
Citation: Sun, Y.; Wang, Q.; Yan, C.;

Feng, Y.; Tan, R.; Shi, X.; Wang, X.

D-VINS: Dynamic Adaptive

Visual–Inertial SLAM with IMU Prior

and Semantic Constraints in Dynamic

Scenes. Remote Sens. 2023, 15, 3881.

https://doi.org/10.3390/rs15153881

Academic Editors: Danfeng

Hong, Liang-Jian Deng

and Gemine Vivone

Received: 26 May 2023

Revised: 25 July 2023

Accepted: 1 August 2023

Published: 4 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

D-VINS: Dynamic Adaptive Visual–Inertial SLAM with IMU
Prior and Semantic Constraints in Dynamic Scenes
Yang Sun 1, Qing Wang 1,*, Chao Yan 1,2, Youyang Feng 1 , Rongxuan Tan 1, Xiaoqiong Shi 1 and Xueyan Wang 1

1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
220213632@seu.edu.cn (Y.S.); chaoyan@seu.edu.cn (C.Y.); 230159565@seu.edu.cn (Y.F.);
220213596@seu.edu.cn (R.T.); b19040502@njupt.edu.cn (X.S.); 220223322@seu.edu.cn (X.W.)

2 School of Electrical Engineering and Automation, Changshu Institute of Technology, Changshu 215500, China
* Correspondence: wq_seu@seu.edu.cn

Abstract: Visual–inertial SLAM algorithms empower robots to autonomously explore and navigate
unknown scenes. However, most existing SLAM systems heavily rely on the assumption of static
environments, making them ineffective when confronted with dynamic objects in the real world. To
enhance the robustness and localization accuracy of SLAM systems in dynamic scenes, this paper
introduces a visual–inertial SLAM framework that integrates semantic and geometric information,
called D-VINS. This paper begins by presenting a method for dynamic object classification based
on the current motion state of features, enabling the identification of temporary static features
within the environment. Subsequently, a feature dynamic check module is devised, which utilizes
inertial measurement unit (IMU) prior information and geometric constraints from adjacent frames
to calculate dynamic factors. This module also validates the classification outcomes of the temporary
static features. Finally, a dynamic adaptive bundle adjustment module is developed, utilizing the
dynamic factors of the features to adjust their weights during the nonlinear optimization process.
The proposed methodology is evaluated using both public datasets and a dataset created specifically
for this study. The experimental results demonstrate that D-VINS stands as one of the most real-
time, accurate, and robust systems for dynamic scenes, showcasing its effectiveness in challenging
real-world scenes.

Keywords: VSLAM; dynamic environments; object detection; geometric constraint; IMU prior constraint

1. Introduction

Simultaneous localization and mapping (SLAM) [1] is a crucial technology for ad-
vanced robotics applications, enabling collision-free navigation and environment explo-
ration [2]. SLAM heavily relies on the sensors carried by robots to simultaneously achieve
high-precision localization and environment mapping. Visual SLAM (VSLAM) [3,4] uti-
lizes cameras to estimate the robot’s position, offering several advantages such as cost-
effectiveness, lower energy consumption, and reduced computational requirements. Over
the last decade, the VSLAM framework has witnessed rapid development, with notable
frameworks such as SOFT2 [5], VINS-Mono [6], ORB-SLAM3 [7], and DM-VIO [8]. Most of
these algorithms employ optimization-based methods to construct epipolar constraints, BA,
or minimum photometric constraints with features in the environment. VINS-Fusion [9]
leverages optical flow to track feature points in the front end and optimizes the minimum
reprojection error to solve the poses with BA in the back end. ORB-SLAM2 [10] uses ORB
feature points to improve tracking and incorporates a loop closure thread to achieve higher
accuracy in global pose estimation. Building upon ORB-SLAM2, ORB-SLAM3 integrates
an IMU to enhance the system robustness and stands as one of the most advanced VSLAM
solutions to date.

The essence of SLAM pose estimation lies in the robot’s perception of its relative
movement in the environment. In terms of the localization aspect of SLAM, the accuracy

Remote Sens. 2023, 15, 3881. https://doi.org/10.3390/rs15153881 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15153881
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5980-4164
https://doi.org/10.3390/rs15153881
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15153881?type=check_update&version=1

Remote Sens. 2023, 15, 3881 2 of 25

of pose estimation is greatly affected by the proportion of dynamic feature points being
tracked in the field of view. When the proportion of dynamic feature points is relatively
small, non-dynamic SLAM algorithms can utilize statistical methods like RANSAC [11]
to identify and discard these few dynamic points as outliers. However, when dynamic
objects occupy more than half or the majority of the field of view, there are limited static
feature points available for tracking. This presents a significant challenge that needs to be
addressed using dynamic SLAM algorithms. In such cases, the accuracy of SLAM pose
estimation significantly decreases and can even lead to failure, especially for feature-based
VSLAM approaches [5–8]. Consequently, these open-source algorithms often experience
a loss in accuracy or even failure when deployed in dynamic environments such as city
streets or rural roads with numerous dynamic objects.

To improve the system accuracy and robustness in highly occluded environments, we
extend the work of VINS-Fusion and propose a robust dynamic VSLAM framework, called
D-VINS. D-VINS proposes a perceptual classification algorithm with missed detection
compensation and assigns different weights to feature points during BA based on their
geometric constraints. The main contributions of this paper are summarized as follows:

• A feature classification using the YOLOV5 [12] object detection algorithm is proposed
in the front end, which divides dynamic feature points into three categories: absolute
static points, absolute dynamic points, and temporary static points. Then, the dynamic
factors of temporary static features are calculated based on the IMU pre-integration
prior constraint and the epipolar constraint. The temporary static features are classified
again according to the dynamic factors.

• A robust BA optimization method based on the dynamics factor is proposed in the back
end. If the object is more dynamic, its feature weights are decreased, and vice versa.

• Extensive experiments are carried out on public datasets like TUM, KITTI, and VIODE,
and our dataset. These datasets include extensive occlusion scenes, and the results
from these datasets are representative. The experiment results demonstrate the accu-
racy and robustness of our proposed D-VINS.

The rest of this paper is organized as follows: Section 2 discusses related work.
Section 3 introduces our proposed system in detail. Section 4 details the experimental
process and comparative analysis of the experimental results. Finally, the conclusion is
presented in Section 5.

2. Related Work

Dynamic SLAM methods can be classified into two categories: geometry-based meth-
ods and semantic-based methods. Geometry-based methods rely on the geometric con-
straints derived from the inter-frame camera motion, with a potential decrease in the
segmentation accuracy. Semantic-based methods leverage deep-learning networks to
achieve the highly precise segmentation of known objects. However, the implementation
of these methods often requires high-performance computing platforms.

2.1. Geometry-Based Dynamic SLAM

Geometry-based methods rely on geometric constraints between camera frames to
eliminate outliers. Dynamic objects can be identified as they deviate from the geometric
motion consistency observed between frames. Additionally, statistical analysis allows
for the differentiation of inner points (static points) from outliers (dynamic points). Most
SLAM systems, like VINS-Mono, use RANSAC with epipolar constraints to remove outliers
by calculating the fundamental matrix using the eight-point method. However, RANSAC
becomes less effective when outliers dominate the dataset.

DGS-SLAM [13] presents an RGB-D SLAM approach specifically designed for dynamic
environments. It addresses outlier impacts during optimization by introducing new robust
kernel functions.

Remote Sens. 2023, 15, 3881 3 of 25

DynaVINS [14] introduces a novel loss function that incorporates IMU pre-integration
results as priors in BA. In the loop closure detection module, loops from different features
are grouped for selective optimization.

PFD-SLAM [15] utilizes GMS (grid-based motion statistics) [16] to ensure accurate
matching with RANSAC. Subsequently, it calculates the homography transformation to
extract the dynamic region, which is accurately determined using particle filtering.

ClusterSLAM [17] clusters feature points based on motion consistency to reject dy-
namic objects.

In general, geometry-based methods offer higher accuracy and lower computational
costs compared to semantic-based methods. However, they lack the semantic information
required for precise segmentation. Moreover, geometry-based methods heavily rely on
experience-based hyperparameters, which can significantly limit algorithm feasibility.

2.2. Semantic-Based Dynamic SLAM

Currently, deep-learning networks have achieved remarkable advancements in speed
and accuracy in various computer vision tasks, including object detection, semantic seg-
mentation, and optical flow. These networks can provide object detection results, such as
bounding boxes, which can be utilized in dynamic SLAM systems. To accurately detect
dynamic objects, deep-learning-based methods often incorporate geometric information to
capture the real motion state in the current frame.

For example, DynaSLAM [18] is an early dynamic SLAM system that combines multi-
view geometry with deep learning. It utilizes MASK R-CNN, which offers pixel-level
semantic priors for potential dynamic objects in images.

Dynamic-SLAM [19] detects dynamic objects using the SSD (single shot multi-box
detector) [20] object detection network and addresses missed detections by employing a
constant velocity motion model. Moreover, it sets a threshold for the average parallax of
features within the bounding box area to further reject dynamic features. However, this
method’s reliance on bounding boxes may incorrectly reject static feature points belonging
to the background.

DS-SLAM [21] employs the SegNet network to eliminate dynamic object features,
which are then tracked using the Lucas–Kanade (LK) optical flow algorithm [22]. The
fundamental matrix is calculated using RANSAC. The distance between the matched points
and their epipolar line is computed, and, if the distance exceeds a certain threshold, the
point is considered dynamic and subsequently removed. Additionally, depth information
from RGB-D cameras is often employed for dynamic object detection.

RS-SLAM [23] detects dynamic features with semantic segmentation, and a Bayesian
update method based on the previous segmentation results is used to refine the current
coarse segmentation. It also utilizes depth images to compute the Euclidean distance
between such two movable regions.

Dynamic-VINS [24] proposes an RGB-D-based visual–inertial odometry approach
specifically designed for embedded platforms. It reduces the computational burden by
employing grid-based feature detection algorithms. Semantic labels and the depth infor-
mation of dynamic features are combined to separate the foreground and background. A
moving consistency check based on IMU pre-integration is introduced to address missed
detection issues.

YOLO-SLAM [25] is an RGB-D SLAM system that obtains an object’s semantic labels
using Darknet19-YOLOv3. The drawback is that it cannot be run in real time.

SG-SLAM [26] is a real-time RGB-D SLAM system that adds a dynamic object detection
thread and semantic mapping thread based on ORB-SLAM2 for creating global static 3D
reconstruction maps.

In general, geometry-based methods offer faster processing times but lack semantic
information. In contrast, deep-learning-based methods excel in dynamic object detection by
detecting potential dynamic objects with semantic information. However, it is challenging
to run deep-learning algorithms in real time on embedded platforms. Their accuracy

Remote Sens. 2023, 15, 3881 4 of 25

heavily relies on the training results. Moreover, most of these methods use RGB-D cameras,
which tightly couple geometric and depth information, making them more suitable for
indoor environments. Few algorithms are specifically designed for outdoor dynamic scenes.

Although current dynamic SLAM methods can detect dynamic objects, they often
oversimplify their treatment, limited to either discarding or preserving them. Additionally,
challenges arise when the camera is heavily obscured by moving objects. To address these
limitations, we propose a dynamic SLAM method that integrates both geometric and
semantic information, tightly incorporating IMU prior constraints into the dynamic feature
check and optimization process.

3. Methods

The system is implemented based on VINS-Fusion [9], an optimization-based esti-
mation framework that supports multiple sensors, including stereo, monocular, and IMU
sensors. The system initialization follows a loosely coupled approach, where Harris corners
are extracted in the front end and tracked using the LK optical flow. In the back end, the
system state is marginalized and optimized using a sliding window approach. Figure 1
illustrates the system workflow. For object detection, we utilize the Common Objects in
COntext (COCO) dataset, which comprises 80 object categories commonly found in daily
life, allowing algorithms trained on this dataset to recognize the majority of objects in
everyday scenes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 27

SG-SLAM [26] is a real-time RGB-D SLAM system that adds a dynamic object
detection thread and semantic mapping thread based on ORB-SLAM2 for creating global
static 3D reconstruction maps.

In general, geometry-based methods offer faster processing times but lack semantic
information. In contrast, deep-learning-based methods excel in dynamic object detection
by detecting potential dynamic objects with semantic information. However, it is
challenging to run deep-learning algorithms in real time on embedded platforms. Their
accuracy heavily relies on the training results. Moreover, most of these methods use RGB-
D cameras, which tightly couple geometric and depth information, making them more
suitable for indoor environments. Few algorithms are specifically designed for outdoor
dynamic scenes.

