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Abstract: In recent years, the delicate balance between economic development and ecological en-
vironment protection in ecologically fragile arid areas has gradually become apparent. Although
previous research has mainly focused on changes in ecological service value caused by land use,
a comprehensive understanding of ecology–economy harmony and ecological compensation re-
mains elusive. To address this, we employed a coupled deep learning model (convolutional neural
network-gated recurrent unit) to simulate the ecological service value of the Wuwei arid oasis over
the next 10 years. The ecology–economy harmony index was used to determine the priority range of
ecological compensation, while the GeoDetector analyzed the potential impact of driving factors on
ecological service value from 2000 to 2030. The results show the following: (1) The coupled model,
which extracts spatial features in the neighborhood of historical data using a convolutional neural
network and adaptively learns time features using the gated recurrent unit, achieved an overall
accuracy of 0.9377, outperforming three other models (gated recurrent unit, convolutional neural
network, and convolutional neural network—long short-term memory); (2) Ecological service value
in the arid oasis area illustrated an overall increasing trend from 2000 to 2030, but urban expansion
still caused a decrease in ecological service value; (3) Historical ecology–economy harmony was
mainly characterized by low conflict and potential crisis, while future ecology–economy harmony
will be characterized by potential crisis and high coordination. Minqin and Tianzhu in the north and
south have relatively high coordination between ecological environment and economic development,
while Liangzhou and Guluang in the west and east exhibited relatively low coordination, indicating
a greater urgency for ecological compensation; (4) Geomorphic, soil, and digital elevation model
emerged as the most influential natural factor affecting the spatial differentiation of ecological service
value in the arid oasis area. This study is of great significance for balancing economic development
and ecological protection and promoting sustainable development in arid areas.

Keywords: convolutional neural network; gated recurrent unit; ecological service value;
ecological–economic harmony; driving mechanism

1. Introduction

The benefits that people derive from multiple processes and ecosystem functions can
be described as ecosystem services [1]. Driven by the growth of urban demand, land use
change has led to serious degradation of global ecosystems [2,3]. On the one hand, the
invasion of large areas of ecological land has resulted in irreversible biodiversity loss [4].
On the other hand, local climate change, the urban heat island effect, and changes in
precipitation have contributed to the decline in the Ecological service value (ESV) [5]. With
population growth and economic development, global ecosystems have been seriously
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damaged, and the imbalance between economic development and ecological environment
protection has gradually become prominent, especially in ecologically fragile arid areas [6,7].
In arid regions, characterized by harsh climatic conditions, soil salinization and alkalization,
and the sustainability of ecosystem services has always been a focus of attention [8,9]. Oasis
ecosystems play an essential role in social and economic stability and development in arid
areas, but their ecological fragility is particularly pronounced due to the low precipitation
and high evaporation rates [10,11]. Wuwei Oasis is situated in the Shiyang River Basin, an
important inland river in Northwest China’s ecologically fragile area, and its ecological
environment quality has a serious impact on the entire basin [12,13]. Therefore, focusing
on the ESV and EEH in the arid oasis area of Wuwei is of great significance for promoting
sustainable development and achieving a balance between economic growth and ecological
protection [14].

Ecological services are characterized by complex interconnections and strong scale
effects, with changes in ESV often being determined by multiple ecosystem services [15].
The benefit transfer method can not only rapidly assess the individual ecological benefits of
multiple ecosystem services but also evaluate their overall ecological benefits, and therefore,
it has been widely used in ESV evaluation [16]. However, the benefit transfer method relies
on equivalent factor coefficients to characterize the relationship between different land
use types and ESV, which is subjective. In addition, there is spatiotemporal heterogeneity
in land use distribution. Thus, it is necessary to adjust the coefficient value of multiple
ecosystem services according to the natural and socioeconomic characteristics of the area to
improve the accuracy of ESV estimates.

Assessing the impact of future land use changes on ESV and Ecology–Economy Har-
mony (EEH) can provide scientific policy recommendations for ecosystem management [17].
Li, et al. [18] employed the InVEST and SLEUTH models to evaluate the impact of land use
changes on habitat quality. However, existing models often have difficulty in reliably pre-
dicting future land use changes, leading to significant errors in evaluation results [19]. Deep
learning has recently emerged as a powerful tool for time-series object modeling, demon-
strating excellent performance in various domains [20]. It can not only extract implicit
spatial features from datasets with multiple variables to improve feature representation abil-
ity [21] but also exploit long-term time dependencies among large amounts of time-series
data to establish accurate feature maps [22]. Among the various deep learning models,
convolutional neural networks (CNN) have been extensively utilized in the dynamic simu-
lation of time-series data. Zhai, et al. [23] fused CNN and vector-based cellular automata to
extract high-level features of irregularly shaped cells in the neighborhood and simulate
land use changes, achieving higher simulation accuracy than other models such as Random
Forest and Artificial Neural Networks. Qian, et al. [24] also validated the effectiveness of
deep learning models such as CNN applying land use data from Shanghai from 2000 to
2015. However, existing studies exploring neighborhood effects in transformation rules
have only considered the extraction of spatial features in historical data dimensions, ignor-
ing the significant long-term time dependencies in neighborhood interactions, resulting
in low simulation accuracy [25]. A gated recurrent unit (GRU) network is a deep learning
model used to extract time-dimension features. Compared with traditional recurrent neural
networks, it can improve memory capacity and training performance and better solve
overfitting, gradient vanishing, and explosion problems. Cao, et al. [26] predicted grain
loss and waste rates based on a multi-task multi-gate recurrent unit autoencoder method,
and the results indicated that the accuracy of this method was higher than that of existing
models. Chen, et al. [27] applied the GRU network to predict long-term degradation trends
based on available data on degradation features. In light of the excellent performance of
the GRU in time feature extraction, we coupled the CNN-GRU model to complement the
deficiencies in existing time-series data simulation research.

