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Abstract: Large-scale infrastructure monitoring and vulnerability assessment are crucial for the
preservation and maintenance of built environments. To ensure the safety of urban infrastructure
against natural and man-made disasters, constant monitoring is crucial. To do so, satellite Earth
observation (EO) is being proposed, particularly radar-based imaging, because it allows large-scale
constant monitoring since radar signals are not blocked by clouds and can be collected during
both day and night. The proposed methodology for large-scale infrastructure monitoring and
vulnerability assessment is based on MT-InSAR time series analysis. The homogeneity of the year-to-
year displacement trend between each point and its surrounding points is evaluated to determine
whether the area is a stable or vulnerable zone. To validate the methodology, four case studies of
recently collapsed infrastructures are analyzed. The results indicate the potential of the proposed
methodology for predicting and preventing structural collapses.

Keywords: satellite monitoring; collapse; Line 12 of the Mexico City Metro; Caprigliola bridge; Font
Nova urbanization (Peñiscola); Champlain Towers South (Miami)

1. Introduction

One of the major challenges of our society is the preservation and maintenance of
the built environment, not only because of its financial value, but, most importantly,
because of the safety and serviceability of constructions. Indeed, safety is one of the main
concerns of structural design; hence, regulations have been developed by experts and public
administrations that are focused on the design and construction of structures with the
maximum safety level. However, no countries have implemented regulations or standards
for the structural evaluation of in-service infrastructure, thus ignoring the deterioration
and structural modifications that may arise during the life cycle of the infrastructure, as
well as the change in the conditions since they were designed and built [1,2].

Being aware of the increasing number of extreme events, mainly natural (where climate
change plays an important role), but also man-made (accidents, negligence, vandalism,
or terrorism), concrete actions to improve the resilience of transportation infrastructure
to these events are required. Therefore, it is important to take into consideration new
meteorological conditions, loading and usage conditions, and changes in the behavior
of the population in order to evaluate whether the infrastructure is operating in safe
conditions. An example of the effort to analyze the long-term relationships between
urban development and the emerging subsurface environmental problem is the analysis of
land subsidence and the comparison of the differences and commonalities across Asian
developing countries using a stage model [3]. However, considering the huge number
and dispersion of infrastructure assets and buildings subjected to the potential actions of
extreme events, new solutions are required to monitor and evaluate in-service structures
on a large scale, as well as to prioritize detailed studies on those structures affected by
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a larger vulnerability. This approach includes, for instance, the creation of a risk index
system composed of hazardous conditions and vulnerability of land subsidence in the
Shanghai region, and the subsequent establishment of a risk assessment model [4]. Another
approach is the analysis of hypsometric changes in urban areas resulting from multiple
years of human activity to evaluate risk areas [5].

Satellite Earth Observation (EO) is being proposed as a suitable technology for large-
scale land cover monitoring. Among the available data from these satellite sensors, radar-
based imaging has been proposed for those phenomena related to terrain displacement.
One of the main limitations for optical satellite remote sensing systems is related to the
effect of clouds, which may prevent the adequate observation of the target area of study.
The wavelength of radar systems complements the use of optical images because the signal
is not blocked by clouds and, because radar systems are active sensors, they support
data collection during both day and night. In addition, Synthetic Aperture Radar (SAR)
systems permit the analysis of interferometric data based on several methods that evolved
over the years from the original differential interferometric SAR (DInSAR), based on the
processing of two images, to the present MultiTemporal InSAR (MT-InSAR), which uses a
higher number of images to improve the precision of the method [6]. For example, using
DInSAR in the Upper Silesian coal basin in southern Poland, the subsidence of the ground
of numerous cities due to intensive underground coal exploitation was detected [7,8].