Although current dynamic SLAM methods can detect dynamic objects, they often
oversimplify their treatment, limited to either discarding or preserving them.
Additionally, challenges arise when the camera is heavily obscured by moving objects. To
address these limitations, we propose a dynamic SLAM method that integrates both
geometric and semantic information, tightly incorporating IMU prior constraints into the
dynamic feature check and optimization process.

3. Methods
The system is implemented based on VINS-Fusion [9], an optimization-based

estimation framework that supports multiple sensors, including stereo, monocular, and
IMU sensors. The system initialization follows a loosely coupled approach, where Harris
corners are extracted in the front end and tracked using the LK optical flow. In the back
end, the system state is marginalized and optimized using a sliding window approach.
Figure 1 illustrates the system workflow. For object detection, we utilize the Common
Objects in COntext (COCO) dataset, which comprises 80 object categories commonly
found in daily life, allowing algorithms trained on this dataset to recognize the majority
of objects in everyday scenes.

Figure 1. Overview of D-VINS. Absolute dynamic points are eliminated (indicated by the red
dashed line). Temporary static points and absolute static features are shown by the blue and green
arrows, respectively. The feature dynamic check module further filters out some absolute dynamic
points, ensuring that only absolute static feature points are sent to the keyframe database.

In dynamic object classification, the color image is initially processed by the fast
convolutional neural network You Only Look Once (YOLO) [12], which provides

Figure 1. Overview of D-VINS. Absolute dynamic points are eliminated (indicated by the red dashed
line). Temporary static points and absolute static features are shown by the blue and green arrows,
respectively. The feature dynamic check module further filters out some absolute dynamic points,
ensuring that only absolute static feature points are sent to the keyframe database.

In dynamic object classification, the color image is initially processed by the fast
convolutional neural network You Only Look Once (YOLO) [12], which provides semantic
labels of the COCO dataset [27] and bounding boxes of objects. The Harris [28] keypoints
are then extracted, and only those points from absolute static objects and temporary static
objects are tracked using the LK optical flow in the front end. The IMU sensor provides
feature states, like translation, rotation, and velocity with prior motion constraints. The
feature’s dynamic factor is determined by the root mean square of the IMU pre-integration
error and epipolar constraint. During the feature dynamic check, the dynamic factors of
the temporary static points are calculated, indicating the movement of the feature points. A
larger numerical value suggests that the feature points are likely to be dynamic. To preserve

Remote Sens. 2023, 15, 3881 5 of 25

potential points in dynamic scenes, the feature rejection strategy focuses on retaining points
identified by dynamic factors rather than removing all movable points.

In the back end, we propose a novel loss function with adaptive weights based on
dynamic factors in BA, a process used to refine camera poses and spatial point positions.
The typical approach involves minimizing the reprojection error, which quantifies the
difference between landmarks and their observed pixels in the image. To optimize the cost
function, feature weights are incorporated as parameters. D-VINS divides the conventional
optimization process into two steps. Firstly, the feature weights are fixed to independently
optimize the system states. Then, the system states are fixed to optimize the weights. This
process is iterated until the required number of iterations is reached, or until the weights
converge. Additionally, dynamic factors are introduced to adjust the feature weights.

3.1. Dynamic Object Classification

In dynamic environments, tracking static features is crucial for SLAM systems to
maintain localization accuracy. However, deep-learning models struggle to clearly define
the boundary between dynamic and static objects. For instance, while books are typically
considered static objects, they become dynamic when a person holds them, similar to cars
in a parking lot or on a highway. Therefore, relying solely on semantic information is
insufficient for robots to detect moving objects in such environments.

3.1.1. Semantic Label Incremental Updating with Bayes’ Rule

To recognize a wide range of objects, we utilized the COCO dataset to train the
YOLOV5 model, which includes 80 common object categories. However, not all objects
need to be detected, so we focused on the 17 most common categories. The process involves
inputting color images to YOLOV5, accelerated with TensorRT [29], accelerating to obtain
semantic labels of the COCO categories. Bounding boxes help approximate the region of
dynamic objects in the images, and feature points within these boxes are assigned semantic
labels. As the object detection network can sometimes have missing or incorrect detections,
D-VINS employs Bayes’ rule to update the feature’s semantic label and mitigate errors in
specific frames. This approach transforms the labeling problem into a maximum posterior
problem, enhancing the accuracy of semantic labeling.

The mth map point in the given world co-ordinates W observed in the kth frame
can be written as PW

k (x, y, z, 1). pk
m(u, v, 1) denotes the pixels in camera co-ordinates that

correspond to the mth map point. The projection process of the feature points is as follows:

spk
m = KTPW

k (1)

where s is the depth of the map points, K is the extrinsic matrix, and T denotes the
transformation matrix from the world co-ordinates to the observation frame. ltrue ={

lk
i

∣∣∣k ∈ (1, 2, 3, . . . , N), i ∈ (1, 2, 3, . . . , M)
}

and bobserve =
{

bk
i

∣∣∣k ∈ (1, 2, 3, . . . , N), i ∈ (1, 2, 3, . . . , M)
}

denote the ground truth of the semantic labels of the mth feature points from the beginning frame to
the kth frame and the measurements of the deep-learning bounding boxes. According to Bayes’ rule,
there are

P(ltrue|bobserve) =
P(bobserve|ltrue)P(ltrue)

P(bobserve)
∝ P(bobserve|ltrue)P(ltrue) (2)

This is a maximum posterior problem, shown as

arg maxP(ltrue|bobserve) = arg maxP(bobserve|ltrue)× P(ltrue) (3)

The semantic labels of feature points in the current frame can be influenced by dynamic objects
detected in previous frames. Consequently, the semantic label probability distribution of the mth
feature point in the kth frame is affected by the multi-frame history.

P(lm
k
∣∣b1:k) =

k

∏
i=1

P
(
lm
i
∣∣lm

i−1, bi
)

(4)

Remote Sens. 2023, 15, 3881 6 of 25

Upon obtaining the semantic information of the current frame, D-VINS checks its consistency
with the previous frames. If the previous semantic label matches the one in the current frame,
the detection result of the current frame is considered more reliable, and vice versa. The detailed
algorithm steps are presented in Algorithm 1.

Algorithm 1: Semantic label updating with Bayesian rule

Input: Current frame bounding box Amask; current frame’s feature points P; previous frame’s
dynamic label lk−1; non-updated current frame’s dynamic label bk; threshold of the dynamic
label εyolo; frequency of feature point being observed Nobserve
Output: Current frame’s dynamic label lk.
1: for each Pj in this Frame P do:
2: for each bounding box in this Frame do:
3: if (InThisBoundingBox(Pj,Amask)) && (bk ≥ εyolo)) then,
4: Nobserve++;
5: ratio = |lk−1−bk |

lk−1
;

6: ltemp
k = Nobserve

ratio×size(P) × bk +
(

1− Nobserve
size(P)

)(
1− 1

ratio

)
× lk−1;

7: end if
8: end for
9: lk = max(ltemp

k);
10: end for

3.1.2. Feature Point Motion State Classification
The feature point classification is divided into two parts. The first part is to classify the COCO

categories according to the possibility of motion based on life experience. The classification is divided
into five levels (I to V), with higher levels indicating a higher possibility of movement. Level I
includes public facilities (e.g., traffic light and bench), Level II includes furniture (e.g., chair, sofa, and
bed), Level III includes transportation (e.g., bicycle, car, motorbike, bus, truck, and boat), Level IV
includes sports (e.g., football and basketball) and people (e.g., person), and Level V includes animals
(e.g., cat, dog, and bird), as depicted in Figure 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 27

Level II are classified as absolute static objects, objects of Level III and Level IV are
temporary static objects, and objects of Level V are absolute dynamic objects.

Figure 2. Dynamic object hierarchy. The common objects in the COCO dataset are classified based
on life experience. Objects are categorized into different levels based on their potential motion.
Levels I and II correspond to static objects, Levels III and IV correspond to temporary static objects,
and Level V corresponds to dynamic objects.

3.2. Feature Dynamic Check with IMU Prior and Epipolar Constraints
To check the current motion state of movable objects, D-VINS calculates dynamic

factors to find the absolute dynamic points. For temporary static points, the dynamic
factors are determined in two steps. Firstly, the IMU pre-integration calculates the initial
pose of the current frame, and the reprojection error is obtained by projecting the 3D
feature points onto the image plane. Secondly, the foundational matrix is calculated based
on epipolar geometry to determine the distance from the feature points to their respective
epipolar lines, constituting the second part of the dynamic factor.

If the dynamic factor of a feature point falls below a certain threshold, the point is
labeled as an absolute dynamic point.

3.2.1. Dynamic Factor of Reprojection Error Based on IMU Prior Constraint
Conventional visual reprojection involves projecting a feature point from its previous

observed frame onto the pixel plane of the current frame. However, the reprojection error
cannot be calculated if the camera pose of the current frame is unknown. To address this
limitation, IMU pre-integration offers an initial estimate for the current frame’s camera
pose, enabling the calculation of the reprojection error and the rejection of dynamic objects
using the IMU sensor.

There must be errors between the estimation pose and the real camera pose, which
means the reprojection points and the observation points are usually not coincident. For
the map point in the world co-ordinates 𝑷 = 𝑋 , 𝑌 , 𝑍 , 1 , its pixel co-ordinates
projected onto the 𝑗 th frame are 𝒑 = [𝑢 , 𝑣 , 1] . According to Equation (1), a
relationship between the map points and pixel points according to the camera projection
model exists, as follows:

𝑠 𝑢𝑣1 = 𝑲exp (𝝃∧) 𝑋𝑌𝑍1 (5)

Equation (5) can be written in matrix form, 𝒑 = 𝑲exp (𝝃∧)𝑷, and the residual 𝒓
of the reprojection error is as follows: 𝒓 = ∥∥∥𝒑 − 1𝑠 𝑲exp (𝝃∧)𝑷∥∥∥ (6)

Figure 2. Dynamic object hierarchy. The common objects in the COCO dataset are classified based on
life experience. Objects are categorized into different levels based on their potential motion. Levels I
and II correspond to static objects, Levels III and IV correspond to temporary static objects, and
Level V corresponds to dynamic objects.

The second part involves dividing feature points into three categories based on their move-
ment in the current frame: absolute stationary points, temporary stationary points, and absolute
dynamic points.

Generally, if an object is detected as a bench, sofa, or potted plant, its feature points are likely
to be static, making them suitable for pose estimation and mapping. If the semantic label indicates
animals such as birds, cats, or dogs, these features are considered dynamic. Animals typically move
continuously and occupy a small area in an image, exerting less impact on the SLAM system. As
shown in Figure 2, objects of Level I and Level II are classified as absolute static objects, objects of
Level III and Level IV are temporary static objects, and objects of Level V are absolute dynamic objects.

Remote Sens. 2023, 15, 3881 7 of 25

3.2. Feature Dynamic Check with IMU Prior and Epipolar Constraints
To check the current motion state of movable objects, D-VINS calculates dynamic factors to find

the absolute dynamic points. For temporary static points, the dynamic factors are determined in
two steps. Firstly, the IMU pre-integration calculates the initial pose of the current frame, and the
reprojection error is obtained by projecting the 3D feature points onto the image plane. Secondly, the
foundational matrix is calculated based on epipolar geometry to determine the distance from the
feature points to their respective epipolar lines, constituting the second part of the dynamic factor.

If the dynamic factor of a feature point falls below a certain threshold, the point is labeled as an
absolute dynamic point.

3.2.1. Dynamic Factor of Reprojection Error Based on IMU Prior Constraint
Conventional visual reprojection involves projecting a feature point from its previous observed

frame onto the pixel plane of the current frame. However, the reprojection error cannot be calculated
if the camera pose of the current frame is unknown. To address this limitation, IMU pre-integration of-
fers an initial estimate for the current frame’s camera pose, enabling the calculation of the reprojection
error and the rejection of dynamic objects using the IMU sensor.

There must be errors between the estimation pose and the real camera pose, which means
the reprojection points and the observation points are usually not coincident. For the map point in
the world co-ordinates P =

[
Xp, Yp, Zp, 1

]T , its pixel co-ordinates projected onto the jth frame are

pCj =
[
uj, vj, 1

]T
. According to Equation (1), a relationship between the map points and pixel points

according to the camera projection model exists, as follows:

s

uj

vj

1

 = K exp
(
ξ∧
)

Xp
Yp
Zp
1

 (5)

Equation (5) can be written in matrix form, pCj = K exp (ξ∧)P, and the residual rC of the
reprojection error is as follows:

rC =

∥∥∥∥pCj − 1
s

K exp
(
ξ∧
)
P
∥∥∥∥2

2
(6)

where ξ∧ is the Lie algebra of the jth frame in the body frame, and K is the intrinsic matrix obtained
via camera calibration [30]. The camera poses of the jth frame are obtained via IMU pre-integration:

R
bj−1
w pw

bj
= R

bj−1
w

(
pw

bj−1
+ vw

bj−1
∆t− 1

2 gw∆t2
)
+ α

bj−1

bj

R
bj−1
w vw

bj
= R

bj−1
w

(
vw

bj−1
− gw∆t

)
+ β

bj−1

bj

q
bj−1
w ⊗ qw

bj
& = γ

bj−1

bj

(7)

where α
bj−1

bj
, β

bj−1

bj
, and γ

bj−1

bj
are the pre-integration terms of position, velocity, and pose, which

change the reference frame from the world frame to the local body frame bj−1. pw
bj

, vw
bj

, and qw
bj

are
the system states of the jth body frame. From Equation (7), the pose of the jth frame is obtained.