Ecological compensation is a widely recognized economic approach to improving
water yield, soil and water conservation, intensive and efficient use of water resources, eco-
logical, environmental protection, and pollution control by coordinating the relationships
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between different stakeholders [28]. There exist various methods for evaluating ecological
compensation, including the willingness-to-pay, opportunity cost, ecological footprint, and
value theory methods [29,30]. While the willingness-to-pay method relies on subjective
survey data [31], the opportunity cost method tends to undervalue ecosystem services by
focusing on cost-benefit analysis [32]. Similarly, the ecological footprint method determines
the sustainability of ecological compensation by evaluating the supply and demand re-
lationship between humans and ecological resources, but its sustainability is weak [33].
The ecological service value method, which is based on the theory of externalities, bridges
the gap between natural ecosystems and economic systems by quantifying the direct or
indirect available ecological value used to produce ecosystem services [34]. It quantifies
ecological compensation by comparing the non-market ESV per unit area with the GDP
per unit area of the area. Although ESV is complex and unstable at cross-regional scales,
it can be corrected by incorporating various regional data, such as food and GDP, and is
applicable to a wide range of research scales [35]. Consequently, ESV evaluation appears
to be a more suitable method for ecological compensation. In addition, EEH is a critical
foundation for setting reasonable ecological compensation standards and accurately quan-
tifying ecological compensation, which has often been frequently overlooked in previous
research. ESV comprises various ecosystem services, including supply, regulation, support,
and cultural services, and exploring the ESV represented by different ecosystem services
is necessary to fully express the EEH of the area, serving ecological compensation and
sustainable development.

A thorough analysis of the influencing factors and mechanisms of ESV is a crucial
basis for guiding ecological protection decision-making [36]. Wu et al. [17] quantitatively
analyzed the impact of rapid urbanization on ecosystem services in Kunshan from 2006 to
2030. Chen, et al. [37] utilized cellular automata and geographically weighted regression
to simulate the ESV loss caused by land use changes in Chongqing. Previous studies
have primarily focused on the rise or fall of ESV caused by land use changes, but little is
known about the driving mechanisms of ESV, particularly in arid areas [38,39]. Research
methods for ESV and its driving factors have primarily included principal component and
correlation analysis [40], regression models, and grey relational analysis [41]. Although
these methods can explain the contribution of influencing factors to a certain extent, they
fail to capture the interaction and joint effects between influencing factors and cannot fully
express the complex spatial correlation and spatiotemporal differentiation characteristics
within ESV [42]. GeoDetector can further reveal the spatial distribution relationship and
interaction mechanism between independent and dependent variables from a statistical
perspective by converting qualitative data into quantitative data [43,44]. Therefore, this
study utilizes GeoDetector to quantitatively analyze the explanatory power of each driving
factor for spatial variable distribution characteristics and explore the interaction between
two factors [45].

The main contributions of this study are as follows:
(1) Proposed a new CNN-GRU model, which integrates both temporal and spatial

neighborhood features, for simulating the dynamic process of land use change. This
approach outperforms three other models, including GRU, CNN, and CNN long short-
term memory (LSTM), and provides higher accuracy in predicting land use change;

(2) Revealed the impact of land use change on ESV in the arid oasis area of Northwest
China;

(3) Determined EEH in the historical period and the next 10 years in the arid oasis
area, as well as the priority for ecological compensation;

(4) Employed the GeoDetector to explore the driving mechanism of ESV;

2. Study Area and Data Sources
2.1. Study Area

Wuwei (Figure 1) (36◦29′~39◦27′N, 101◦49′~104◦16′E) is located in Northwest China,
at the intersection of the Loess Plateau, the Qinghai–Tibet Plateau, and the Mongolian
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Plateau [46]. The terrain is complex, with the southern area belonging to the Qilian Moun-
tains, and the climate is suitable for the development of forestry and animal husbandry. The
central area is a flat oasis area with fertile land and is an important agricultural production
base in China. The northern area is a desert area with low precipitation [12]. Wuwei spans
326 km in length and 204 km in width and has natural landscapes, such as snow-covered
highlands, oases, and deserts. The permanent population was 1.825 × 104 at the end of
2019 [13].

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 27 
 

 

2. Study Area and Data Sources 
2.1. Study Area 

Wuwei (Figure 1) (36°29′~39°27′N, 101°49′~104°16′E) is located in Northwest China, 
at the intersection of the Loess Plateau, the Qinghai–Tibet Plateau, and the Mongolian 
Plateau [46]. The terrain is complex, with the southern area belonging to the Qilian Moun-
tains, and the climate is suitable for the development of forestry and animal husbandry. 
The central area is a flat oasis area with fertile land and is an important agricultural pro-
duction base in China. The northern area is a desert area with low precipitation [12]. 
Wuwei spans 326 km in length and 204 km in width and has natural landscapes, such as 
snow-covered highlands, oases, and deserts. The permanent population was 1.825 × 104 at 
the end of 2019 [13]. 

 
Figure 1. Study area and land use spatial distribution. Wuwei belongs to a warm-temperate continen-
tal arid climate with an average annual temperature of 7.8 ◦C and a precipitation range of 60–610 mm.
In terms of administrative divisions, it includes one district, two counties, and one autonomous
county, with a total area of 3.32 × 104 km2.
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2.2. Data Sources

The land use datasets for 2000, 2010, and 2020 were obtained from the Global Geo-
graphic Information Products Platform for this study. The driving factors were categorized
into four types: transportation accessibility; socioeconomic conditions; terrain conditions;
and climate conditions, consisting of 14 categories. Data sources for each category are
presented in Table A1 of the attached Appendix A. Transportation accessibility variables
included major roads, railways, rivers, residential areas, and ecological function protection
areas, while socioeconomic variables included nighttime lights, GDP, population, and
NPP. Terrain conditions included elevation, slope, and faults, while conditions included
precipitation and temperature. All data were resampled to a spatial resolution of 30 m
and normalized to ensure consistency across variables. In the initial phase, remote sensing
images were acquired, and an extensive data preprocessing pipeline was implemented.
This preprocessing encompassed radiometric calibration, atmospheric correction, geometric
correction, image mosaicking, and cropping. These rigorous steps were undertaken to
rectify image distortions, geometric irregularities, and atmospheric interferences arising
from sensor characteristics, spatial variations, atmospheric absorption, scattering, and other
influential factors. Subsequently, we leveraged a land use remote sensing dataset to obtain
comprehensive land use classification data. Additionally, key remote sensing variables,
such as nighttime lights, were strategically integrated as driving factors into the CNN-GRU
algorithm. This integration facilitated the acquisition of spatiotemporal features, thereby
enabling the model to effectively learn and process complex temporal dynamics and land
use patterns.