Radar satellite platforms cover both commercial and public missions, which share the
images free of cost. Examples of commercial radar satellites include TanDEM-X, RadarSat-2,
COSMO-SkyMed, ALOS-2, SEOSAR/PAZ, SAOCOM, and RCM, which are widely utilized
for infrastructure monitoring because their high resolution [9]. For instance, a study focused
on ground motion monitoring in New Delhi compared the impact of SAR resolution
and wavelengths from multiple sensors, such as Cosmo-SkyMed, Sentinel-1A-B, and
ALOS PALSAR [10]. Additionally, another paper conducted a comparative analysis of
Radarsat-2, Envisat, and TerraSAR-X satellites for line-infrastructure monitoring, presenting
performance assessment metrics [11]. Regarding public missions, Copernicus’ Sentinel-1
is a frequently used alternative for radar EO because of its worldwide coverage and free
image availability. In addition, it is possible to monitor movements on the surface of the
Earth through Free and Open-Source Software (FOSS) [12].

Focusing on the built environment, radar MT-InSAR, which was developed by Alessan-
dro Ferretti in 2000 [13], is a proven method for the evaluation of potential damage in
infrastructure assets. For example, urban subsidence has been addressed in a study per-
formed in the metropolitan area of Rome [14], where the authors are among the pioneers
of the use of Copernicus Sentinel-1 data and FOSS for infrastructure monitoring in the
city using MT-InSAR. Another example of the initial experiences of detecting infrastruc-
ture problems through urban monitoring consists of identifying buildings with cracks
using ENVISAT images and SARPROZ software [15]. Moreover, the first national satellite-
based railway monitoring system was achieved using images between 2010 and 2015 of
Radarsat-2 through the InSAR technique [16]. One of the first works on infrastructure
collapse was the analysis (of the Hintze Ribeiro bridge) through ERS SAR images covering
the Entre-os-Rios area [17]; the work related high values to the possibility of collapse.
Despite the numerous works proposing InSAR for large-scale monitoring of infrastructure,
very few works have focused on predictive assessment in order to, for instance, anticipate
a structural collapse. Among the works in this last group are the use of a filter with a
trend change detection algorithm to highlight areas of significant deformation [18]. Other
examples are the automatic identification at the regional scale of trend variations within a
single and continuous Mt-InSAR analysis by incorporating recent images [19]; the system-
atic and regular analysis of images to identify any changes in the deformation pattern and
highlight anomalous points [20]; the combination of a multiple interferometric approach
with a time series data mining algorithm designed to recognize points with significant
trend variations [21]; the search for anomalies in the persistent scatterer deformations in
the spatial and temporal dimensions [22]; and the identification and monitoring in wide
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areas, and the discretization of the most critical deformations to create alerts [23]. Another
work located potential unstable or dangerous regions using the spatial velocity gradation
and the temporal evolution trend of surface displacements in large-scale areas [24]. A pro-
cedure was also developed with the aim of semi-automatically identifying clusters of active
persistent scatterers and preliminarily associating them with different potential types of
deformational processes over wide areas [25]. A risk map was also created at the municipal
level by evaluating the risk subcomponents: danger, intensity, and vulnerability [26].

In summary, some methods use a single and classic Mt-InSAR analysis to assess
whether there is a significant increase in the terrain movement through its displacement
trend, and then to launch an alert [18–21]. Other methods use a cluster of points with
a common tendency of instability to locate vulnerable zones in infrastructure or for risk
management at a large scale [22–26]. However, our novel approach compares the Mt-
InSAR analysis year by year to identify areas with high variance values, and thereby locate
vulnerable areas, rather than via a complete single analysis of the time series.

Moreover, a shortcoming of the aforementioned approaches consists of the lack of an
application to areas where a structural collapse actually happens, making it difficult to
evaluate these methodologies in real cases. This work solves this issue through the analysis
of several real cases of collapse by applying accessible predictive monitoring using FOSS.

In this paper, we propose a new method for large-scale infrastructure monitoring
and vulnerability assessment using MT-InSAR time series analysis. For this purpose,
the novelty of our approach consists of evaluating the homogeneity of the year-to-year
displacement trend between each point and the surrounding points. When a point follows
the same displacement trend as that of the surrounding points, it is classified as a stable
zone; however, if there is a significant difference between the point and its neighbors, it is
classified as a vulnerable zone. To validate the methodology, four case studies, in which
various types of constructions subjected to different environmental conditions had recently
collapsed, are analyzed.

The structure of the paper is as follows: in Section 2, the proposed methodology
is explained. Section 3 includes the description of the different case studies and the
corresponding data processing. In Section 4, the results are analyzed, and these are later
discussed in Section 5. Finally, Section 6 summarizes the main conclusions of the work.