The pixel co-ordinates in the jth frame projected from the ith frame are PCj =
[
uj

i , vj
i , 1
]T

. And the

observation in the jth frame is PCj =
[
ûj

i , v̂j
i , 1
]T

. Through Equation (6), the new visual reprojection
residual rproject(P) of the map point P can be established using the camera projection model:

PCj = π
(

Tc
bT

bj
wTw

bi
Tb

cPCj
)

PCi = π
(

Tc
bTbi

wTw
bj

Tb
cPCi

)
rProject(P) = ‖P

Cj − PCj‖2
2 + ‖P

Ci − PCi‖2
2

(8)

where Tc
b is the transformation matrix from the body frame to the camera frame, which is obtained

using Kalibr [31].T
bj
w and Tw

bi
represent the transformation matrix between IMU frames and the

world co-ordinates. pw
bi

and pw
bi

represent the translation matrix between the body frame and world
frame. π(·) represents the pinhole camera projection model.

Remote Sens. 2023, 15, 3881 8 of 25

As shown in Figure 3, the red distance represents the dynamic factor of the IMU reprojection
error. It shows the observation and projection of the static map point P and the dynamic point P′

in two camera frames. O denotes the camera’s optical center. x1 and x4 are feature points matched
for the two frames with optical flow. x2 is the feature point projected by the static point P in the jth
camera frame. x3 is the feature point projected by the dynamic point P′ in the (j − 1)th camera frame.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 27

(a) Regular motion (b) Motion toward the optical center

Figure 3. Reprojection error based on IMU prior constraint for temporary static points. (a)
Reprojection process with IMU pre-integration. (b) A special case for moving toward the optical
center Oj. The red line represents the reprojection error. The short dashed line indicates that the
object is static. For the convenience of viewing, the green and red lines represent the overlapping
parts, in (b).

3.2.2. Dynamic Factor of Epipolar Constraints
An epipolar constraint is a critical property that restricts the position of feature

points, commonly used in various SLAM systems to accelerate the matching process in
the front end. In D-VINS, data association between feature points is achieved using the
pyramidal iterative Lucas–Kanade optical flow. Subsequently, the fundamental matrix
between two camera frames is computed using the seven-point method based on
RANSAC.

Using the fundamental matrix, the epipolar lines of feature points in the current
frame are calculated. The distance from a point to its epipolar line is defined as the second
part of the dynamic factor. This distance is then utilized to determine whether the point
is dynamic or not. According to the pinhole camera model, the map point P is observed
in different camera frames, which is shown in Figure 4. x1 and x3 are matched feature
points in different frames, and x2 is the feature point projected to the 𝑗th frame by the map
point P. The short dashed lines I and I’ are the epipolar lines of the two frames. 𝒙 = [𝑢 , 𝑣 , 1], 𝒙 = [𝑢 , 𝑣 , 1] are the homogeneous co-ordinate forms of the two
matched feature points, belonging to the (j – 1)th frame and 𝑗th frame, respectively. Then,
the epipolar line 𝑰 of 𝒙 in the jth frame is as follows:

𝑰′ = 𝑋𝑌𝑍 = 𝑭𝒙 = 𝑭 𝑢𝑣1 (10)

where 𝑋, 𝑌, and 𝑍 denote the real constants in the general form of a straight line (Xu + Yv
+ Z = 0), and F denotes the fundamental matrix. Then, for the feature point 𝒙 , the epipolar
constraint is as follows: 𝒙 𝑭𝒙 = 𝒙 𝑰′ = 𝟎 (11)

In Figure 4, the distance from the point to the epipolar line is marked by the blue line.
For the matched feature point 𝒙 (𝑖 = 2,3) of 𝒙 , the residual of the epipolar constraint 𝑟 (𝑷) can be described as follows: 𝑟 (𝑷) = |𝒙 𝑭𝒙𝟏 |‖𝑋‖ + ‖𝑌‖ (12)

Then, the second part of the dynamic factor is obtained as shown below: 𝜆 = 𝑟 (𝑷) (13)

For the features of static objects, 𝑟 (𝑷) should be 0 or close to 0. But, for the
features of dynamic objects, like P’, there is an offset between the real pixel co-ordinates

Figure 3. Reprojection error based on IMU prior constraint for temporary static points. (a) Reprojec-
tion process with IMU pre-integration. (b) A special case for moving toward the optical center Oj.
The red line represents the reprojection error. The short dashed line indicates that the object is static.
For the convenience of viewing, the green and red lines represent the overlapping parts, in (b).

Generally, determining the dynamics of an object through feature points’ reprojection error is
effective. However, this method may fail when the dynamic object is moving along the camera’s
optical center, either towards or away from the camera, as shown in Figure 3. In such cases, the
reprojection error becomes close to 0, even if point P is not a dynamic point. To address this limitation,
we propose an additional reprojection error on the previous frame, alongside the conventional visual
reprojection in Equation (8). By incorporating both reprojection processes, the method becomes
complementary, minimizing the impact on the dynamic judgment of feature points with special object
motion directions. Consequently, the first part of the dynamic factors λp is obtained as shown below:

λp = rproject(P) (9)

3.2.2. Dynamic Factor of Epipolar Constraints
An epipolar constraint is a critical property that restricts the position of feature points, commonly

used in various SLAM systems to accelerate the matching process in the front end. In D-VINS, data
association between feature points is achieved using the pyramidal iterative Lucas–Kanade optical
flow. Subsequently, the fundamental matrix between two camera frames is computed using the
seven-point method based on RANSAC.

Using the fundamental matrix, the epipolar lines of feature points in the current frame are
calculated. The distance from a point to its epipolar line is defined as the second part of the dynamic
factor. This distance is then utilized to determine whether the point is dynamic or not. According to
the pinhole camera model, the map point P is observed in different camera frames, which is shown
in Figure 4. x1 and x3 are matched feature points in different frames, and x2 is the feature point
projected to the jth frame by the map point P. The short dashed lines I and I’ are the epipolar lines of
the two frames.

x1 = [u1, v1, 1], x2 = [u2, v2, 1] are the homogeneous co-ordinate forms of the two matched
feature points, belonging to the (j − 1)th frame and jth frame, respectively. Then, the epipolar line I′

of x2 in the jth frame is as follows:

I′ =

X
Y
Z

 = Fx1
T = F

u1
v1
1

 (10)

where X, Y, and Z denote the real constants in the general form of a straight line (Xu + Yv + Z = 0),
and F denotes the fundamental matrix. Then, for the feature point x2, the epipolar constraint is
as follows:

x2Fx1
T = x2I′ = 0 (11)

Remote Sens. 2023, 15, 3881 9 of 25

In Figure 4, the distance from the point to the epipolar line is marked by the blue line. For the
matched feature point xi(i = 2, 3) of x1, the residual of the epipolar constraint repipolar(P) can be
described as follows:

repipolar(P) =

∣∣xiFx1
T
∣∣√

‖X‖2 + ‖Y‖2
(12)

Then, the second part of the dynamic factor is obtained as shown below:

λe = repipolar(P) (13)

For the features of static objects, repipolar(P) should be 0 or close to 0. But, for the features of
dynamic objects, like P′, there is an offset between the real pixel co-ordinates and their observation.
However, when the feature point moves toward the optical center of the (j − 1)th frame, the feature
point is still on its epipolar line. Therefore, it is hard to determine whether the object is in motion or
not. Therefore, when determining whether features are moving, the two distances of λp and λe need
to be combined.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 27

and their observation. However, when the feature point moves toward the optical center
of the (j – 1)th frame, the feature point is still on its epipolar line. Therefore, it is hard to
determine whether the object is in motion or not. Therefore, when determining whether
features are moving, the two distances of 𝜆 and 𝜆 need to be combined.

(a) Regular motion (b) Motion toward the optical center

Figure 4. Epipolar constraint for temporary static points. (a) Epipolar constraint in regular cases. (b)
A special case for moving toward the optical center 𝑶 . The blue line represents the distance
between the feature point and its epipolar line. The short dashed lines indicate the epipolar lines.

The threshold 𝜀 of the reprojection dynamic factor is set to 4 pixels, and the 𝜀 of the epipolar dynamic factor is set to 3 pixels. If the errors exceed those
thresholds, then the feature points are considered absolute dynamic points and rejected.
Then, the feature is marked as ADP. Thus far, the two dynamic factors 𝜆 and 𝜆 have
been obtained.

This method enables a more accurate classification of temporary static objects and
finds the dynamic feature points. In addition, the feature points of dynamic objects with
small movements can be fully utilized by the SLAM system. The specific algorithm steps
are shown in Algorithm 2.

3.3. Dynamic Adaptive Bundle Adjustment
The current conventional bundle adjustment optimization treats all feature points

with the same weight. This study designs a novel bundle adjustment optimization
algorithm based on the dynamic factor.

Algorithm 2: Dynamic feature rejection algorithm.
Input: Previous frame 𝐹 ; current frame 𝐹 ; previous frame’s feature points 𝑃 ; current
frame’s feature points 𝑃 ; the threshold of the reprojection dynamic factor 𝜀 ; the
threshold of the epipolar dynamic factor 𝜀 .
Output: Current frame’s feature points’ dynamic factors 𝜆 and 𝜆 ; current frame’s
feature points’ dynamic label.
1: for each 𝑃 in this Frame 𝐹 do:
2: if (𝑃 .dynamics_lable == Temporary Static Point) do:
3: F_Maxtrix = cv::FindFundamentalMat(𝐹 , 𝐹 , CV_FM_RANSAC);
4: 𝑃 .A = CalIMUProjectDis(𝐹 , 𝐹);
5: 𝑃 .B = CalEpipolarDis(𝐹 , 𝐹 , F_Maxtrix);
6: if ((A > 𝜀)&&(B > 𝜀)) do:
7: 𝑃 .dynamics_lable = ADP1;
8: end if
9: end for

Figure 4. Epipolar constraint for temporary static points. (a) Epipolar constraint in regular cases.
(b) A special case for moving toward the optical center Oj−1. The blue line represents the distance
between the feature point and its epipolar line. The short dashed lines indicate the epipolar lines.

The threshold εreproject of the reprojection dynamic factor is set to 4 pixels, and the εepipolar of the
epipolar dynamic factor is set to 3 pixels. If the errors exceed those thresholds, then the feature points
are considered absolute dynamic points and rejected. Then, the feature is marked as ADP. Thus far,
the two dynamic factors λp and λe have been obtained.

This method enables a more accurate classification of temporary static objects and finds the
dynamic feature points. In addition, the feature points of dynamic objects with small movements can
be fully utilized by the SLAM system. The specific algorithm steps are shown in Algorithm 2.

Algorithm 2: Dynamic feature rejection algorithm.

Input: Previous frame Fi; current frame Fj; previous frame’s feature points PCi
l ; current frame’s

feature points P
Cj

l ; the threshold of the reprojection dynamic factor εreproject; the threshold of the
epipolar dynamic factor εepipolar.
Output: Current frame’s feature points’ dynamic factors λp and λe; current frame’s feature points’
dynamic label.

1: for each P
Cj

l in this Frame Fj do:

2: if (P
Cj

l .dynamics_lable == Temporary Static Point) do:
3: F_Maxtrix = cv::FindFundamentalMat(Fi, Fj, CV_FM_RANSAC);

4: P
Cj

l .A = CalIMUProjectDis(Fi, Fj);

5: P
Cj

l .B = CalEpipolarDis(Fi, Fj, F_Maxtrix);
6: if ((A > εreproject)&&(B > εepipolar)) do:

7: P
Cj

l .dynamics_lable = ADP1;
8: end if
9: end for

Remote Sens. 2023, 15, 3881 10 of 25

3.3. Dynamic Adaptive Bundle Adjustment
The current conventional bundle adjustment optimization treats all feature points with the

same weight. This study designs a novel bundle adjustment optimization algorithm based on the
dynamic factor.