3. Methods

The research framework is illustrated in Figure 2.

3.1. Land Use Modeling
3.1.1. CNN

The CNN architecture typically comprises convolutional layers, pooling layers, acti-
vation functions, and fully connected layers [47]. Convolutional layers extract the spatial
features of the input image by using filters learned from the training data set. Usually, an
activation function is used after the convolutional layers to introduce nonlinearity into the
network and capture the complex relationship between the input and output [48]. After the
activation function, a pooling layer is added to retain the main features of the convolutional
layer while reducing parameters. Finally, the objective of the fully connected layer is to
predict the output value based on a nonlinear combination of a series of feature maps
from convolutional and pooling layers. The core of this study is to use CNN to extract the
complex spatial features of the data and pooling layers are omitted to prevent the loss of
relevant features [49].

3.1.2. GRU

GRU calculates the probability distribution of the time series data by employing the
encoder and decoder [50]. Initially, the conditional distribution on a variable-length output
sequence given another variable-length sequence is learned (e.g., p(y1, ..., yT′ |x1, ... ,xT),
where T and T′ are the input and output sequences, respectively. Secondly, the encoder
reads the temporal features of the input sequence x in order. The hidden state h(t) changes
with the time step (Equation (1)). Upon reading the sequence end, h(t) is the summary of
the entire input sequence c. The decoder is trained to generate the output sequence by
predicting the time dimension feature yt of the next neighboring unit. The hidden state at
time t is determined by Equation (2). Using the softmax activation function to predict the
probability distribution of the next neighboring unit learning sequence (Equation (3)), the
output of each time step t is the conditional distribution p(xt|xt−1, ... ,x1). By combining
the probability of each neighboring unit, the probability of sequence x is calculated by
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Equation (4). Therefore, the conditional distribution of the time dimension feature of the
next neighboring unit is Equation (5) [51].

h(t) = f
(

h(t−1), xt

)
(1)

h(t) = f
(

h(t−1), y(t−1), c
)

(2)

p(x(t,j) = 1|xt−1, ..., x1) =
exp(wjh(t)

)
∑K

j′=1 exp(wj′h(t)
) (3)

p(x) =
T

∏
t=1

pt(x|xt−1, ..., x1) (4)

p
(

yt

∣∣∣y(t−1), y(t−2), ..., y1, c
)
= g

(
h(t), y(t−1), c

)
(5)

Here, f is a non-linear activation function; wj is the row of weight matrix w. For a
given activation function g, it must generate effective probabilities.
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The activation calculation for the jth hidden unit is given by:

rj = σ
([

Wrx]j +
[
Urh(t−1)]j

)
(6)

zj = σ
([

Wzx]j +
[
Uzh(t−1)]j

)
(7)

h(t)j = zjh
(t−1)
j +

(
1− zj

)∼
h
(t)

j (8)

∼
h
(t)

j = f ([Wx]j + rj[Uh(t−1)]) (9)

Here, rj represents the reset gate; zj represents the update gate; hj represents the actual
activation of the unit; σ is the sigmoid function; [.]j represents the jth element of the vector;
x and h(t−1) are the input state and the previous hidden state, and Wr and Ur are weight
matrices.

When the reset gate is close to 0, the hidden state is forced to ignore the previous
hidden state and only use the current input to reset. The update gate controls the amount
of information transferred from the previous hidden state to the current hidden state for
the long-term memory [52]. Each hidden unit has separate reset and update gates, so it can
learn to capture dependencies at different time scales.

3.1.3. CNN-GRU

To optimize the land-use change simulation research, we constructed a six-layer
network structure consisting of two CNN layers, two GRU layers, and two fully connected
layers. The two convolutional layers each consist of 14 3× 3 convolutional kernels, resulting
in a (N − 2) × (N − 2) × 14 feature map. The data were then formatted with 14 time steps
and one input feature per time step. The first GRU layer has 64 cores, with h(t) being passed
to the next layer at each time step. The second GRU layer has 94 cores and only outputs h(t)
at the final time step. To avoid overfitting, the dropout rate was set to 20% for both GRU
layers, and the tanh activation function was chosen to improve model performance. Finally,
there are two fully connected layers, with 128 neurons in the first layer and a dropout rate of
20% and 8 neurons in the second layer with a softmax classifier. After continuous iteration,
we found that the optimal learning rate for the research area data was 0.002; the batch
size was set to 128, and the Adam algorithm was selected as the optimizer. Further, the
cross-entropy loss function was introduced to optimize model performance. The number
of epochs was set to 50, the loss value decreased rapidly to a certain point, and the iteration
process basically converged.

The modeling process consists of four steps: (1) Data preprocessing and model training:
preprocessing land use historical data and driving factor variables to prepare for training
and conversion rules; (2) Model calibration: utilizing CNN and GRU algorithms to extract
spatial and temporal neighborhood features of land use and driving factors, continuously
optimizing the model’s performance; (3) Model validation: comparing the simulated land
use change results in the CNN, GRU, CNN-LSTM, and CNN-GRU models with the actual
situation using the same data set; (4) Future prediction: using the calibrated model to
simulate future land use, ESV, and EEH changes.