2. Methodology

In order to achieve the goal explained above, our methodology is built in three main
phases as depicted in Figure 1: (1) interferogram generation and stacking using the software
SNAP; (2) computation of the persistent scatterers (PSs) using StaMPS software; (3) and
data analysis and detection of vulnerable areas using QGIS v3.32.1 software.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 23 
 

 

areas, and the discretization of the most critical deformations to create alerts [23]. Another 
work located potential unstable or dangerous regions using the spatial velocity gradation 
and the temporal evolution trend of surface displacements in large-scale areas [24]. A pro-
cedure was also developed with the aim of semi-automatically identifying clusters of ac-
tive persistent scatterers and preliminarily associating them with different potential types 
of deformational processes over wide areas [25]. A risk map was also created at the mu-
nicipal level by evaluating the risk subcomponents: danger, intensity, and vulnerability 
[26]. 

In summary, some methods use a single and classic Mt-InSAR analysis to assess 
whether there is a significant increase in the terrain movement through its displacement 
trend, and then to launch an alert [18–21]. Other methods use a cluster of points with a 
common tendency of instability to locate vulnerable zones in infrastructure or for risk 
management at a large scale [22–26]. However, our novel approach compares the Mt-In-
SAR analysis year by year to identify areas with high variance values, and thereby locate 
vulnerable areas, rather than via a complete single analysis of the time series. 

Moreover, a shortcoming of the aforementioned approaches consists of the lack of an 
application to areas where a structural collapse actually happens, making it difficult to 
evaluate these methodologies in real cases. This work solves this issue through the analy-
sis of several real cases of collapse by applying accessible predictive monitoring using 
FOSS. 

In this paper, we propose a new method for large-scale infrastructure monitoring and 
vulnerability assessment using MT-InSAR time series analysis. For this purpose, the nov-
elty of our approach consists of evaluating the homogeneity of the year-to-year displace-
ment trend between each point and the surrounding points. When a point follows the 
same displacement trend as that of the surrounding points, it is classified as a stable zone; 
however, if there is a significant difference between the point and its neighbors, it is clas-
sified as a vulnerable zone. To validate the methodology, four case studies, in which var-
ious types of constructions subjected to different environmental conditions had recently 
collapsed, are analyzed. 

The structure of the paper is as follows: in Section 2, the proposed methodology is 
explained. Section 3 includes the description of the different case studies and the corre-
sponding data processing. In Section 4, the results are analyzed, and these are later dis-
cussed in Section 5. Finally, Section 6 summarizes the main conclusions of the work. 

2. Methodology 
In order to achieve the goal explained above, our methodology is built in three main 

phases as depicted in Figure 1: (1) interferogram generation and stacking using the soft-
ware SNAP; (2) computation of the persistent scatterers (PSs) using StaMPS software; (3) 
and data analysis and detection of vulnerable areas using QGIS v3.32.1 software. 

 
Figure 1. Methodology used in this work. 

2.1. Obtaining the LOS Map and Generation of Interferograms 
Synthetic Aperture Radar Interferometry (InSAR) is an active remote sensing tech-

nique based on the measurement of the phase shift between two or more radar images of 
the same scene collected at different times. The analysis of these images allows the detec-
tion and parameterization of displacements of the observed object, or land in the case of 
space-borne radar antennas. In this last system configuration, the radar antenna emits an 
electromagnetic signal in the microwave band that interacts with the ground, and part of 
the signal is reflected back to the satellite. The backscattered signal is received and rec-
orded by the onboard radar system and used to generate a SAR image. The SAR image 

Figure 1. Methodology used in this work.