3.3.1. Conventional Bundle Adjustment Optimization
In the conventional visual–inertial state estimator, the bundle adjustment optimization equation

is as follows:

min
x

{
‖rp −HpX ‖2 + ∑

k∈B
‖rB
(

ẑbk
bk+1

,X
)
‖

2

P
bk
bk+1

+ ∑
(l,j)∈C

ρ

(
‖rC
(

ẑ
cj

l ,X
)
‖

2

P
cj
l

) (14)

where ρH(·) denotes the Huber kernel function; rp represents the marginalization residuals; rI
represents the IMU pre-integration residuals; rP represents the visual reprojection error; Hp represents
the marginalization of the measurement state estimation matrix; ẑbk

bk+1
represents an IMU observation;

ẑci
j represents a visual observation; Pbk

bk+1
denotes the covariance of the IMU measurement; Pci

j denotes
the visual covariance; B represents the set of all IMU observations; C represents the set of tracked
features in the sliding window; and X denotes the estimated states to be optimized.

The traditional bundle adjustment formulation cannot reject or adjust the weights of dynamic
feature points. Eliminating all temporary static points would result in insufficient visual observations
for optimization, leading to unstable or erroneous BA optimization results. Thus, a more robust
approach to BA optimization needs to be implemented.

3.3.2. Dynamic Adaptive Cost Function with Dynamic Factors
The novel cost function introduced in this study possesses two main features. Firstly, it facil-

itates the rejection of dynamic features. Secondly, it adjusts the weights of feature points during
optimization based on the dynamic factors. Drawing inspiration from DynaVINS, we propose the
form of the dynamic adaptive loss function as follows:

ρD

(
λp, λe, Wj, Lj, rj

P

)
=
(

1− Lj

)
×
[

Wj
2ρH(λ) +

(
1−Wj

)2
λw

]
+ Lj × ρH

(
rj
P

)
(15)

ρD

(
λp, λe, Wj, Lj, rj

P

)
=

Wj
2ρH(λ) +

(
1−Wj

)2
λw, Lj = 1

ρH

(
rj
P

)
, Lj = 0

(16)

λw =
1√

λp2+λe2

2

∈ [1, 12] (17)

where λp and λe denote two dynamic factors of a feature point in the frame j; Wj ∈ [0, 1] denotes the
weights of feature points, where the weight is fixed to 1 for absolute static points; and Lj ∈ {0, 1}
represents the dynamic label, which will be 1 for absolute static points and 0 for temporary static
points. Equation (17) presents the dynamic factors. For absolute static points, Lj is 1, and the back-end
optimization loss function is the same as the conventional one. For temporary static points, the loss

function will switch to Wj
2ρH(λ) +

(
1−Wj

)2
λw shown in Equation (16). As the loss function is

designed to have a nonlinear quadratic form, the optimal weights Wj can be derived as follows:

Wj =
λw

ρH(λ) + λw
(18)

After optimizing the weights, the features with higher dynamic factors λw will have lower
weights. The losses’ gradient of those features will be close to zero, which has no impact on BA, as
shown in Figure 5a. The higher the weight assigned to feature points, the steeper the slope of the
curve, indicating a greater impact on the nonlinear optimization process.

Remote Sens. 2023, 15, 3881 11 of 25
Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 27

(a) (b) (c)

Figure 5. Changes in loss with various parameters. (a) Loss of one feature with 𝜆 = 2 . (b)
Converged loss of one feature with different dynamic factors, 𝜆 and 𝜆 . (c) Converged loss of one
feature with 𝜆 fixed.

Different dynamic factors 𝜆 affect the gradient value and adjust the BA residuals
with marginalization and IMU pre-integration residuals. Equation (16) in quadratic form
is designed for nonlinear optimization. As 𝜆 increases, the gradient value of the
converged loss function decreases, resulting in a smaller weight assigned to the
corresponding features during the optimization process, as shown in Figure 5b.

When a feature point moves toward the optical center, the value of the reprojected
dynamic factor 𝜆 is typically small. However, if the feature point exhibits a larger
dynamic factor 𝜆 due to epipolar constraints, 𝜆 will be smaller, resulting in a smaller
weight, as shown in Figure 5c.

Different from DynaVINS, the weight momentum factor does not need the help of
semantic labels, and the point weights are delivered with bounding boxes. The total cost
function based on the dynamic factors is as follows:

𝑚𝑖𝑛𝒳,   ∥∥𝐫 − 𝐇 𝒳∥∥ +  ∈ℬ ∥∥𝐫ℐ ∥∥ +  ∈𝐅𝒫 𝜌 𝐴 , 𝐵 , 𝑊 , 𝐿 , 𝐫𝒫 (19)

The strategy is to increase the weight of absolute static points and decrease the weight
of temporary static points in BA optimization, completely discarding absolute dynamic
points in the optimization. The weights of feature points are optimized to obtain more
robust localization results. In optimizing the current state 𝓧, the weights of each feature
point are fixed. After that, the current state 𝓧 is fixed, and the feature points’ weights 𝑊 are optimized according to the dynamic adaptive cost function, which is as follows:

𝑚𝑖𝑛   ∈𝐅𝒫 𝜌 𝐴 , 𝐵 , 𝑊 , 𝐿 , 𝐫𝒫 (20)

Since the feature points’ weights 𝑊 are independent from each other, the overall
loss function is obtained by accumulating the cost equations of each feature point:

𝑚𝑖𝑛∈[,]   𝑊  ∈ 𝜌 ∥∥𝐫𝒫, ∥∥ + (1 − 𝑊 (𝜆)) 𝜆 (21)

Ultimately, different optimization weights can be used based on different dynamic
factors of the feature points.

Figure 5. Changes in loss with various parameters. (a) Loss of one feature with λw = 2. (b) Converged
loss of one feature with different dynamic factors, λp and λe. (c) Converged loss of one feature with
λp fixed.

Different dynamic factors λw affect the gradient value and adjust the BA residuals with marginal-
ization and IMU pre-integration residuals. Equation (16) in quadratic form is designed for nonlinear
optimization. As λw increases, the gradient value of the converged loss function decreases, resulting
in a smaller weight assigned to the corresponding features during the optimization process, as shown
in Figure 5b.

When a feature point moves toward the optical center, the value of the reprojected dynamic
factor λp is typically small. However, if the feature point exhibits a larger dynamic factor λe due to
epipolar constraints, λw will be smaller, resulting in a smaller weight, as shown in Figure 5c.

Different from DynaVINS, the weight momentum factor does not need the help of semantic
labels, and the point weights are delivered with bounding boxes. The total cost function based on the
dynamic factors is as follows:

min
X ,W

‖rp −HpX‖2 + ∑
k∈B
‖rk
I‖

2 + ∑
j∈FP

ρD

(
Aj, Bj, Wj, Lj, rj

P

) (19)

The strategy is to increase the weight of absolute static points and decrease the weight of
temporary static points in BA optimization, completely discarding absolute dynamic points in the
optimization. The weights of feature points are optimized to obtain more robust localization results.
In optimizing the current state X , the weights of each feature point are fixed. After that, the current
state X is fixed, and the feature points’ weights W are optimized according to the dynamic adaptive
cost function, which is as follows:

min
Wj

 ∑
j∈FP

ρD

(
Aj, Bj, Wj, Lj, rj

P

) (20)

Since the feature points’ weights Wj are independent from each other, the overall loss function
is obtained by accumulating the cost equations of each feature point:

min
Wj∈[0,1]

{
Wj

2

(
∑

i∈TSP
ρH

(
‖rj,i
P ‖

2
))

+
(

1−Wj(λw)
)2

λw

}
(21)

Ultimately, different optimization weights can be used based on different dynamic factors of the
feature points.

4. Experimental Results
In this section, we validate the effectiveness of D-VINS by conducting experiments on publicly

available datasets, including TUM RGB-D [32], KITTI [33], and VIODE [34]. These datasets offer
diverse dynamic scenes for testing the algorithm’s performance.

TUM RGB-D is a widely used dynamic SLAM measurement dataset, containing monocular
camera and RGBD information. VIODE is a simulation dataset specifically designed for algorithm
performance testing. It is generated using a drone equipped with a stereo camera and IMU. The
KITTI dataset is utilized to evaluate the algorithm’s performance in urban vehicle platforms.

Remote Sens. 2023, 15, 3881 12 of 25

In this paper, the root mean square error (RMSE) of the absolute trajectory error (ATE) [35] and
the root mean square value of the relative pose error (RPE) were selected as evaluation metrics. The
unit of the ATE is m. The unit of translational drift in the RPE is m/s. The ATE is well-suited to
measuring the global consistency of the trajectory, while the RPE is well-suited to measuring the
translation and rotation drift. They represent the global consistency of the trajectory and the drift of
the odometer per unit time, respectively. Given the estimation state Xi and the ground truth X̂i,
ATE-RMSE and RPE-RMSE are calculated as follows:

ATERMSE =

√
1
n

n

∑
i=1
‖translation

(
X̂i
)
− translation(Xi)‖2 (22)

RPERMSE =

√√√√ 1
n

n

∑
i=1
‖translation

((
X̂−1

i X̂i+∆

)−1(
X−1

i Xi+∆

))
‖

2
(23)

where n is the number of frames in the data sequence, and ∆ is a time interval. The experimental
results were analyzed both qualitatively and quantitatively. To facilitate the experiments, we inte-
grated D-VINS with ROS, and all tests were conducted on a laptop equipped with 16 GB RAM (CPU:
AMD Ryzen7 5800H, made by AMD USA, GPU: NVIDIA GEFORCE RTX 3050TI, made by NVIDIA
Corporation USA). We evaluated the improvement of our proposed system, D-VINS, compared to
the original algorithms ORB-SLAM2, and ORB-SLAM3. Additionally, we compared D-VINS with the
state-of-the-art dynamic VSLAM algorithm, DynaVINS, as well as other similar algorithms such as
DS-SLAM, RS-SLAM, and Dynamic-VINS, to further assess its effectiveness.

4.1. TUM RGB-D, VIODE, and KITTI Dataset Evaluation
4.1.1. TUM RGB-D Dataset

The TUM RGB-D dataset was captured using a Microsoft Kinect camera, made by Microsoft
USA, at a frame rate of 30 Hz. It consists of 39 image sequences containing both color and depth
images. This dataset has become widely used for evaluating visual odometry in dynamic scenes. The
ground truth is obtained through a high-precision motion capture system. This dataset provides nine
sequences for dynamic scenes, where dynamic objects can be divided into low- and high-dynamic
sequences. The low-dynamic sequences are labeled “sitting” (fr3/sitting_static, fr3/sitting_xyz,
fr3/sitting_halfsphere, fr3/sitting_rpy); and the high-dynamic sequences are labeled “walking”
(fr3/walking_static, fr3/walking_xyz, fr3/walking_halfsphere, fr3/walking_rpy).

In this paper, we used the open-source trajectory evaluation tool Evo (available online: https://
github.com/MichaelGrupp/evo (accessed on 25 April 2023)) to visualize the trajectory differences
between D-VINS and ORB-SLAM2. In addition, the TUM dataset contains no IMU data, and VINS
does not support monocular VO mode, so modules containing IMUs were excluded from D-VINS for
the experiment. The data were obtained from the actual experiments on the dataset. There are the
hyperparameters used in D-VINS, the number of feature points (150), and the pixel spacing of feature
points (25); and the initial value of the dynamic factor of the feature point is λp = 2, λe = 2.

Firstly, Figure 6 shows the plotted trajectories of the two algorithms. The black dashed line
represents the ground truth, provided by the dynamic capture. The blue solid line represents the
trajectory generated by D-VINS, and the green solid line represents the trajectory generated by
ORB-SLAM2 for comparative analysis. The quantitative analysis of this figure fully demonstrates the
necessity of dynamic object rejection and the effectiveness of D-VINS. According to Figure 6h, it can
be seen that, when dynamic objects appear, the trajectory accuracy is seriously impaired.

Secondly, Tables 1 and 2 summarize the quantitative experimental results, showing a compari-
son with several outstanding SLAM algorithms, like ORB-SLAM3 [7], RS-SLAM [23], and Dynamic-
VINS [24]. Among these contrasting SLAM methods, ORB-SLAM3 is the most accurate VSLAM
open-source algorithm for evaluating the positioning accuracy of D-VINS in non-dynamic environ-
ments. RS-SLAM is a robust semantic RGB-D SLAM system that can achieve real-time high-accuracy
localization based on semantic segmentation. The horizontal line in (h) represents loopback detection.
Dynamic-VINS is an optimization-based RGB-D inertial odometry system providing real-time state
estimation results for resource-restricted platforms.

https://github.com/MichaelGrupp/evo
https://github.com/MichaelGrupp/evo

Remote Sens. 2023, 15, 3881 13 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 27

VINS, the number of feature points (150), and the pixel spacing of feature points (25); and
the initial value of the dynamic factor of the feature point is 𝜆 = 2, 𝜆 = 2.