Using Python coding, we calibrated the model parameters with historical data from
2000 to 2010 and generated simulation results for 2020 (Figure 3). To verify the model
performance, we compared the results with three sets of indicators, overall accuracy, Kappa
coefficient, and figure of merit (FOM). Specifically, we conducted comparisons among
(1) The coupled model and single models (CNN-GRU, CNN, and GRU) to examine the
importance of spatiotemporal feature extraction, (2) Different recurrent neural networks
(CNN-GRU and CNN-LSTM) as feature samplers for comparing the performance of time
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dimension feature extraction, and (3) Single spatiotemporal models (CNN and GRU) to
analyze the impact of temporal and spatial features on time series data simulation.
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3.2. ESV Evaluation

In this study, the ESV of Wuwei Oasis was calculated by exploiting the standard unit
results and evaluation method of the ecological service value equivalent factor improved
by Xie, et al. [53]. To ensure the applicability of the numerical coefficients in the calculation
of ESV at the regional scale, the coefficients were adjusted based on the correction factor for
grain production. The equations applied for calculating ESV are as follows:

Ea =
1
7
× P×Y (10)

Ei = Ea × q (11)

ESV = ∑(Ai × Ei) (12)

Here, Ea is the economic value of an ESV equivalent factor; Ei is the ESV of the land
ecosystem i per unit area; q is the ESV equivalent factor per unit area; Ai is the area of land
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ecosystem type I; Y is the crop yield per unit area in Wuwei, and P is the average grain
price in 2020.

3.3. Ecology–Economy Harmony

ESV change serves as a pivotal gauge for assessing regional socioeconomic and eco-
logical environment sustainability. Coordinated development between the ecological
environment and the economy entails a harmonious interaction and alignment of elements
within the environmental and economic subsystems throughout the regional development
trajectory, fostering their reciprocal advancement and ultimately elevating the overall devel-
opmental status of the region. Through an in-depth analysis of the association between al-
terations in ESV resulting from land use dynamics and the level of regional socio-economic
development, an assessment of the degree of harmony between the regional ecological
environment and economic progress can be achieved. The ecological environment and
economic development status in arid oasis areas was measured by utilizing the Ecology–
Economy Harmony (EEH) index (Table 1), which combines datasets of ESV and GDP of
the period from 2000 to 2030. The ecological compensation priority was then determined.
Additionally, the 2023 GDP data were obtained through time-series forecasting employing
Python 3.9 software.

EEH =

(ESVhj−ESVhi)
ESVhi

(GDPhj−GDPhi)
GDPhi

(13)

Here, EEH is the ecology–economy harmony index; ESVhj and ESVhi are the ecosystem
service values for different periods, and GDPhj and GDPhi are the GDP values for different
periods. Coordination and conflict levels are divided based on the regional characteristics
of the arid oasis area and the existing literature [54].

3.4. GeoDetector

We employed the Geodetector model to quantify the influence of various factors on
the changes in ESV in the Wuwei Oasis area [43]. Geodetector is a spatial statistical method
used for identifying driving factors of geographic phenomena, widely applied in the fields
of geography, environmental science, and public health, among others. It has the capability
to reveal the impact extent and interaction relationships of various factors on specific events
or phenomena. The determination of single-factor and two-factor contributions to ESV
values ranged from 0 to 1, with higher values denoting a more pronounced influence.
Unlike conventional approaches employed in identifying driving factors, Geodetector
demonstrates a distinctive advantage in its capacity to investigate the combined impact
of two independent variables on the dependent variable. Notably, Geodetector exhibits a
high degree of flexibility concerning the incorporation of input data, as it can effectively
accommodate both quantitative and qualitative data by means of a reclassification process,
enabling their seamless integration into the analytical framework. While previous studies
have mainly focused on socioeconomic data as the primary drivers for analysis, it is well
recognized that single socioeconomic factors cannot comprehensively predict regional ESV
changes. Thus, this study selected a range of factors, including natural factors, such as
DEM, slope, soil type, geomorphic type, and NDVI, as well as socioeconomic factors, such
as population density and GDP, and climate factors, such as precipitation and temperature.
It is important to note that natural environmental factors, climate, and landscape patterns
all have a certain impact on ESV in arid oasis areas, making the inclusion of these factors
critical for a comprehensive analysis.
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Table 1. Classification level of EEH index. At the coordination level, an EEH value greater than or
equal to 1 denotes that the growth rate of ESV equals or surpasses the growth rate of GDP. This
finding reflects a high degree of synchronization between the ecological environment and economic
development within this study’s area. Alternatively, it may suggest that the ecological environment
experienced significant damage initially but subsequently underwent ecological restoration, resulting
in certain limitations on economic development. On the other hand, when the EEH falls within
the range of 0 to 1, it indicates that the growth rate of ESV is lower than that of GDP. Despite
economic development not directly causing ecological degradation, varying degrees of ecological
pressure persist. A higher EEH value indicates enhanced coordination between ecological and
economic factors. In the conflict level, negative ESV growth signifies that economic development
has detrimental effects on ecological environment conservation, leading to disharmony between the
two. A lower EEH value indicates more pronounced conflicts between economic development and
ecological protection.

EEH Index Classification Level EEH Index Classification Level

EEH ≥ 1 high coordination −0.5 ≤ EEH < 0 low conflict

0.5 ≤ EEH < 1 moderate
coordination −1 ≤ EEH < −0.5 moderate conflict

0 ≤ EEH < 0.5 potential crisis EEH ≤ −1 serious conflict

4. Results
4.1. Model Comparison
4.1.1. Quantitative Analysis

(1) The CNN-GRU model outperformed the single models, highlighting that the ex-
traction of spatial-temporal neighborhood features is crucial in time series data simulation,
and ignoring any feature would substantially decrease the model’s performance;

(2) The FOM values showed that CNN-GRU was more effective in capturing temporal
features than CNN-LSTM. GRU’s ability to directly use gate control for linear self-updating
in the hidden unit overcomes the impact of short-term memory compared to linear self-
updating memory units used by LSTM;

(3) The OA was higher in the single spatiotemporal models (CNN and GRU) than in
the coupled CNN-GRU model, suggesting that spatial features have a greater impact on
simulation accuracy than temporal features;

(4) The CNN-GRU model, which comprehensively considers both spatial and temporal
features, exhibited superior accuracy compared to the other three models, providing strong
evidence of the effectiveness and superiority of the coupled model.