2.1. Obtaining the LOS Map and Generation of Interferograms

Synthetic Aperture Radar Interferometry (InSAR) is an active remote sensing technique
based on the measurement of the phase shift between two or more radar images of the
same scene collected at different times. The analysis of these images allows the detection
and parameterization of displacements of the observed object, or land in the case of
space-borne radar antennas. In this last system configuration, the radar antenna emits an
electromagnetic signal in the microwave band that interacts with the ground, and part of
the signal is reflected back to the satellite. The backscattered signal is received and recorded
by the onboard radar system and used to generate a SAR image. The SAR image consists
of a 2D array where the azimuth coordinate is represented by the rows, the slant-range
coordinate is given in columns, and the value of each cell unit is characterized by an
amplitude and the phase information of the backscattered signal. The resultant image is
the so-called LOS (line-of-sight) map.
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Our methodology consists of dividing the processing by year, and therefore, the
workflow for interferogram generation and stacking is depicted in Figure 2. Here, the first
step consists of selecting the master image (in SLC format) for each year of the analysis.
The master image will collate the rest of the images for each annual analysis in order to
detect and monitor changes by comparison between the master image and other images
at time t. This analysis is performed using the free ESA program of SNAP [27]. The
analysis continues by using the snap2stamps tool [28], which supports the automation of
the processing chain for interferograms and is compatible with StaMPS.
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2.2. Extraction of Persistent Scatterers to Monitor Land Deformation

In our work, we use the Persistent Scatterer Interferometry (PSI) method [13], which is
a method that allows identifying natural targets (reflectors) whose phase remains stable
over time. To assess whether a point has a stable phase, an interferometric analysis is
performed through the time series of the different images. Thus, a threshold between 0.25
and 0.40 is typically used when using Sentinel-1 images [6]. The higher the threshold,
the larger the number of pixels (points) that results from the analysis; conversely, a more
restrictive analysis will involve a lower value for the threshold. These resultant stable
reflectors are called persistent scatterers (PSs), and typically belong to built objects such as
buildings or civil structures. These PS points are defined through geographical coordinates
and displacement data. A threshold of 0.65 was selected in our research, after performing
our tests by heuristic methods. In these tests, the objective was to have a balanced threshold
that does not make the temporal incoherence excessive, but, at the same time, is sufficient
to obtain a good density of PS points covering urban infrastructure. In this way, sudden
movements can be detected, which can be eventually related to future infrastructure
structural failure.

The PS extraction was performed using StaMPS [29]. StaMPS is an open-source
program for the Multi-temporal Interferometric Synthetic Aperture Radar (MT-InSAR)
technique. The processing itself includes C++ programs and MATLAB scripts to identify
coherent pixels and extract the warp signal for these pixels.

This analysis using StaMPS is implemented within MATLAB following the workflow
depicted in Figure 3. This MATLAB code consists of sequential instructions or steps
(commands) to obtain the PSs and the corresponding deformation map of the study area.
Therefore, the sequence involves loading the data obtained from SNAP into the MATLAB
environment to calculate temporal coherence by estimating the phase noise and the spatially
uncorrelated DEM error (to remove the topographic phase component and geocode the
results, we used the SRTM 1-arcsec DEM with 30 m resolution); thus, a first selection of PSs
can be made so that those considered noisy can be eliminated. Then, the data are resampled
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to drop pixel errors and merged to perform phase unwrapping. Finally, the results are
filtered to remove the spatially correlated look angle errors and the noise from atmospheric
disturbances. The correct PSs can then be exported with their velocity and time series trend.
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It is necessary to clarify that, in MT-InSAR processing, the Atmospheric Phase Screen
(APS) plays a crucial role in the accurate estimation of the deformation values, as it allows
us to remove the atmospheric phase perturbations from the interferometric measurements
at the time of data acquisition, thus improving the accuracy of the final deformation
results. This error is produced by delays in radar signals caused by variations in the Earth’s
atmosphere, particularly in the troposphere [29,30].

The execution of the aforementioned code in StaMPS requires the definition of various
parameters [30] that must be evaluated for every study area. Table 1 summarizes the
parameters set in the case studies presented in this paper. The values were set in accordance
with the settings that allow the detection of subtle displacements in bridges.

Table 1. Parameter values adapted from [30] for the case studies presented in this paper.

Parameter Default Used

max_topo_err 20 10

filter_grid_size 50 40

clap_win 32 16

scla_deramp ‘n’ ‘y’

percent_rand 20 1

unwrap_grid_size 200 50

unwrap_time_win 730 180

scn_time_win 365 180

scn_wavelength 100 50

unwrap_gold_n_win 32 16

Once the deformation map has been obtained, the different files generated are exported
for further analysis, as explained in the forthcoming section.

