the Ref-N by 50, 70, and 80, respectively. Upon
comparing the Google image, it was discovered that some edges were missing in the
ground truth map, resulting in some fields being merged together. The reason for this phe-
nomenon is twofold: firstly, there were some omissions in the manual annotation process,
and secondly, the data source used was cloud-free synthesized imagery from 2019–2020,
which introduced a temporal difference between the ground truth and the imagery. Taken
overall, these results demonstrate that the ReCA algorithm is indeed capable of dividing
merged fields. The method combines the advantages of semantic segmentation and edge
detection to achieve more precise delineation.

Table 1. Accuracy evaluation of field edges.

Cities
wo/ReCA w/ReCA

Ref-NCom% Cor% Qua% Pre-N Com% Cor% Qua% Pre-N

Paulowna 68.46 82.93 60.09 1114 75.64 80.75 65.97 1858 1750
Wieringermeer 62.76 79.12 53.49 1429 69.29 78.34 59.83 3385 3367

Niedorp 65.00 79.32 55.64 942 71.45 78.39 61.00 1602 1513

wo/ReCA means the result without ReCA. w/ReCA means the result with ReCA.

3.3. Comparative Analysis

To assess the efficacy of the MLGNet, the study compared some advanced seman-
tic segmentation methods, including ResUNet [43], DLinkNet [26], ResUNet-a [18] and
BsiNet [21]. To ensure the fairness of the experiment, all comparison methods used the
same optimization algorithm, batch size, and common samples. Table 2 summarized the
evaluation metrics of different methods. The MLGNet achieved the highest IoU (i.e., 91.27%,
93.05%, and 89.76%) and F1 score (i.e., 95.44%, 96.40%, and 94.61%) in three cities. ResUNet-
a and BsiNet had slightly lower IoU compared to MLGNet, which indicated that the net-
work had a relatively large overlap between prediction and ground truth while achieving a
good balance in predicting both positive and negative instances. Similarly, the proposed
network achieved the highest recall of 96.98%, 97.24%, and 96.54%, respectively, indicating
that it could better identify true positives. In terms of precision, DLinkNet outperformed
MLGNet by approximately 0.9%, 0.1%, and 0.3%, respectively. Nevertheless, the pro-
posed method continued to demonstrate superior accuracy compared to other approaches.
Additionally, it exhibited significant potential in the extraction of agricultural fields.

To assess the variations among different methods, the partial segmentation images of
different methods are shown in Figure 9. It can be seen that MLGNet performs better in
learning agricultural features, the non-edge noises are effectively suppressed, and the edge
details are more pronounced. The proposed method produces more complete segmentation,
capturing both small elongated fields and large fields. From the image comparison, it is
noticeable that the blue regions are predominantly located in areas with indistinct edges,
making it challenging to separate these fields through semantic segmentation. In addition,
from the third row in Figure 9, it can be seen that for some special types that are not
easily distinguished, such as grasslands and fields, the blue area represents the extracted
fields. In fact, these land types should be classified as grasslands, and this method can
effectively improve this phenomenon, indicating that our method has high discriminability
for non-fields. This is primarily due to the guiding effect of the AGFM module, which
facilitates the network in learning complementary spatial details layer by layer. In addition,
the multi-task learning method also helps the network to learn more refined features. These
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results indicate that the proposed network framework and multi-task learning method are
very effective.

Table 2. Accuracy evaluation of segmentation fields with different methods.

Cities Methods
Evaluation Metrics (%)

IoU F1 Recall Precision

Paulowna

ResUNet 85.47 92.17 90.08 94.36
DLinkNet 86.26 92.62 90.50 94.84
ResUNet-a 89.39 94.40 95.76 93.08

BsiNet 87.01 93.05 91.84 94.31
MLGNet 91.27 95.44 96.98 93.94

Wieringermeer

ResUNet 90.71 95.13 94.78 95.49
DLinkNet 91.29 95.45 95.20 95.70
ResUNet-a 91.86 95.69 96.71 94.70

BsiNet 90.19 94.83 94.00 95.68
MLGNet 93.05 96.40 97.24 95.58

Niedorp

ResUNet 86.59 92.81 92.82 92.80
DLinkNet 87.05 93.07 93.09 93.05
ResUNet-a 88.11 93.68 95.99 91.49

BsiNet 87.60 93.39 94.26 92.53
MLGNet 89.76 94.61 96.54 92.75
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Remote Sens. 2023, 15, 3934 18 of 22