Firstly, Figure 6 shows the plotted trajectories of the two algorithms. The black
dashed line represents the ground truth, provided by the dynamic capture. The blue solid
line represents the trajectory generated by D-VINS, and the green solid line represents the
trajectory generated by ORB-SLAM2 for comparative analysis. The quantitative analysis
of this figure fully demonstrates the necessity of dynamic object rejection and the
effectiveness of D-VINS. According to Figure 6h, it can be seen that, when dynamic objects
appear, the trajectory accuracy is seriously impaired.

Secondly, Tables 1 and 2 summarize the quantitative experimental results, showing
a comparison with several outstanding SLAM algorithms, like ORB-SLAM3 [7], RS-SLAM
[23], and Dynamic-VINS [24]. Among these contrasting SLAM methods, ORB-SLAM3 is
the most accurate VSLAM open-source algorithm for evaluating the positioning accuracy
of D-VINS in non-dynamic environments. RS-SLAM is a robust semantic RGB-D SLAM
system that can achieve real-time high-accuracy localization based on semantic
segmentation. The horizontal line in (h) represents loopback detection. Dynamic-VINS is
an optimization-based RGB-D inertial odometry system providing real-time state
estimation results for resource-restricted platforms.

(a) fr3_sitting_halfsphere (b) fr3_sitting_static (c) fr3_sitting_xyz (d) fr3_walking_ halfsphere

(e) fr3_walking_rpy (f) fr3_walking_static (g) fr3_walking_xyz (h) ATE comparison

Figure 6. Comparison of trajectory results of D-VINS (blue) and ORB-SLAM2 (green) on the TUM
datasets. (a–g) are the trajectory comparison results for each sequence of the TUM RGB-D dataset.
(h) is the comparison results of the two algorithms for the fr3_walking_rpy sequence. The horizontal
axis represents time in seconds, and the longitudinal axis represents the ATE in meters.

According to Table 1, D-VINS outperformed ORB-SLAM2 in six sequences and ORB-
SLAM3 in four dynamic sequences. In the sequences fr3_sitting_xyz and fr3_sitting_halfs,
even though D-VINS did not achieve the highest positioning accuracy, it obtained sub-
optimal accuracy in the camera absolute pose estimation. ORB-SLAM2 was unable to
identify dynamic point features, and its camera pose accuracy was the weakest of all
compared SLAM algorithms.

In Table 2, the compared methods’ results are presented, as reported in their original
published papers. It is not difficult to find that D-VINS obtained the two best results from
the four groups of experiments. In the fr3_walking_static and fr3_walking_xyz sequences,
D-VINS obtained sub-optimal accuracy compared with the three other SLAM methods.

Figure 6. Comparison of trajectory results of D-VINS (blue) and ORB-SLAM2 (green) on the TUM
datasets. (a–g) are the trajectory comparison results for each sequence of the TUM RGB-D dataset.
(h) is the comparison results of the two algorithms for the fr3_walking_rpy sequence. The horizontal
axis represents time in seconds, and the longitudinal axis represents the ATE in meters.

Table 1. The ATE- and RPE-RMSE (m) of ORB-SLAM2, ORB-SLAM3, and D-VINS on the TUM
RGB-D dataset.

Sequences
ORB-SLAM2 ORB-SLAM3 D-VINS * (Ours) Improvement

ATE RPE ATE RPE ATE RPE ATE RPE

fr3_sitting_static 0.0116 0.0152 0.0097 0.0060 0.0080 0.0114 17.53% -
fr3_sitting_xyz 0.0133 0.0199 0.0098 0.0086 0.0153 0.0179 - -

fr3_sitting_halfs 0.0336 0.0124 0.0208 0.0080 0.0252 0.0122 - -

fr3_walking_static 0.4121 0.0299 0.2450 0.0163 0.0069 0.0101 97.18% 38.04%
fr3_walking_xyz 0.8856 0.1255 0.5617 0.0267 0.0155 0.0182 97.24% 31.84%
fr3_walking_rpy 0.5987 0.0528 0.6841 0.0289 0.0422 0.0432 92.95% -
fr3_walking_ half 0.4227 0.0338 0.3212 0.0202 0.0216 0.0234 93.27% -

Note: Bold data indicate the best results. The symbol “*” indicates that D-VINS removed the module containing
the IMU. The symbol “-” indicates that the algorithm showed no improvement.

Table 2. The ATE- and RPE-RMSE (m) of D-VINS and the compared methods on the TUM RGB-D dataset.

Sequences
DS-SLAM RS-SLAM Dynamic-VINS D-VINS * (Ours)

ATE RPE ATE RPE ATE RPE ATE RPE

fr3_walking_static 0.0081 0.0102 0.0067 0.0099 0.0077 0.0095 0.0069 0.0101
fr3_walking_xyz 0.0247 0.0333 0.0146 0.0210 0.0486 0.0578 0.0155 0.0182
fr3_walking_rpy 0.4442 0.1503 0.1869 0.2640 0.0629 0.0595 0.0422 0.0432
fr3_walking_half 0.0303 0.0297 0.0425 0.0609 0.0608 0.0665 0.0216 0.0234

Note: Bold data indicate the best results. The symbol “*” indicates that D-VINS removed the module containing
the IMU.

According to Table 1, D-VINS outperformed ORB-SLAM2 in six sequences and ORB-SLAM3 in
four dynamic sequences. In the sequences fr3_sitting_xyz and fr3_sitting_halfs, even though D-VINS
did not achieve the highest positioning accuracy, it obtained sub-optimal accuracy in the camera

Remote Sens. 2023, 15, 3881 14 of 25

absolute pose estimation. ORB-SLAM2 was unable to identify dynamic point features, and its camera
pose accuracy was the weakest of all compared SLAM algorithms.

In Table 2, the compared methods’ results are presented, as reported in their original published
papers. It is not difficult to find that D-VINS obtained the two best results from the four groups
of experiments. In the fr3_walking_static and fr3_walking_xyz sequences, D-VINS obtained sub-
optimal accuracy compared with the three other SLAM methods. The reliability of dynamic object
recognition and rejection with deep learning and geometric constraints was verified with this dataset.
RS-SLAM utilizes PSPNet for pixel-level segmentation and depth information, resulting in a higher
accuracy in dynamic feature detection. It provides highly precise localization results when the
number of dynamic feature points is limited. Dynamic-VINS just simply disables modules relevant to
the IMU. Therefore, its robustness and accuracy were weaker in high-dynamic sequences. DS-SLAM
exhibited severe accuracy degradation in fr3_walking_rpy. This is attributed to the non-texture and
pure rotational motion, which affect the estimation of epipolar lines and camera poses. Additionally,
significant occlusions occur when people pass in front of the camera, as the features’ weights are
not adjusted. It should be noted that D-VINS does not incorporate pixel-level segmentation results
and relies on bounding boxes, which introduces feature point segmentation errors. However, the
advantage of D-VINS lies in its efficient processing speed.

4.1.2. KITTI Dataset
The KITTI dataset provides sequences containing stereo color images in the 00 to 10 urban street

and highway environments for evaluating the accuracy of odometry localization. The hyperparame-
ters used in D-VINS are: the number of feature points (150), the pixel spacing of feature points (35),
the maximum number of optimizations (5), and the initial value of the dynamism factor of the feature
point (λp = 2, λe = 2). The parameters for DynaVINS in KITTI are: λw = 1.0, λm = 0.2.

Table 3 shows the results of the 05 and 07 sequences in comparison with VINS-Fusion and
DynaVINS, and the bolded data indicate the best performance, as shown in Figure 7. Since dynamic
objects on both the 00 and 05 sequence streets are sparse, dynamic object rejection provides a limited
improvement to the system’s accuracy. The experimental data were obtained from real measurements,
rather than directly from the paper, to compare the generalizability of the algorithms. As shown
in Table 3, the localization accuracy and dynamic feature recognition rejection of DynaVINS are
highly dependent on the hyperparameters (momentum factor and regularization factor). Therefore,
its localization results in different datasets are worse, and it is hard to keep the algorithm localized
with high accuracy even after a long period of parameter adjustment. The experimental results on
the KITTI dataset show that D-VINS has better generalizability than DynaVINS, as well as a certain
accuracy improvement compared to VINS-Fusion.

Table 3. The ATE-RMSE (m) of VINS-Fusion, DynaVINS, and D-VINS on the KITTI dataset.

Sequences VINS-Fusion DynaVINS D-VINS

KITTI 05 1.913 12.4668 1.7631
KITTI 07 2.1927 3.8006 2.1100

Note: bold data indicate the best results.

4.1.3. VIODE Dataset
VIODE is a simulation dataset for testing VIO performance in dynamic environments such

as urban areas, filling the gap in dynamic VIO system evaluation. The dataset simulates the UAV
localization problem in different dynamic environments (daytime city street environment, dark
city street environment, and underground parking environment). Each scene is divided into four
sequences according to the number of dynamic objects: 0_none, 1_low, 2_mid, and 3_high have a total
of 12 sequences. In the high sequences, the camera field of view is included with the entire occlusion
to evaluate the localization accuracy and system robustness of the VIO in extreme situations. The
dataset contains time-synchronized stereo color images, IMU data, an instance segmentation mask,
and the ground truth of the trajectory.

To validate the accuracy of the algorithm in the dynamic recognition of absolute dynamic points
and temporary static points, D-VINS and DynaVINS were compared. VINS-Fusion was also included
in the comparison to prove the necessity and effectiveness of the dynamic rejection module. The
hyperparameters used in D-VINS are: the number of feature points (150), the pixel spacing of feature
points (35), the maximum number of optimizations (5), and the initial value of the dynamism factor
of the feature point (λp = 2, λe = 2). The hyperparameters in DynaVINS use the same values as

Remote Sens. 2023, 15, 3881 15 of 25

in the paper, with regularization factor λw = 1.0 and momentum factor λm = 2.0. Figure 8 shows
the miss-detection compensation module. These features remain as labels as they are tracked by the
optical flow. Figure 9 presents the epipolar constraint results; the points far from the epipolar line are
labeled as dynamic points.

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 27

dynamic feature recognition rejection of DynaVINS are highly dependent on the
hyperparameters (momentum factor and regularization factor). Therefore, its localization
results in different datasets are worse, and it is hard to keep the algorithm localized with
high accuracy even after a long period of parameter adjustment. The experimental results
on the KITTI dataset show that D-VINS has better generalizability than DynaVINS, as well
as a certain accuracy improvement compared to VINS-Fusion.

(a) KITTI 05 VINS-Fusion, DynaVINS, and D-VINS accuracy heat maps

(b) KITTI 05 ATE distribution and comparison

(c) KITTI 07 VINS-Fusion, DynaVINS, and D-VINS accuracy heat maps

(d) KITTI 07 ATE distribution and comparison

Figure 7. Comparison trajectory results of VINS-Fusion, DynaVINS, and D-VINS on the KITTI 05
and 07 sequences. (a,b) present the accuracy heat maps and comparison results for the 05 sequence,
and (c,d) present those for the 07 sequence, respectively.

Remote Sens. 2023, 15, 3881 16 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 27

Figure 7. Comparison trajectory results of VINS-Fusion, DynaVINS, and D-VINS on the KITTI 05
and 07 sequences. (a,b) present the accuracy heat maps and comparison results for the 05 sequence,
and (c,d) present those for the 07 sequence, respectively.

Table 3. The ATE-RMSE (m) of VINS-Fusion, DynaVINS, and D-VINS on the KITTI dataset.

Sequences VINS-Fusion DynaVINS D-VINS
KITTI 05 1.913 12.4668 1.7631
KITTI 07 2.1927 3.8006 2.1100

Note: bold data indicate the best results.

4.1.3. VIODE Dataset
VIODE is a simulation dataset for testing VIO performance in dynamic environments

such as urban areas, filling the gap in dynamic VIO system evaluation. The dataset
simulates the UAV localization problem in different dynamic environments (daytime city
street environment, dark city street environment, and underground parking
environment). Each scene is divided into four sequences according to the number of
dynamic objects: 0_none, 1_low, 2_mid, and 3_high have a total of 12 sequences. In the
high sequences, the camera field of view is included with the entire occlusion to evaluate
the localization accuracy and system robustness of the VIO in extreme situations. The
dataset contains time-synchronized stereo color images, IMU data, an instance
segmentation mask, and the ground truth of the trajectory.