4.1.2. Qualitative Analysis

Qualitative evaluation of the simulation results revealed consistency between the pre-
dicted land use maps and the actual spatial distribution of Wuwei Oasis in 2020. However,
subtle differences were observed between the models (Figure 3). Specifically, the forest and
cultivated land ratios of GRU, CNN, and CNN-LSTM were higher than the corresponding
proportions in the actual land use map, suggesting insufficient feature extraction. GRU was
particularly prone to misjudgment, possibly due to the challenge of accurately capturing
feature maps from temporal sequence features alone. Moreover, notable discrepancies were
found in the prediction of unused land among the four models. While the predictions
generated by GRU and CNN were more dispersed, CNN-LSTM produced a more compact
distribution. Nonetheless, CNN-GRU exhibited the highest degree of spatial similarity to
the actual land use map, highlighting its exceptional simulation performance in predicting
time-series data. As such, we utilized the CNN-GRU model to forecast changes in land use
and ESV in 2030.
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4.2. ESV Changes from 2000 to 2030

The analysis revealed that the ESV of Wuwei Oasis experienced a decline of 6.96 × 108

from 2000 to 2010, and while the area experienced a partial recovery from 2010 to 2020,
the rate of recovery was slower than the decline from 2000 to 2010 (Figures 4 and 5).
Furthermore, the ESV of this study’s area remained in a state of loss from 2000 to 2020, with
a slight increase predicted for 2030.

4.2.1. Contribution of Different Ecosystem Services to ESV

In terms of the contribution of different ecosystem services to ESV, climate regulation
and regulation of water flows were the main types of ecosystem services in Wuwei Oasis,
accounting for 20.11% and 19.84% of the total ESV, respectively. In contrast, water supply
and maintenance of soil fertility had the smallest proportions, only 1.83% and 1.31%,
respectively. During the period from 2000 to 2010, all ecosystem services exhibited a
decreasing trend, with the highest loss rates for climate regulation services (−0.71%). From
2010 to 2020, except for food production, all ES exhibited an increasing trend, although with
a small overall growth rate. Among them, water supply had the highest ESV growth rate of
0.71%, while food production had a loss rate of −0.31%. From 2000 to 2020, except for the
regulation of water flows and water supply, all other ecosystem services led to ESV losses.
The ESV changes from 2020 to 2030 were consistent with those from 2010 to 2020, with
an increasing trend for all ecosystem services except food production. However, the loss
rate of food production was low, and the regulation of water flows had the highest growth
rate. Qualitatively, the distribution pattern of ESV increased gradually from northeast to
southwest, which was attributed to the distribution of land use types from unused land,
cultivated land, and grassland to forest from northeast to southwest, with a corresponding
increase in vegetation cover. The 11 ESV types exhibited differences and similarities, with
similarities in their spatial distribution patterns, while differences mainly reflected the
composition of different ecosystem services. High values of the total ESV were relatively
scarce, scattered in Tianzhu in the south. The 11 types of ESV could be divided into three
categories. The first category included food production, material production, air quality
regulation, erosion prevention, and maintenance of soil fertility, with relatively balanced
high, medium, and low-value areas. The high-value areas were mainly distributed in the
central part of Minqin, the southern parts of Liangzhou and Gulang, and the northern part
of Tianzhu. The low-value areas surrounded the high-value areas, and the medium-value
areas were only present in the southern part of Tianzhu. The second category included
water supply, climate regulation, regulation of water flows, habitat services, and cultural
and amenity services, where some high-value areas in the first category were replaced by
medium-value areas in the second category, indicating that the functions of the second
category of ecosystem services were lower than those of the first category. The third
category was water treatment, which differed from the second category in that medium-
value areas replaced high-value areas, indicating that water treatment in Minqin had
stronger functional capabilities than the above services.
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Figure 4. Spatial distribution of total ESV and 11 ESV from 2000 to 2030, and bar graphs are ESVs of 
different land use types and ecosystem service representations from 2000 to 2030. (FP: food produc-
tion; MP: material production; WS: water supply; AQR: air quality regulation; CR: climate regula-
tion; WT: waste treatment; RWF: regulation of water flows; EP: erosion prevention; MSF: mainte-
nance of soil fertility; HS: habitat services; CAS: cultural and amenity services). 

Figure 4. Spatial distribution of total ESV and 11 ESV from 2000 to 2030, and bar graphs are ESVs
of different land use types and ecosystem service representations from 2000 to 2030. (FP: food
production; MP: material production; WS: water supply; AQR: air quality regulation; CR: climate
regulation; WT: waste treatment; RWF: regulation of water flows; EP: erosion prevention; MSF:
maintenance of soil fertility; HS: habitat services; CAS: cultural and amenity services).

4.2.2. Contribution of Different Land Use Types to ESV

The examination of ESV from the perspective of land use types revealed a notable
trend in forestland, wetland, and water, which all showed an increase from 2000 to 2010.
However, the ESV represented by the remaining land use types exhibited a decrease, with
shrubland and glaciers experiencing the highest loss rate of ESV (−1.37% and −2.38%,
respectively). The ESV changes observed from 2010 to 2020 remained consistent with
the trend from 2000 to 2010, except for unused land, which changed from a decline to
an increase. Over the entire 20-year period from 2000 to 2020, forests experienced the
most severe loss of ESV. Looking ahead to 2030, the distribution of ESV in Wuwei Oasis is
expected to be the lowest in the edge area of Minqin, which is consistent with the spatial
distribution of unused land. Additionally, the forest in Tianzhu contributed the most to ESV.
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Among the ESVs represented by different land use types, grassland, wetland, and water all
showed a decreasing trend, with water having the largest loss rate of ESV (−3.45%) and
shrubland having the highest growth rate (6.32%).
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Figure 5. Spatial distribution changes in total ESV and 11 types of ESV in different periods. Lower
variation values correspond to more substantial declines in ESV; higher ESV variation values are
indicative of a more pronounced increase in ESV. An ESV variation value of 0 denotes a state of stable
ESV, indicating no net change in ESV.