4. Discussion
4.1. Module Convergence Analysis

To examine the impact of each module on the convergence of the network, we evalu-
ated the variation of evaluation metrics with epoch on the validation set. Figure 10 presents
the statistical results for different modules. The baseline indicates the statistical results of
the network without the attention fusion module and multi-task learning. Note that, in
this case, the objective function only consists of cross-entropy and jaccard losses. wo/MLS
represents the scenario without multi-task learning scheme, where two attention fusion
modules are added to the network. w/MLS represents the complete network structure
with multi-task learning scheme. Furthermore, it can be noted that as the number of epochs
increases, there is a gradual improvement in the IoU and F1 score on the validation set.
When the number of epochs reaches approximately 100, the metrics stabilize, indicating
the network’s convergence. It can be inferred from Figure 10 that the baseline undergoes
oscillations in the early phases of training. The frequency of oscillations in wo/MLS is
noticeably lower, and the indicator values are higher than those of the baseline, suggesting
that the proposed network architecture can speed up the convergence rate of the network
and enhance its stability. This is primarily achieved through the guided attention module,
which employs a form of deep supervision to assist in learning better representations for
each branch, thereby boosting the model’s performance. Taking a comprehensive view,
MLS achieves the fastest convergence and highest accuracy on the validation set. The
multi-task learning can enhance model performance by exploiting the similarities between
different tasks. This implies that the same feature extractor can be utilized to process
various tasks, thereby improving the model’s generalization capability.
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4.2. Component Effectiveness Analysis

To better evaluate the performance of each component, we conducted extensive
analyses on each component in three areas. The DLinkNet architecture was used as
the baseline, which is a classic encoder-decoder network, and the results are shown in
Table 3. When introducing two fusion modules (i.e., ACFM and AGFM), IoU and Qua
showed significant improvements, in which AGFM contributed more to the accuracy
improvement, the IoU of the three areas increased by approximately 2.5%, 0.8% and 1.9%,
while the corresponding Qua improved by approximately 4.1%, 2.1%, and 2.7%, respectively.
This is mainly because AGFM can learn complementary details through a progressive
learning approach, thereby guiding the network to enhance regions of the targets. The MLS
module also proved helpful in enhancing the network’s performance. More specifically,
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this approach facilitated the network in learning more generalized representations. In
addition, the implementation of the ReCA resulted in a significant improvement in the
Qua metric. However, the overall improvement in the IoU metric was not very apparent.
This is primarily because ReCA is an edge connectivity method that repairs broken lines,
thus having a weak effect on the IoU of complete fields, which is mainly determined by
segmentation accuracy. The experimental results confirm that the proposed modules have
been helpful in improving accuracy.

Table 3. Accuracy evaluation with different components.

Cities
Components Metrics

ACFM AGFM MLS ReCA IoU/% Qua/%

Paulowna

× × × × 86.26 52.03√ × × × 87.14 54.21
√ √ × × 89.62 58.35
√ √ √ × 91.27 60.09
√ √ √ √ 92.13 65.97

Wieringermeer

× × × × 91.29 50.19√ × × × 91.52 50.24
√ √ × × 92.36 52.37
√ √ √ × 93.05 53.49
√ √ √ √ 93.71 59.83

Niedorp

× × × × 87.05 50.59√ × × × 87.14 50.81
√ √ × × 89.08 53.47
√ √ √ × 89.76 55.64
√ √ √ √ 90.35 61.00

4.3. Uncertainty in Dividing Fields

Although most of the divided fields are consistent with the ground truth, there are still
some uncertain factors that can affect the final results. The first row in Figure 11 highlights
the striking similarity in texture features between these elongated fields and the vegetation
near the river, and the scarcity of samples makes it difficult for the algorithm to accurately
distinguish between them, resulting in a lack of completeness in the segmentation results.
The second row in Figure 11 presents another situation where a false edge is detected
by the network, leading to the division of a whole field into two separate sub-regions.
Although these erroneous edges are removed using a length threshold, their length exceeds
the fixed threshold, resulting in them being considered reliable. However, this situation is
not common. From the third row of Figure 11, it can be observed that there is an instance
of omission where certain edges are not included in the segmentation results, where a
blurry edge is visible within the red box in the segmentation map. However, due to a more
confident threshold applied during skeleton extraction from the buffered edge, it fails to be
detected. While a more confident threshold can reduce noise edges, it may also remove
some normal results. From the fourth row in Figure 11, a deviation in the direction angle is
shown. A slight tilt can be observed in the extended edge line when compared to the actual
image. The main reason for this is that the initial skeleton line has a small length, resulting
in high uncertainty in its direction. Overall, the proposed method satisfactorily handles the
majority of cases and successfully detects many sub-regions that were not manually labeled.
Therefore, our method exhibits significant potential and application value in agricultural
fields extraction.
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5. Conclusions

This study proposes a method for segmenting agricultural fields, in which MLGNet
shows significant advantages in segmentation and edge detection in terms of convergence
and accuracy. From the segmentation results, it can be seen that the noises in non-edge areas
can be effectively suppressed, and edge details are more prominent. These performance
improvements are primarily attributed to the multi-scale attention fusion module and the
multi-task learning scheme. When segmenting fields, we fully leverage the advantages
of integrating edge detection and segmentation tasks, which allows us to successfully
divide merged fields into multiple sub-fields. A comparison with the initial segmentation
results shows that our results that are closer to ground truth in multiple indicators. Fur-
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thermore, the proposed method is capable of delineating potential fields that were not
manually labeled, demonstrating the value and significance of this research. Although the
proposed method successfully extracted most of the sub-fields, there are still instances of
erroneous results.

In the future, the related work will continue to be explored from the following two
aspects: (1) The learning-based approach of edge direction will be prioritized to achieve
edge connectivity. (2) Time series data will be introduced for crop identification, which can
further enhance the practicality and application value of this work.
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