To validate the accuracy of the algorithm in the dynamic recognition of absolute
dynamic points and temporary static points, D-VINS and DynaVINS were compared.
VINS-Fusion was also included in the comparison to prove the necessity and effectiveness
of the dynamic rejection module. The hyperparameters used in D-VINS are: the number
of feature points (150), the pixel spacing of feature points (35), the maximum number of
optimizations (5), and the initial value of the dynamism factor of the feature point (𝜆 =2, 𝜆 = 2). The hyperparameters in DynaVINS use the same values as in the paper, with
regularization factor 𝜆 = 1.0 and momentum factor 𝜆 = 2.0. Figure 8 shows the miss-
detection compensation module. These features remain as labels as they are tracked by
the optical flow. Figure 9 presents the epipolar constraint results; the points far from the
epipolar line are labeled as dynamic points.

Figure 8. Result of the YOLOV5 detection test. Top: original detection results of YOLOV5. Bottom:
detection results after using the compensation algorithm in Section 3.1.1. The red box shows the
position of clustered features for compensation.

Figure 8. Result of the YOLOV5 detection test. Top: original detection results of YOLOV5. Bottom:
detection results after using the compensation algorithm in Section 3.1.1. The red box shows the
position of clustered features for compensation.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 27

Figure 9. Epipolar constraint results in the parking_lot 3_high sequence. The red lines indicate
epipolar lines.

Overall, D-VINS demonstrates great pose estimation accuracy in static scenes when
incorporating the dynamic factor, as illustrated in Table 4. It exhibits a better localization
accuracy in low-dynamic scenes and comparable accuracy to DynaVINS in high-dynamic
scenes, and, in some sequences, it even outperforms DynaVINS. Additionally, the spacing
and quantity of feature points in the front end significantly affect the performance of D-
VINS. In cases where remote features dominate the field of view or the feature spacing is
too small, the accuracy of the stereo system is severely compromised. Thus, for the same
set of parameters, D-VINS does not perform as well in the city sequence as it does in the
parking lot environment. The localization accuracy of DynaVINS highly depends on the
hyperparameters, such as the regularization factor 𝜆 and the momentum factor 𝜆 .
However, these hyperparameters are manually tuned and lack generalization across
different scenes. While they exhibit high localization accuracy in some scenes, they may
not be suitable for other sequences. For example, the localization accuracy of DynaVINS
in the City_day dataset is unstable.

In dynamic scenes with low occlusion, D-VINS incorporates a deep-learning module
that detects dynamic objects and calculates dynamic factors with geometry. D-VINS
achieves higher accuracy in screening dynamic feature points compared to DynaVINS,
which only relies on geometric methods for dynamic object rejection, as observed in
Figure 10b,d,f. Consequently, D-VINS achieves a better positioning accuracy in low and
mid sequences. The green feature points represent absolute static points, the white feature
points represent absolute dynamic points, and the purple feature points represent
temporary dynamic points. However, in highly occluded environments where dynamic
objects are near the camera, D-VINS may fail to detect the objects with the deep-learning
network.

Table 4. The ATE-RMSE (m) of VINS-Fusion, DynaVINS, and D-VINS on the VIODE dataset.

Scenes Sequences VINS-Fusion DynaVINS D-VINS

Parking_lot

0_none 0.0774 0.0595 0.0538
1_low 0.1126 0.0826 0.0472
2_mid 0.1174 0.0630 0.0396
3_high 0.1998 0.0982 0.0664

City_day

0_none 0.1041 0.1391 0.0882
1_low 0.2043 0.0748 0.0912
2_mid 0.2319 0.0520 0.0864
3_high 0.3135 0.0743 0.0835

City_night
0_none 0.2624 0.1801 0.1561
1_low 0.5665 0.1413 0.1221
2_mid 0.3862 0.1192 0.1395

Figure 9. Epipolar constraint results in the parking_lot 3_high sequence. The red lines indicate
epipolar lines.

Overall, D-VINS demonstrates great pose estimation accuracy in static scenes when incor-
porating the dynamic factor, as illustrated in Table 4. It exhibits a better localization accuracy in
low-dynamic scenes and comparable accuracy to DynaVINS in high-dynamic scenes, and, in some
sequences, it even outperforms DynaVINS. Additionally, the spacing and quantity of feature points in
the front end significantly affect the performance of D-VINS. In cases where remote features dominate
the field of view or the feature spacing is too small, the accuracy of the stereo system is severely
compromised. Thus, for the same set of parameters, D-VINS does not perform as well in the city
sequence as it does in the parking lot environment. The localization accuracy of DynaVINS highly
depends on the hyperparameters, such as the regularization factor λw and the momentum factor λm.
However, these hyperparameters are manually tuned and lack generalization across different scenes.
While they exhibit high localization accuracy in some scenes, they may not be suitable for other
sequences. For example, the localization accuracy of DynaVINS in the City_day dataset is unstable.

Table 4. The ATE-RMSE (m) of VINS-Fusion, DynaVINS, and D-VINS on the VIODE dataset.

Scenes Sequences VINS-Fusion DynaVINS D-VINS

Parking_lot

0_none 0.0774 0.0595 0.0538
1_low 0.1126 0.0826 0.0472
2_mid 0.1174 0.0630 0.0396
3_high 0.1998 0.0982 0.0664

City_day

0_none 0.1041 0.1391 0.0882
1_low 0.2043 0.0748 0.0912
2_mid 0.2319 0.0520 0.0864
3_high 0.3135 0.0743 0.0835

Remote Sens. 2023, 15, 3881 17 of 25

Table 4. Cont.

Scenes Sequences VINS-Fusion DynaVINS D-VINS

City_night

0_none 0.2624 0.1801 0.1561
1_low 0.5665 0.1413 0.1221
2_mid 0.3862 0.1192 0.1395
3_high 0.7611 0.1519 0.1566

Note: bold data indicate the best results.

In dynamic scenes with low occlusion, D-VINS incorporates a deep-learning module that detects
dynamic objects and calculates dynamic factors with geometry. D-VINS achieves higher accuracy in
screening dynamic feature points compared to DynaVINS, which only relies on geometric methods
for dynamic object rejection, as observed in Figure 10b,d,f. Consequently, D-VINS achieves a better
positioning accuracy in low and mid sequences. The green feature points represent absolute static
points, the white feature points represent absolute dynamic points, and the purple feature points
represent temporary dynamic points. However, in highly occluded environments where dynamic
objects are near the camera, D-VINS may fail to detect the objects with the deep-learning network.

4.2. Data Collection Equipment and Real-Environment Dataset Experiments
To demonstrate that D-VINS can be applied to a real project, we built a self-made data acquisition

device and created a dataset with it.

4.2.1. Data Collection Devices and Real Datasets
The device integrates GNSS, inertial navigation, LIDAR, and a stereo camera, and is mainly

divided into two parts: the handheld part, and the backpack part. As shown in Figure 11, the device
has three working modes: handheld, backpack, and vehicle working mode. The handheld part
includes a GNSS antenna, Velodyne VLP-32C mechanical LIDAR, Inertial Labs INS-D GNSS/IMU
inertial guidance, and a ZED2 color stereo camera, and the resolution is 1280 × 720; the backpack
part includes an NVIDIA Jetson AGX Xavier processor, a 12 V DC lithium battery, an MD-649 4G
DTU 4G communication module, and an antenna. In this paper, one handheld rural sequence and
two city street sequences were selected for experimental validation:

• The 5_SLAM_country_dynamic_loop_1 sequence was collected in a village in Xiangyin County,
Yueyang City, Hunan Province, in a relatively open environment, where a pedestrian and child
were always present in the image moving in synchronization with the camera. The start and
end points of the sequence are close to each other, but there is no loop to detect the drift.

• The 14_SLAM_car_road_1 sequence shows a street in Xiangyin County, Yueyang City, Hunan
Province. The sequence is an open environment. This environment is challenging for stereo-
visual localization, which causes severe drift. The rural roads are narrow with many vehicles,
and there are villagers gathering in the middle of the road. Pedestrians and vehicles are intricate
and occupy a large field of view, making positioning difficult and challenging.

• The 18_SLAM_car_road_2 sequence is an urban environment with wider roads, more vehicles,
and more pedestrians compared to the 14 rural streets. It is suitable as a dynamic rejection
algorithm evaluation sequence. The main data types include GNSS raw data, IMU data, LiDAR
point cloud data, and binocular color image data. The ground truth of the trajectory is obtained
with GNSS RTK.

4.2.2. Feature Classification Results on the Real Dataset
In the 5_SLAM_country_dynamic_loop_1 sequence, there are two people walking in front of

the camera; this represents an easy object detection task for deep learning to accomplish. As shown
in Figure 12, when the person with the jacket is moving in the second row in (a), the dynamic features
are segmented accurately. When the person is movable but remains static at the current time shown
in the first row in (a), those feature points are kept for optimization. In a highly dynamic sequence,
the majority of the points are movable and only a few of them are moving. D-VINS is able to reject
dynamic features that are close to the camera with higher dynamic factors. In the city street, the cars
parked on the roadside and driving on the road are detected with different motion state classifications.

Remote Sens. 2023, 15, 3881 18 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 27

(a) Parking_lot ATE distribution and trajectory comparison

(b) Parking_lot detection and feature classification

(c) City_day ATE distribution and trajectory comparison

(d) City_day detection and feature classification

(e) City_night ATE distribution and trajectory comparison

Figure 10. Cont.

Remote Sens. 2023, 15, 3881 19 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 27

(f) City_night detection and feature classification

Figure 10. Results of the trajectories and detection of VINS-Fusion, DynaVINS, and D-VINS on the
VIODE dataset (parking_lot, city_day, and city_night scenes).In (a,c,e), the first three figures show
the ATE distributions of the 0_none, 1_low, and 2_mid. The last figure shows the trajectories of the
three algorithms in the 3_high sequence. In (b,d,f), the first three figures show the dynamics of the
feature check result, where the green points are absolute static points, the purple points are
temporary static points, and the white points are absolute dynamic points. The last figure shows the
bounding box from YOLOV5.

4.2. Data Collection Equipment and Real-Environment Dataset Experiments
To demonstrate that D-VINS can be applied to a real project, we built a self-made

data acquisition device and created a dataset with it.

4.2.1. Data Collection Devices and Real Datasets
The device integrates GNSS, inertial navigation, LIDAR, and a stereo camera, and is

mainly divided into two parts: the handheld part, and the backpack part. As shown in
Figure 11, the device has three working modes: handheld, backpack, and vehicle working
mode. The handheld part includes a GNSS antenna, Velodyne VLP-32C mechanical
LIDAR, Inertial Labs INS-D GNSS/IMU inertial guidance, and a ZED2 color stereo
camera, and the resolution is 1280 × 720; the backpack part includes an NVIDIA Jetson
AGX Xavier processor, a 12 V DC lithium battery, an MD-649 4G DTU 4G communication
module, and an antenna. In this paper, one handheld rural sequence and two city street
sequences were selected for experimental validation:
• The 5_SLAM_country_dynamic_loop_1 sequence was collected in a village in

Xiangyin County, Yueyang City, Hunan Province, in a relatively open environment,
where a pedestrian and child were always present in the image moving in
synchronization with the camera. The start and end points of the sequence are close
to each other, but there is no loop to detect the drift.

• The 14_SLAM_car_road_1 sequence shows a street in Xiangyin County, Yueyang
City, Hunan Province. The sequence is an open environment. This environment is
challenging for stereo-visual localization, which causes severe drift. The rural roads
are narrow with many vehicles, and there are villagers gathering in the middle of the
road. Pedestrians and vehicles are intricate and occupy a large field of view, making
positioning difficult and challenging.

• The 18_SLAM_car_road_2 sequence is an urban environment with wider roads, more
vehicles, and more pedestrians compared to the 14 rural streets. It is suitable as a
dynamic rejection algorithm evaluation sequence. The main data types include GNSS
raw data, IMU data, LiDAR point cloud data, and binocular color image data. The
ground truth of the trajectory is obtained with GNSS RTK.

Figure 10. Results of the trajectories and detection of VINS-Fusion, DynaVINS, and D-VINS on the
VIODE dataset (parking_lot, city_day, and city_night scenes).In (a,c,e), the first three figures show the
ATE distributions of the 0_none, 1_low, and 2_mid. The last figure shows the trajectories of the three
algorithms in the 3_high sequence. In (b,d,f), the first three figures show the dynamics of the feature
check result, where the green points are absolute static points, the purple points are temporary static
points, and the white points are absolute dynamic points. The last figure shows the bounding box
from YOLOV5.

Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 27

Figure 11. Handheld/backpack data collection equipment. (a) shows the overall equipment. (b)
shows the handheld part. (c) shows the backpack part. (d,e) show the data collection work with
different modes.