4.3. Ecological Compensation Changes from 2000 to 2030

There are significant differences in the temporal and spatial distributions of total
EEH and different ecosystem services’ EEH (Figure 6). From a temporal perspective, this
study identified five types of EEH from 2000 to 2010, including moderate conflict, low
conflict, potential crisis, moderate coordination, and high coordination. The overall study
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area exhibited a potential crisis, with highly coordinated areas in the Northern Minqin
and Northwestern Tianzhu, suggesting that the changes in ESV and GDP were positively
correlated during this period. In contrast, Southeastern Tianzhu showed low conflict,
indicating that economic development had caused some loss of ESV and had an impact on
the ecological environment. From 2010 to 2020, the EEH types remained consistent with
those from 2000 to 2010, but the proportion of moderate and high conflict and coordination
increased. In the 2020–2030 EEH types, high conflict replaced moderate conflict, and
coordination shifted toward a negative direction. The ecological and economic status of
this study’s area underwent a shift from coordination to contradiction and then back to
coordination due to the rapid population growth and negative growth of ESV from 2010 to
2020, leading to a lower level of conflict between the ecological environment and economic
development.

Although the total EEH changes were relatively peaceful, the EEH changes in different
ecosystem services were more intense. Specifically, from 2000 to 2020, the potential crisis
turned into low conflict. From 2010 to 2030, the contradiction and coordination status
became more apparent. The strong coordination is mainly due to the high altitude of these
areas, which partly limited the regional economic development. However, a large amount
of water and grass resources provided a higher ESV, indicating a high demand for ecological
compensation in the area. Therefore, priority should be given to ecological compensation
to promote the common development of ecology and economy. The more apparent the
contradiction, the more serious the ecological degradation problem, and resolving the
contradiction should be the main way to solve the problem, with ecological compensation
as an auxiliary tool. As time passes, the gap in ecological compensation priority is grad-
ually increasing, indicating that the economic development level gap between counties
is gradually widening. Thus, focus on addressing the ecological degradation problems
related to air quality regulation, regulation of water flows, erosion prevention, habitat
services, and cultural and amenity services. Meanwhile, to deal with the widening gap
between counties, ecological compensation should be given priority to Tianzhu, followed
by Minqin, Gulang, and Liangzhou.

4.4. Driving Mechanism of ESV

We found that the impact trends of driving factors on ESV were consistent across
different years, with an overall decreasing trend from 2000 to 2030 (Figure 7). Among the
natural, socio-economic, and climatic factors considered, the geomorphic type had the
highest q value, followed by soil type and DEM. Geomorphic, soil, and DEM were identified
as the primary driving factors affecting regional ESV. This was because this study’s area
is located in an ecologically sensitive area with significant spatial differences in terrain.
Our findings suggest that elevation plays an important role in the spatial distribution
of ESV in the arid oasis area. Climate factors mainly affected the material exchange
between underground soil and aboveground vegetation through changes in precipitation
and temperature, ultimately impacting changes in regional ESV. In contrast, the socio-
economic factors had the weakest driving force. The population density represented the
degree of disturbance of human activities on ESV. The q value for GDP was the lowest,
indicating that its impact on the spatial differentiation of ESV was the smallest. The low
contribution rate of population density and GDP in the area was mainly due to the small
proportion of urban areas and population distribution in this study’s area. This is consistent
with previous research, but the driving mechanisms of ESV differ significantly between
the arid oasis area and the humid coastal area of Southeast China. In the humid southeast
area, socio-economic factors such as GDP and population density are the main driving
forces behind the loss of ESV, while in the northwest arid area, the increase in ESV is mainly
driven by natural landscape patterns. This corresponds to the significant differences in
socio-economic development and natural landscape between the humid southeast area and
the arid northwest area.
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Figure 7. The contribution of single-factor (Radar map) and two-factor (Heat map) to ESV.
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The results of exploring the interactions between factors showed that the driving
factors had a synergistic and enhancing effect on ESV in the Wuwei Oasis. Specifically,
there were two distinct modes of interaction, nonlinear enhancement, and two-factor
enhancement. The results of two-factor interactions were consistent with those of single-
factor interactions, with q values showing a decreasing trend from 2000 to 2030. However,
the contribution of two-factor interactions was significantly higher than that of single-factor
interactions, indicating a significant enhancement effect on the spatial differentiation of ESV.
Notably, the interaction between natural factors and other factors had the most significant
effect on ESV, with the q values exceeding the average value. Specifically, the interaction
between geomorphic type and other factors had the greatest driving force.