2.3. PS Geospatial Analysis

One of the main novelties of our proposed methodology compared to other works
using MT-InSAR is that, instead of using a continuous time series for the entire period under
evaluation, we focus the analysis on each year for each orbit (ascending and descending),
and then, for each pixel, we compare the evolution of the displacement trend among the
different years. Thus, the temporal evolution trend (TET) is computed year by year as the
cumulative sum of the absolute values of displacement during the year at every single
point. Later, the final evolution trend (FET) is computed as the variance of the absolute
values of the displacement for all years of the same pixel.
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The objective is to analyze the final evolution trend (FET) and classify points into (i)
stable zones if there are no significant differences in a year with regards to the others; or (ii)
vulnerable zones when there is a significant change in the FET of consecutive years. The
initial hypothesis is that these last points represent the areas where a sudden structural
failure is prone to happen.

To proceed with the analysis, QGIS software was used according to the workflow
presented in Figure 4. The first step is obtaining the TET for each point (PS) of the years
analyzed. As the product obtained in the previous phase consists of a series of point clouds
for each year and orbit, a common grid is defined in order to rasterize the data with a pixel
size of 20 m. The choice of 20 m pixels is taken as the minimum resolution, and is obtained
from the maximum resolution of Sentinel-1 images.
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The next step is to analyze how much the accumulated displacements (TET) vary over
the years, to determine the variance that exists, resulting in the FET for the same pixel over
the years, through the following formula:

σ2 = (Σ (xi − µ)2)/N, (1)

where:

σ2 is the variance obtained from the MT-InSAR results of each pixel over the years of the
analysis, that is, the FET.
xi is the absolute displacement of year i (TET).
µ is the mean of all absolute values of the annual displacement.
N is the number of years of the total analysis.

To avoid undesired effects due to the heterogeneity of land and to consider only the
closest environment of each point, the study area is divided into 1 × 1 km tiles. This
operation smooths the variance of the FET in the entire study area, and thus enhances the
perception of potential vulnerable points.

Therefore, the vulnerable points for each of the orbits in its corresponding tile (follow-
ing the Empirical Rule in Table 2) will always be those whose variance of FET exceeds the
mean (µ) by 2 times the variance (σ) of the set of points of the tile. This means that, in a
normal distribution, approximately 95% of the points will be classified as stable.

Table 2. Pixel classification criteria 1.

Pixel Classification Threshold

Stable areas NapLog(σ2) < Pr(µ − 2σ ≤ X ≤ µ + 2σ)
Vulnerable areas NapLog(σ2) < Pr(X ≤ µ + 2σ)

1 Note: σ2 represents the variance of the FET obtained from the MT-InSAR results of each pixel over the years
of the analysis, NapLog is the logarithmic transformation in order to normalize the variance of FET, and X is an
observation from a normally distributed random variable.
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The Empirical Rule involves transforming the data into a normal distribution. The
transformation carried out is logarithmic (NapLog) since the logarithmic transformation is
useful for transforming distributions with a positive skew (because the histogram of the
variance of the FET in each tile have a larger tail on the right); the left part will be expanded,
while the right part will be compressed, meaning that the resulting curve fits better to a
normal one.

3. Experiment and Data Processing

To demonstrate that this methodology is correct and effective, random case studies
where structural collapses recently happened were selected.

Study Area and Data

Four study areas were selected to investigate whether it is possible to predict sudden
collapses in urban areas where an actual collapse was experienced, as follows:

• Infrastructure located in areas of continuous subsidence. Mexico City has experienced
multiple earthquakes and is located on top of a lagoon, which makes the area unstable.
The specific infrastructure that was analyzed consists of the accident that occurred on
3 May 2021, on Line 12 of the Mexico City Metro. This accident may have been caused
by the placement and welding of the bolts that connect the girders of the steel viaduct
with the concrete slab [31].

• Infrastructure in semi-urban environments surrounded by vegetation, where two
case studies were considered. The first infrastructure analyzed is the Caprigliola
bridge (Italy), which collapsed over the Magra river on 8 April 2020. The causes of the
collapse are still to be determined [32]. The second infrastructure analyzed consists of
a building that partially collapsed in Peñíscola (Spain), on 25 August 2021 [33].