4.2.2. Feature Classification Results on the Real Dataset
In the 5_SLAM_country_dynamic_loop_1 sequence, there are two people walking in

front of the camera; this represents an easy object detection task for deep learning to
accomplish. As shown in Figure 12, when the person with the jacket is moving in the
second row in (a), the dynamic features are segmented accurately. When the person is
movable but remains static at the current time shown in the first row in (a), those feature
points are kept for optimization. In a highly dynamic sequence, the majority of the points
are movable and only a few of them are moving. D-VINS is able to reject dynamic features
that are close to the camera with higher dynamic factors. In the city street, the cars parked
on the roadside and driving on the road are detected with different motion state
classifications.

Figure 11. Handheld/backpack data collection equipment. (a) shows the overall equipment.
(b) shows the handheld part. (c) shows the backpack part. (d,e) show the data collection work
with different modes.

4.2.3. Trajectory Results on the Real Dataset
This paper compared the results of the current state-of-the-art algorithms DynaVINS, D-VINS,

and VINS on real dataset sequences. D-VINS obtained better measurement results on the real dataset,
effectively overcoming the influence of dynamic objects. As shown in Table 5, D-VINS obtained a
better localization accuracy than DynaVINS in the 5_SLAM_dynamic_loop_1 sequence. Even though
the ATE-RMSE of D-VINS was similar to that of VINS, the more detailed results show that D-VINS
had a more accurate localization accuracy in the presence of dynamic objects, as well as a lower
median and mean. Even after parameter adjustments, DynaVINS had difficulty finding parameters
that could achieve good accuracy in localization (the hyperparameters provided in the paper could
not accomplish localization, even though they worked well on the VIODE and KITTI datasets). The
high reliance on equipment and hyperparameters is also a drawback for geometry-based methods.
D-VINS is merely a visual odometry system, and, in the absence of GNSS and loop detection, the
drift is significant. In Figure 13, D-VINS achieves excellent positioning results in two road sequences
without loop detection. The pure VIO system (no global optimization and loopback detection) can
effectively reduce the influence of dynamic objects and substantially exceed the positioning accuracy
of VINS. In summary, D-VINS has stronger robustness and scene applicability in dynamic scenes
compared to other algorithms.

Remote Sens. 2023, 15, 3881 20 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 27

(a) Rural sidewalk (low dynamics)

(b) Rural road (high dynamics)

(c) City road (medium dynamics)

Figure 12. Feature classification results on our dataset. (a) shows the
5_SLAM_country_dynamic_loop_1 sequence. (b) shows the 14_SLAM_car_road_1 sequence. (c)
shows the 18_SLAM_car_road_2 sequence. The features in white are absolute dynamic points, those
in green are absolute static points, and those in purple are temporary static points.

Table 5. The ATE-RMSE (m) of VINS-Fusion, DynaVINS, and D-VINS on the real dataset.

Sequences VINS-Fusion DynaVINS D-VINS
5_SLAM_dynamic_loop_1 0.657039 2.145493 0.654882

Figure 12. Feature classification results on our dataset. (a) shows the
5_SLAM_country_dynamic_loop_1 sequence. (b) shows the 14_SLAM_car_road_1 sequence.
(c) shows the 18_SLAM_car_road_2 sequence. The features in white are absolute dynamic points,
those in green are absolute static points, and those in purple are temporary static points.

Remote Sens. 2023, 15, 3881 21 of 25

Table 5. The ATE-RMSE (m) of VINS-Fusion, DynaVINS, and D-VINS on the real dataset.

Sequences VINS-Fusion DynaVINS D-VINS

5_SLAM_dynamic_loop_1 0.657039 2.145493 0.654882
14_SLAM_car_road_1 37.31964 - 27.60877
18_SLAM_car_road_2 299.7889 - 151.2075

Note: “-” indicates that the method failed to estimate the camera pose. Bold data indicate the best results.

Remote Sens. 2023, 15, x FOR PEER REVIEW 23 of 27

14_SLAM_car_road_1 37.31964 - 27.60877
18_SLAM_car_road_2 299.7889 - 151.2075

Note: “-” indicates that the method failed to estimate the camera pose. Bold data indicate the best
results.

(a) Rural sidewalk (low dynamics)

(b) Rural road (high dynamics)

(c) City road (medium dynamics)

Figure 13. APE distribution results on our dataset. (a) shows the 5_SLAM_country_dynamic_loop_1
sequence. (b) shows the 14_SLAM_car_road_1 sequence. (c) shows the 18_SLAM_car_road_2
sequence. DynaVINS failed to provide estimations in the 14_SLAM_car_road_1 and
18_SLAM_car_road_2 sequences, so it was not compared in those sequences.

4.2.4. Time Analysis and Ablation Experiment
As a fundamental component of robot state estimation, SLAM plays a crucial role in

the smooth execution of higher-level tasks. Therefore, we conducted tests on the average
time cost of processing each frame of various frameworks. The experimental results are
presented in Figure 14. All tests were conducted on a laptop equipped with 16 GB RAM
(CPU: AMD Ryzen7 5800H, GPU: NVIDIA GEFORCE RTX 3050TI). Due to the
inconsistent number of iterations during optimization, the overall time for back-end
optimization exhibits significant variance. However, the system can operate in real time
with a 10 Hz camera.

Figure 13. APE distribution results on our dataset. (a) shows the 5_SLAM_country_dynamic_loop_1
sequence. (b) shows the 14_SLAM_car_road_1 sequence. (c) shows the 18_SLAM_car_road_2
sequence. DynaVINS failed to provide estimations in the 14_SLAM_car_road_1 and
18_SLAM_car_road_2 sequences, so it was not compared in those sequences.

4.2.4. Time Analysis and Ablation Experiment
As a fundamental component of robot state estimation, SLAM plays a crucial role in the smooth

execution of higher-level tasks. Therefore, we conducted tests on the average time cost of processing
each frame of various frameworks. The experimental results are presented in Figure 14. All tests
were conducted on a laptop equipped with 16 GB RAM (CPU: AMD Ryzen7 5800H, GPU: NVIDIA
GEFORCE RTX 3050TI). Due to the inconsistent number of iterations during optimization, the overall
time for back-end optimization exhibits significant variance. However, the system can operate in real
time with a 10 Hz camera.

Remote Sens. 2023, 15, 3881 22 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 24 of 27

Figure 14. The box plot of the running time in each part of D-VINS. The average time to process one
frame is about 70.5 ms (14 Hz).

D-VINS adopts a combined approach of geometric and semantic information to
remove dynamic feature points and improve accuracy, effectively incorporating the
strengths of both methods while avoiding their limitations. To validate the effectiveness
of the fused algorithm integrating geometric and semantic information, we conducted
comparative experiments. D-VINS (G) represents a geometry-based method adjusting
feature weights with epipolar constraints and IMU reprojection. D-VINS (S) represents a
semantic-based method with YOLOV5. D-VINS (G + S) represents a fusion algorithm
based on geometric and semantic information. The experimental results are shown in
Table 6.

Table 6. The ATE-RMSE (m) of D-VINS (G), D-VINS (S), and D-VINS (G + S) on the VIODE
dataset.

Scenes Sequences D-VINS (G) D-VINS (S) D-VINS (G + S)

Parking_lot

0_none 0.1000 0.0568 0.0538
1_low 0.1196 0.0517 0.0472
2_mid 0.1126 0.0709 0.0396
3_high 0.1387 0.0702 0.0664

Note: Bold data indicate the best results.

5. Discussion
In the experimental results shown in Tables 1–5, D-VINS and the contrasting SLAM

systems were all validated. D-VINS outperformed the other systems in terms of the ATE
and RPE in six sequences of the TUM RGB-D dataset. Tables 1 and 2 demonstrate the
effectiveness of D-VINS’ dynamic object removal method, especially in scenarios
involving pure rotation and high-occlusion areas, compared to semantic-based methods
like RS-SLAM and DS-SLAM. Moreover, RS-SLAM and Dynamic-VINS are limited to
indoor usage due to their reliance on depth information, making them unsuitable for
outdoor environments.

In the KITTI sequences shown in Table 3, D-VINS demonstrated its effectiveness in
outdoor scenes. The state-of-the-art DynaVINS showed high accuracy in the VIODE
simulation dataset, as shown in Table 4, but it heavily relied on two hyperparameters,
making it challenging to achieve the same high accuracy in different datasets. In the KITTI
05 and 07 sequences, where there were fewer dynamic objects than in VIODE, the impact
on position estimation was less significant, resulting in DynaVINS not performing as well
as it did in VIODE, as displayed in Figure 7. For the highly occluded scenes in VIODE,
deep learning struggled, especially when the objects moved toward the camera’s optical
center (shown in the first image of Figure 10b). In contrast, D-VINS demonstrated good
dynamic feature segmentation performance and trajectory accuracy, exhibiting better
robustness in multiple environments in Figure 10b,d,f. However, the accuracy of

Figure 14. The box plot of the running time in each part of D-VINS. The average time to process one
frame is about 70.5 ms (14 Hz).

D-VINS adopts a combined approach of geometric and semantic information to remove dy-
namic feature points and improve accuracy, effectively incorporating the strengths of both methods
while avoiding their limitations. To validate the effectiveness of the fused algorithm integrating
geometric and semantic information, we conducted comparative experiments. D-VINS (G) represents
a geometry-based method adjusting feature weights with epipolar constraints and IMU reprojection.
D-VINS (S) represents a semantic-based method with YOLOV5. D-VINS (G + S) represents a fusion
algorithm based on geometric and semantic information. The experimental results are shown in
Table 6.

Table 6. The ATE-RMSE (m) of D-VINS (G), D-VINS (S), and D-VINS (G + S) on the VIODE dataset.

Scenes Sequences D-VINS (G) D-VINS (S) D-VINS (G + S)

Parking_lot

0_none 0.1000 0.0568 0.0538
1_low 0.1196 0.0517 0.0472
2_mid 0.1126 0.0709 0.0396
3_high 0.1387 0.0702 0.0664

Note: Bold data indicate the best results.

5. Discussion
In the experimental results shown in Tables 1–5, D-VINS and the contrasting SLAM systems

were all validated. D-VINS outperformed the other systems in terms of the ATE and RPE in six
sequences of the TUM RGB-D dataset. Tables 1 and 2 demonstrate the effectiveness of D-VINS’
dynamic object removal method, especially in scenarios involving pure rotation and high-occlusion
areas, compared to semantic-based methods like RS-SLAM and DS-SLAM. Moreover, RS-SLAM and
Dynamic-VINS are limited to indoor usage due to their reliance on depth information, making them
unsuitable for outdoor environments.

In the KITTI sequences shown in Table 3, D-VINS demonstrated its effectiveness in outdoor
scenes. The state-of-the-art DynaVINS showed high accuracy in the VIODE simulation dataset, as
shown in Table 4, but it heavily relied on two hyperparameters, making it challenging to achieve the
same high accuracy in different datasets. In the KITTI 05 and 07 sequences, where there were fewer
dynamic objects than in VIODE, the impact on position estimation was less significant, resulting in
DynaVINS not performing as well as it did in VIODE, as displayed in Figure 7. For the highly occluded
scenes in VIODE, deep learning struggled, especially when the objects moved toward the camera’s
optical center (shown in the first image of Figure 10b). In contrast, D-VINS demonstrated good
dynamic feature segmentation performance and trajectory accuracy, exhibiting better robustness in

Remote Sens. 2023, 15, 3881 23 of 25

multiple environments in Figure 10b,d,f. However, the accuracy of DynaVINS decreased in sequences
with fewer dynamic objects, such as the 0_none sequences. D-VINS maintains accuracy in highly
occluded dynamic environments. However, its improvement in low-occlusion dynamic environments
is not significant with abundant features that can be tracked.

Furthermore, D-VINS showed great performance in feature classification and trajectory accuracy
in rural and city sequences, as shown in Figure 12. For our real dataset, DynaVINS faced challenges
in accomplishing the localization task. Higher reprojection errors could arise from both the camera
movement and dynamic features, making it difficult to accurately indicate the feature’s motion state
using weights. In sequences with large spaces and without loop closures, VINS-Fusion performed
worse compared to D-VINS. However, the segmentation accuracy depends on the bounding boxes
obtained from YOLOV5, making it unable to achieve pixel-level precise segmentation. Factors such
as the complexity of moving objects and blurry images can influence the results of object detection
and geometric calculations. These influences can degrade the segmentation accuracy and, ultimately,
impact the camera localization precision.