5. Discussion
5.1. Model Advantages

The neighborhood effect plays a critical role in extracting transfer rules and calculating
conversion probabilities in the dynamic simulation of the urban expansion [24,55]. Extract-
ing temporal features is an essential part of this process, which determines the dependency
relationships between model variables and parameters by computing gradients and storing
them through a time-backward propagation [56]. Recurrent Neural Network (RNN) can
pass the output and state of the current time as inputs to the next time, maintaining the data
relationship between each time, and has been proven to be an effective deep learning model
for processing time-series data [57]. However, RNN faces challenges such as vanishing and
exploding gradients, which limit their ability to maintain long-term dependencies. Many
excellent evolutionary models have been developed to optimize RNN, such as LSTM and
GRU. LSTM adds memory units to address long-term dependency issues [58], while GRU
reduces computational tensors by combining forget gates and input gates into a single
update gate [52]. GRU also mixes cell states and hidden states, making the model more
efficient and faster to train [59]. Applying batch normalization to the model optimizes
the distribution width and offset, accelerates the network learning rate, and facilitates the
gradient propagation [60]. ReLU, as an activation function, has sparse activation prop-
erties, enabling it to learn relatively sparse features from effective data dimensions and
automatically decouple features to avoid overfitting [61]. In the context of abundant and
comprehensive data, our model effectively harnesses regional land use data, in conjunction
with key natural geographic and socio-economic factors, to undergo rigorous learning
and training processes, iteratively fine-tuning various hyperparameters to achieve optimal
performance. Although this study focused on a specific region, the model’s underlying
principles and methodologies were designed to be adaptable to different climatic zones.
By carefully considering the environmental and socio-economic characteristics of various
regions during model calibration and validation, this model’s accuracy and reliability can
be enhanced for use in diverse geographical contexts. Consequently, the applicability of
this model extends beyond arid and semi-arid regions, encompassing a broader spectrum
of climate zones, including humid and semi-humid areas.

Previous studies on the spatiotemporal variation of ESV have mainly focused on
statistical analysis of quantitative data, with limited investigations on the underlying mech-
anisms driven by spatial factors. GeoDetector is highly inclusive in their analysis of data
features. On the one hand, it can directly analyze quantified numerical values such as
temperature and precipitation, which influence ecosystem services by regulating water
and heat conditions and affecting biological behavior [62–64]. Additionally, socioeconomic
factors such as GDP and population density directly impact ESV through human activi-
ties [65]. On the other hand, it quantifies qualitative numerical values before analysis. For
example, natural factors such as soil type and geomorphic type, as the background elements
of biological habitat in the ecosystem, have important functions in accumulating organic
carbon and promoting water cycling. Changes in the background ecological conditions
have a substantial impact on ecosystem services such as soil conservation, soil erosion, and
biodiversity [66].
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5.2. Relationship between Land Use and ESV

Between 2000 to 2020, hydrological regulation remained the dominant function in this
study’s area. By 2030, climate regulation will surpass hydrological regulation to become
the dominant function in the arid oasis area of Wuwei. Despite this change, the proportion
of most ecosystem service functions remained stable with no more than a 0.005 change,
indicating a relatively stable structure of ecosystem service functions. Food production and
soil erosion experienced the most significant decrease in proportion, while hydrological
regulation increased by 0.009. This transformation primarily occurred in areas with more
intense human activities, which aligns with the resource utilization characteristics in China’s
arid areas [67,68]. Qualitatively, the ESV of various ecosystem services in this study’s area
exhibited slight changes between 2000 and 2030, which can be visually observed in Figure 4.
By comparison, the spatial distribution of ESV changes in the first 20 years was generally
more drastic than those in the future 10 years, with continuous changes in the former and
scattered changes in the latter. From 2000 to 2020, the degradation areas of food production,
material production, air quality regulation, erosion prevention, and maintenance of soil
fertility accounted for the largest proportion. The proportion of ESV losses and gains of
other ecosystem services was relatively average. Although the distribution of ESV changes
varied slightly among different ecosystem services, the spatial distribution changes in
ESV for ecosystem services were generally greater than the overall ESV amplitude. This
complexity underscores the importance of studying ESV characterization for different
ecosystem services.

Land use change is a complex dynamic process that can have direct or indirect impacts
on ecosystem services and ESV [69]. The increase or decrease in ESV in this study area
is mainly contributed by farmland, forest, and grassland. Urban expansion, in particular,
has occupied a considerable amount of ecological land, leading to a deterioration of the
coupling coordination relationship between urban expansion and food production function.
This phenomenon has caused varying degrees of damage to the original functions of the
ecosystem, resulting in the problem of high-speed and low-quality urban expansion [70].
Due to natural geographic conditions, cultivated land is the most commonly occupied
land type during urban expansion. The rapid reduction in cultivated land area disrupts
the balanced ecological process and leads to a decline in the ecological system’s food
production value [71,72]. However, high-ESV land types, such as forests, wetlands, and
water bodies, are the main drivers of ESV changes because their ESV per unit area is higher
than that of cultivated land.

While previous research by Long, et al. [73] has shown that land use change due to
urban expansion in the eastern coastal area of China has severely damaged the ecosystem
and resulted in a decrease in ESV; our quantitative analysis of the Wuwei Oasis area’s ESV
indicates an opposite trend over time. This discrepancy can be attributed to differences in
climate, topography, urban expansion speed, and ecological environment between the arid
northwest area and the southeastern coastal area. To promote the sustainable development
of such eco-fragile cities as Wuwei Oasis, it is essential to plan regional land use reasonably
and optimize both economic and ecological benefits. Built-up land can reduce the ESV of
this study’s area, while the increase in ecological land, such as water bodies, wetlands, and
forests, will lead to an increase in ESV. Therefore, optimizing both economic and ecological
benefits, reducing ESV losses caused by unregulated development, and protecting land use
types with high ESV are the most effective ways to increase ESV [74].

5.3. Insights and Recommendations on Ecological Compensation

In reality, ecological compensation schemes in arid oasis areas are still in their early
stages, making the EEH prediction of ESV and its ecological compensation priority prac-
tically significant. ESV is a composite measure of diverse ecosystem services, including
provisioning, regulating, supporting, and cultural services. Unfortunately, current research
has only focused on total ESV policy and has not fully expressed the relationship between
ESV and the various ecosystem services [75,76]. Based on the EEH prediction results of
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Wuwei in the arid oasis area, we propose suggestions for its sustainable development.
Firstly, measures must be taken to alleviate the degradation of air quality regulation, hy-
drological regulation, soil retention, biodiversity, and cultural services in Tianzhu and
Minqin. The main way is to increase vegetation coverage through afforestation to neu-
tralize carbon emissions in the atmosphere. It is also possible to prevent natural disasters
such as drought, floods, and debris flow to prevent large-scale soil and water loss and to
designate ecological protection zones to prevent the extinction of rare animals and plants.
Secondly, to further quantify ecological compensation standards in the arid oasis area, the
ESV, characterized by 11 ecosystem services, should be divided into natural contribution,
human input, human preference, and natural contribution + human input, based on their
importance and differences. Furthermore, our study has explored the driving factors of
total ESV; natural and human factors also have certain impacts on ecosystem services. For
example, a large terrain relief or excessive rainfall will accelerate surface runoff velocity,
enhance soil erosion, and cause soil and water loss. A higher vegetation coverage of forest
or grassland with certain canopy closures can reduce soil erosion and increase hydrological
regulation and soil conservation ability. Unreasonable land use by humans may destroy
surface vegetation and stable terrain, leading to the degradation of ecosystem services.
Therefore, targeted exploration of the driving mechanisms of ESV characterized by different
ecosystem services should be conducted to promote ecological and economic coordinated
sustainable development.