• Infrastructure in coastal environments. On 24 June 2021, the Champlain Towers South,
a 12-story condominium located in the beachfront suburb of Surfside, Miami (United
States), partially collapsed. The degradation of the reinforced concrete structural
support, attributed to water penetration and corrosion of the reinforcing steel, is being
studied as the focus of the causes for the collapse. This evidence was identified in
2018 and worsened by April 2021 [34]. Other contributing factors being considered
include land subsidence, insufficient reinforcing steel, and corruption during construc-
tion [35,36]. The Surfside collapse is considered the third largest building failure in
the history of the United States [37].

Available Sentinel-1 images were used to monitor the study areas by the time of their
collapse. The acquisition time and properties of the used Sentinel-1 data are shown in
Table 3.

Table 3. Sentinel-1A/B datasets used, showing orbit path and image time period.

Case Study Ascending 2 Descending 3

Line 12 of the Mexico City Metro 23 March 2015 to 2 May 2021 20 March 2015 to 29 April 2021

Caprigliola bridge 2 August 2015 to 7 April 2020 12 October 2015 to 6 April 2020

Building in the Font Nova
urbanization (Peñiscola)

24 March 2015 to 12 May 2017
and

4 October 2018 to 25 August 2021

30 March 2015 to 13 March 2017
and

4 October 2018 to 25 August 2021

Miami 9 October 2016 to 21 June 2021 No data

4. Results and Analysis

Even though the workflow was applied to all case studies, for simplicity, in this section,
only the first case study is detailed as an example of the developed methodology. For the
remaining case studies, only the final results are presented. Finding deformation patterns
over time in an isolated manner in infrastructure is not easy, as shown for the first case
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study (Line 12 of the Mexico City Metro) in Figure 5. Therefore, this new methodology is
proposed through the FET map for each year (2015 to 2020). As mentioned in Section 2.3,
the variance of the FET value for the same pixel over the years of analysis was calculated
for both ascending images (in Figure 6) and descending images (in Figure 7).
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The points of infrastructure collapse were located and are marked with a red point
in Figures 8 and 9. The depicted variance in the 1 sq·km surrounding area provides an
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indication of vulnerability, both for descending and ascending images. The values for this
indicator are logarithmically transformed and filtered in the 2σ interval.
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Figure 10 shows that, in the descending case, the vulnerable zone, represented in
magenta pixels, corresponds with one of the girders supporting the overpass that carries
Line 12 of the Mexico City Metro near the Tezonco station. The vulnerable zone is defined
as those pixels whose variance of FET exceeds the mean (µ) by 2 times the variance (σ) of
the set of pixels of the tile.
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Figure 10. The vulnerable zone, which concurs geographically with a girder that supported the
overpass carrying Line 12 of the Mexico City Metro and that collapsed.

This shows how the methodology works for the early detection of vulnerable zones.
For the second case study, which is focused on the Caprigliola bridge, the variance of

the FET map from 2016 to 2019 is obtained for both ascending and descending images. The
analysis of the 1 × 1 km tile around the collapse location shows three vulnerable zones for
the map with ascending images and two vulnerable zones for the map with descending
images, as shown in Figure 11. In this case, only one of the areas is in close proximity to the
collapsed bridge, showing the capability of the methodology to identify vulnerable zones,
albeit only using ascending images.

For the third case study, due to a time gap in the available images, only the images
from the same time intervals in both ascending and descending images were used, which
limited the analysis to the years 2015–2016 and 2019–2021. The variance in the tile was
logarithmically transformed and filtered using the criterion of Pr(X ≤ µ + 2σ), resulting
in the identification of seven vulnerable zones in the ascending image map and eleven
vulnerable zones in the descending image map, as shown in Figure 12.
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Figure 12. The vulnerable zone is geographically situated in the environment of the building, which
collapsed, of the Font Nova urbanization.

In this case, only one of the identified areas is located close to the building where
the collapse occurred. Despite the distance of approximately 65 m between the detected
area and the building, it is still considered to belong to the building’s environment based
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on the resolution of Sentinel-1. Although there are more potential risk areas in this case
study compared to the others, only five of them are located in built environments, with
the others being false alarms caused by vegetation. The results were achieved only in the
descending images.