In summary, while D-VINS may not overcome extreme conditions of complete occlusion in
the field of view, it still achieves a high localization accuracy in highly occluded environments,
comparable to DynaVINS. D-VINS is more suitable for indoor environments with occlusions and
outdoor environments with at a small scale. In large outdoor scenes, it experiences considerable drift
without GNSS and loop detection. In cases where the camera’s field of view is completely occluded,
the system relies more on IMU pre-integration results. The few static feature points are given higher
weights in the iterative optimization process, due to dynamic factors based on epipolar constraints
and IMU reprojection errors, ultimately enhancing the accuracy of the pose optimization. Extensive
experimental results have proven that D-VINS can improve the accuracy and robustness of pose
calculation in dynamic scenes.

6. Conclusions
In this paper, we proposed a novel dynamic VIO system designed for outdoor dynamic scenes,

effectively reducing the impact of dynamic objects. The D-VINS system consists of four modules:
target identification and data pre-processing, feature point classification and tracking, and back-
end dynamic factor BA optimization. The dynamic object recognition relies on YOLOV5 to obtain
semantic information about the scene, such as walking people and stopped cars. The semantic labels
are continuously updated, classifying dynamic points into absolute dynamic points, absolute static
points, and temporary static points. The dynamic factors of temporary static points are calculated
using IMU pre-integration and epipolar constraints. Only absolute static points and temporary
static points are sent for nonlinear optimization. Feature point weights are adjusted based on the
dynamic label and dynamic factors during BA optimization. The system’s effectiveness in dynamic
environments was verified using the TUM RGB-D, KITTI, and VIODE datasets, as well as our own
dataset. The experimental results demonstrated our system’s superior performance compared to
RS-SLAM, Dynamic-VINS, and the state-of-the-art method DynaVINS. In general, D-VINS enhances
feature point weights, enabling its use in environments with occluding dynamic objects. However,
the accuracy is limited by the number of optimization iterations, as excessive iterations can hinder
real-time system operation. Time analysis shows that sacrificing some optimization iterations still
allows for achieving a satisfactory localization accuracy while maintaining real-time performance.

Future work should address some limitations and explore potential improvements. Firstly,
the algorithm lacks pixel-level segmentation of feature points, even with geometry constraints.
Integrating a high-speed semantic segmentation module could help to achieve a more accurate
identification of dynamic feature points in the front end. Secondly, during the experimental process,
degraded scenes had an impact on the estimation. For instance, the localization accuracy of stereo
cameras decreases in open environments. Adjusting the weights of feature points at different
distances can improve the localization accuracy. The algorithm also exhibits good scalability, as the
strategy of adjusting feature point weights can be incorporated into existing multi-sensor fusion
systems. Additionally, to address occlusion issues in dynamic scenes, the target velocity can be used
to introduce extra constraints on self-motion estimation.

Author Contributions: Y.S. conceived the idea and methods; data curation, Y.S., R.T. and C.Y.;
software, Y.S.; Y.S. and X.S. performed the experiments and validation; C.Y. and R.T. analyzed the
data; supervision, Q.W. and Y.F.; Y.S., C.Y. and R.T. wrote and revised the paper; visualization, X.W.
All authors have read and agreed to the published version of the manuscript.

Remote Sens. 2023, 15, 3881 24 of 25

Funding: This research was funded by the National Natural Science Foundation of China (No.42074039).
The authors would like to thank the referees for their constructive comments.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: http://vision.in.tum.de/data/datasets/rgbd-dataset, https://github.com/kminoda/
VIODE, https://www.cvlibs.net/datasets/kitti/ (all accessed on 1 May 2023).

Acknowledgments: We thank the researchers who developed the TUM RGB-D, KITTI, and VIODE
datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kazerouni, I.A.; Fitzgerald, L.; Dooly, G.; Toal, D. A survey of state-of-the-art on visual SLAM. Expert Syst. Appl. 2022, 205, 117734.

[CrossRef]
2. Covolan, J.P.M.; Sementille, A.C.; Sanches, S.R.R. A Mapping of Visual SLAM Algorithms and Their Applications in Augmented

Reality. In Proceedings of the 2020 22nd Symposium on Virtual and Augmented Reality (SVR), Porto de Galinhas, Brazil,
7–10 November 2020; pp. 20–29.

3. Tourani, A.; Bavle, H.; Sanchez-Lopez, J.L.; Voos, H. Visual SLAM: What Are the Current Trends and What to Expect? Sensors
2022, 22, 9297. [CrossRef] [PubMed]

4. Chen, C.; Zhu, H.; Li, M.; You, S. A Review of Visual-Inertial Simultaneous Localization and Mapping from Filtering-Based and
Optimization-Based Perspectives. Robotics 2018, 7, 45. [CrossRef]

5. Cvisic, I.; Markovic, I.; Petrovic, I. SOFT2: Stereo Visual Odometry for Road Vehicles Based on a Point-to-Epipolar-Line Metric.
IEEE Trans. Robot. 2022, 39, 273–288. [CrossRef]

6. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34,
1004–1020. [CrossRef]

7. Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual,
Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

8. von Stumberg, L.; Cremers, D. DM-VIO: Delayed Marginalization Visual-Inertial Odometry. IEEE Robot. Autom. Lett. 2022, 7,
1408–1415. [CrossRef]

9. Qin, T.; Cao, S.; Pan, J.; Shen, S. A General Optimization-Based Framework for Global Pose Estimation with Multiple Sensors.
arXiv 2019, arXiv:1901.03642.

10. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

11. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. In Readings in Computer Vision; Fischler, M.A., Firschein, O., Eds.; Morgan Kaufmann: San Francisco CA,
USA, 1987; pp. 726–740. ISBN 978-0-08-051581-6.

12. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; TaoXie; Fang, J.; NanoCode012; Imyhxy; et al.
Ultralytics/Yolov5: V7.0 - YOLOv5 SOTA Realtime Instance Segmentation 2022. Available online: https://zenodo.org/record/73
47926 (accessed on 1 May 2023). [CrossRef]

13. Yan, L.; Hu, X.; Zhao, L.; Chen, Y.; Wei, P.; Xie, H. DGS-SLAM: A Fast and Robust RGBD SLAM in Dynamic Environments
Combined by Geometric and Semantic Information. Remote Sens. 2022, 14, 795. [CrossRef]

14. Song, S.; Lim, H.; Lee, A.J.; Myung, H. DynaVINS: A Visual-Inertial SLAM for Dynamic Environments. IEEE Robot. Autom. Lett.
2022, 7, 11523–11530. [CrossRef]

15. Zhang, C.; Zhang, R.; Jin, S.; Yi, X. PFD-SLAM: A New RGB-D SLAM for Dynamic Indoor Environments Based on Non-Prior
Semantic Segmentation. Remote Sens. 2022, 14, 2445. [CrossRef]

16. Bian, J.; Lin, W.-Y.; Matsushita, Y.; Yeung, S.-K.; Nguyen, T.-D.; Cheng, M.-M. GMS: Grid-Based Motion Statistics for Fast,
Ultra-Robust Feature Correspondence. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2828–2837.

17. Huang, J.; Yang, S.; Zhao, Z.; Lai, Y.-K.; Hu, S. ClusterSLAM: A SLAM Backend for Simultaneous Rigid Body Clustering and
Motion Estimation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Repiblic
of Korea, 27 October–2 November 2019; pp. 5874–5883.

18. Bescos, B.; Facil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom.
Lett. 2018, 3, 4076–4083. [CrossRef]

19. Xiao, L.; Wang, J.; Qiu, X.; Rong, Z.; Zou, X. Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep
learning in dynamic environment. Robot. Auton. Syst. 2019, 117, 1–16. [CrossRef]

20. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37.

http://vision.in.tum.de/data/datasets/rgbd-dataset
https://github.com/kminoda/VIODE
https://github.com/kminoda/VIODE
https://www.cvlibs.net/datasets/kitti/
https://doi.org/10.1016/j.eswa.2022.117734
https://doi.org/10.3390/s22239297
https://www.ncbi.nlm.nih.gov/pubmed/36501998
https://doi.org/10.3390/robotics7030045
https://doi.org/10.1109/TRO.2022.3188121
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/LRA.2021.3140129
https://doi.org/10.1109/TRO.2017.2705103
https://zenodo.org/record/7347926
https://zenodo.org/record/7347926
https://doi.org/10.5281/zenodo.7347926
https://doi.org/10.3390/rs14030795
https://doi.org/10.1109/LRA.2022.3203231
https://doi.org/10.3390/rs14102445
https://doi.org/10.1109/LRA.2018.2860039
https://doi.org/10.1016/j.robot.2019.03.012

Remote Sens. 2023, 15, 3881 25 of 25

21. Yu, C.; Liu, Z.; Liu, X.-J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018; pp. 1168–1174. [CrossRef]

22. Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the
DARPA Image Understanding Workshop, Washington, DC, USA, 21–23 April 1981; pp. 674–679.

23. Ran, T.; Yuan, L.; Zhang, J.; Tang, D.; He, L. RS-SLAM: A Robust Semantic SLAM in Dynamic Environments Based on RGB-D
Sensor. IEEE Sens. J. 2021, 21, 20657–20664. [CrossRef]

24. Liu, J.; Li, X.; Liu, Y.; Chen, H. Dynamic-VINS: RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environ-
ments. IEEE Robot. Autom. Lett. 2022, 7, 9573–9580. [CrossRef]

25. Wu, W.; Guo, L.; Gao, H.; You, Z.; Liu, Y.; Chen, Z. YOLO-SLAM: A semantic SLAM system towards dynamic environment with
geometric constraint. Neural Comput. Appl. 2022, 34, 6011–6026. [CrossRef]

26. Cheng, S.; Sun, C.; Zhang, S.; Zhang, D. SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic
and Geometric Information. IEEE Trans. Instrum. Meas. 2023, 72, 7501012. [CrossRef]

27. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in
Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T.,
Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755.

28. Shi, J. Tomasi Good Features to Track. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
CVPR-94, Seattle, WA, USA, 21–23 June 1994; IEEE Comput. Soc. Press: Seattle, WA, USA, 1994; pp. 593–600.

29. Shafi, O.; Rai, C.; Sen, R.; Ananthanarayanan, G. Demystifying TensorRT: Characterizing Neural Network Inference Engine on
Nvidia Edge Devices. In Proceedings of the 2021 IEEE International Symposium on Workload Characterization (IISWC), Storrs,
CT, USA, 7–9 November 2021; pp. 226–237.

30. Wang, Q.; Yan, C.; Tan, R.; Feng, Y.; Sun, Y.; Liu, Y. 3D-CALI: Automatic Calibration for Camera and LiDAR Using 3D
Checkerboard. Measurement 2022, 203, 111971. [CrossRef]

31. Rehder, J.; Nikolic, J.; Schneider, T.; Hinzmann, T.; Siegwart, R. Extending Kalibr: Calibrating the Extrinsics of Multiple IMUs and
of Individual Axes. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
Sweden, 16–21 May 2016; pp. 4304–4311.

32. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems.
In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal,
7–12 October 2012; pp. 573–580.

33. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

34. Minoda, K.; Schilling, F.; Wuest, V.; Floreano, D.; Yairi, T. VIODE: A Simulated Dataset to Address the Challenges of Visual-Inertial
Odometry in Dynamic Environments. IEEE Robot. Autom. Lett. 2021, 6, 1343–1350. [CrossRef]

35. Zhang, Z.; Scaramuzza, D. A Tutorial on Quantitative Trajectory Evaluation for Visual(-Inertial) Odometry. In Proceedings
of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018;
pp. 7244–7251.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/IROS.2018.8593691
https://doi.org/10.1109/JSEN.2021.3099511
https://doi.org/10.1109/LRA.2022.3191193
https://doi.org/10.1007/s00521-021-06764-3
https://doi.org/10.1109/TIM.2022.3228006
https://doi.org/10.1016/j.measurement.2022.111971
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1109/LRA.2021.3058073

	Introduction
	Related Work
	Geometry-Based Dynamic SLAM
	Semantic-Based Dynamic SLAM

	Methods
	Dynamic Object Classification
	Semantic Label Incremental Updating with Bayes’ Rule
	Feature Point Motion State Classification

	Feature Dynamic Check with IMU Prior and Epipolar Constraints
	Dynamic Factor of Reprojection Error Based on IMU Prior Constraint
	Dynamic Factor of Epipolar Constraints

	Dynamic Adaptive Bundle Adjustment
	Conventional Bundle Adjustment Optimization
	Dynamic Adaptive Cost Function with Dynamic Factors

	Experimental Results
	TUM RGB-D, VIODE, and KITTI Dataset Evaluation
	TUM RGB-D Dataset
	KITTI Dataset
	VIODE Dataset

	Data Collection Equipment and Real-Environment Dataset Experiments
	Data Collection Devices and Real Datasets
	Feature Classification Results on the Real Dataset
	Trajectory Results on the Real Dataset
	Time Analysis and Ablation Experiment

	Discussion
	Conclusions
	References