5.4. Limitations and Future Perspectives

In this study, we employed a high-performance deep learning model to simulate the
future ESV and ecological compensation in arid regions. The conducted investigation
offers valuable practical implications for land use planning and ecological compensation
policies. The main findings of this study are attractive for various regions and countries
facing similar challenges in land use management and ecological compensation. The deep
learning model’s transferability can be evaluated by adapting it to different study areas and
considering region-specific data and contextual factors [77]. In addition, the advanced land
use simulation and geospatial analysis techniques facilitate the identification of ecologically
sensitive areas, potential conflicts between economic development and environmental
conservation, and opportunities for ecological compensation schemes [78]. The insights
gained from our research can be utilized to inform policy development and land use
planning in diverse geographic contexts.

However, it is crucial to acknowledge the inherent limitations of our research. Firstly,
our land use simulation did not encompass multiple scenarios. While the baseline scenario
captures one potential future development trajectory, the implementation of novel ecologi-
cal and economic policies could exert notable influences on land use dynamics. As a result,
future investigations could integrate historical trends of land use changes and pertinent
policy considerations to furnish scientific underpinnings for territorial spatial planning and
the advancement of sustainable urban development. By accounting for a broader range
of scenarios, more comprehensive insights into the complex interplay between human
activities and ecological systems can be attained, enhancing the utility and robustness of
our findings. Moreover, further efforts in data collection and model refinement could aid
in reducing uncertainties and refining the precision of our predictions, ensuring greater
accuracy and applicability in decision-making processes and policy formulation.

6. Conclusions

Through the application of deep learning models and spatial analysis methods, this
study provides valuable insights into the identification of priority areas for ecological
compensation and the driving factors contributing to ESV in arid oasis areas. Results
demonstrate that (1) Deep learning models effectively captured the spatiotemporal neigh-
borhood features of land use dynamics, and CNN-GRU exhibited the highest accuracy
and most accurately simulated the 2020 land use; (2) The built-up area of Wuwei Oasis
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is projected to increase by 25.35% from 2000 to 2030, resulting in a significant decline
in ESV (−2.38%). Climate regulation was identified as the main contributor to ESV in
this study, while the loss rate was also the highest. Wetlands and water bodies were the
dominant factors affecting the change in ESV per area unit; (3) In the historical period,
EEH was primarily characterized by low conflicts and potential crises, while potential
crises and high coordination will be the main features in the future. The coordination
of Minqin and Tianzhu in the south and north of this study’s area was generally higher
than that of Liangzhou and Guluang in the east and west, and the urgency of ecological
compensation was correspondingly higher; (4) Natural factors had the most significant
impact on ESV, and the explanatory power of bivariate interaction detection for ESV spatial
differentiation increased significantly. Moreover, the contribution of single and multiple
factors to ESV showed a decreasing trend from 2000 to 2030. Overall, the findings of this
study provide important insights that can inform strategies for promoting the restoration
of oasis ecosystems and sustainable urban development.
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Appendix A

Table A1. Data Format and Source.

Category Data Data Format Data Sources Spatial
Resolution

Traffic
accessibility

distance to the
settlement vector (Point)

National Geographic
Information Resource

Directory Service System
(https://webmap.cn/)

accessed on 1 January 2022

30 m

distance to
road

vector
(Polyline)

National Geographic
Information Resource

Directory Service System
(https://webmap.cn/)

accessed on 1 January 2022

30 m

distance to
railway

vector
(Polyline)

National Geographic
Information Resource

Directory Service System
(https://webmap.cn/)

accessed on 1 January 2022

30 m

distance to
river

vector
(Polyline)

National Geographic
Information Resource

Directory Service System
(https://webmap.cn/)

accessed on 1 January 2022

30 m

https://webmap.cn/
https://webmap.cn/
https://webmap.cn/
https://webmap.cn/


Remote Sens. 2023, 15, 3927 21 of 24

Table A1. Cont.

Category Data Data Format Data Sources Spatial
Resolution

distance to
ecological
function

protection area

vector
(Polygont)

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 1 January 2022

30 m

Social and
economic
conditions

population raster

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 2 January 2022

30 m

GDP raster

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 2 January 2022

30 m

nighttime
lights rasterd

Hubei high-resolution earth
observation system

application platform (http:
//59.175.109.173:8888)

accessed on 2 January 2022

30 m

NPP raster

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 2 January 2022

30 m

Terrain
conditions elevation raster

USGS Earth Explorer (https:
//earthexplorer.usgs.gov/)
accessed on 3 January 2022

30 m

slope raster
USGS Earth Explorer (https:
//earthexplorer.usgs.gov/)
accessed on 3 January 2022

30 m

fault vector
(Polyline)

“Hydrogeological Map of
Gansu Province”

(Gansu Geological and
Mineral Bureau

Hydrogeological
Engineering Geological

Survey Institute)
(http://www.gssgy.com/)
accessed on 3 January 2022

30 m

Climatic
conditions temperature raster

Resource and
Environmental Science and

Data Center, Chinese
Academy of Sciences

(http://www.resdc.cn/)
accessed on 4 January 2022

30 m
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