In the final case study, which focuses on the collapse of Champlain Towers South, the
variance of the FET map is obtained for the years 2017 to 2021, using only ascending images
since they are the only images available for download. The results show six vulnerable
zones in the map with ascending images, as shown in Figure 13. Of the six areas identified,
only one coincides geographically with the collapse of the building, providing evidence
that the methodology is effective in detecting vulnerable areas.
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Figure 13. The vulnerable zone geographically concurs with the Champlain Towers South building,
which partially collapsed.

Table 4 includes the results of the case studies, showing a potential excess of alerts in
vulnerable zones and/or a lack of precision for the location of the collapse. These results
exhibit the influence of temporal decorrelation caused by vegetation or the proximity to
water areas, such as the case of Peñiscola. In order to address the inaccuracies in the results,
this supplementary information about the surrounding areas of interest could be used to
discard alerts in non-urbanized and vegetation areas.

Table 4. Summary of the results of the four case studies analyzed.

Case Study Number of Alert Pixels in Tile Minimum Distance between the Actual Structure Collapse
and the Nearest Collapse Risk Alert Pixel

Line 12 of the Mexico City Metro 9
∼=540 m (concurs with one of the girders supporting the

overpass carrying Line 12 of the Mexico City Metro near the
Tezonco station)

Caprigliola bridge 9 ∼=20 m (in the streambed where the bridge collapsed)

Building in the Font Nova
urbanization (Peñiscola) 30

∼=65 m (coincides geographically with the environment of the
collapsed building)

Miami 9
∼=0.50 m (exact geographical overlay on the

collapsed building)
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We use the European Ground Motion Service (EGMS), which provides accurate and
consistent information on natural and anthropogenic ground motion with millimeter
precision [38], to compare our results of vulnerable zones in the European case studies. In
the case study of the building in the Font Nova urbanization (Peñiscola), Figure 14 shows
the difficulty of the early detection of infrastructure at risk in isolation due to the high
variability of ground motion values. If we take the most extreme value, which coincides
with the building that collapsed, we can see that it had an average ground motion velocity
of −1.5 mm/year in ascending images and −1.7 in descending images; in fact, the trend
graph presents an almost stable picture before the collapse on 25 August 2021, which
suggests it is practically impossible to anticipate risks.
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Figure 14. (a) Ground motion in the ascending track from EGMS [38] in the area of the building
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of the point with the highest value of ground motion located in the building collapse. (c) Ground
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In the case study of the Caprigliola bridge in Figure 15, the average ground motion
velocity is −3.4 mm/year in ascending images and −2.7 in descending images. However,
the trend graph shows stability before the collapse on 8 April 2020, and the trend graph
changed only after the date of collapse, indicating the difficulty of anticipating the risks
with this monitoring service.
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Figure 15. (a) Ground motion in the ascending track from EGMS [38] in the area of the Caprigliola
bridge collapse. (b) Deformation time series in the ascending track of the point with the highest value
of ground motion located at the bridge collapse. (c) Ground motion in the descending track from
EGMS around the Caprigliola bridge collapse. (d) Deformation time series in the descending track of
the point with the highest value of ground motion located at the bridge collapse.
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5. Discussion

In the Miami case study, the effectiveness of the 2σ-filter cutoff for both ascent and
descent could not be verified due to the unavailability of descending images. Never-
theless, filtering the available data yielded satisfactory results, indicating the potential
of our methodology to detect risks in areas with limited satellite image coverage. Our
methodology provides a means to anticipate potential risk events by identifying areas close
to actual collapses before they occur, allowing for immediate and direct identification of
priority areas for in situ inspection, thereby optimizing human and financial resources in
the evaluation of infrastructure globally.

In contrast to previous studies that analyzed internal trends [18–21] or common areas
following the same trend pattern [22–26], our work evaluated known areas where a real
infrastructure collapse occurred, demonstrating that our proposed methodology can detect
vulnerabilities before the event occurs. This legitimizes the detection of vulnerable zones
before they become a hazard.

One of the greatest advantages of our methodology is its accessibility and simplicity,
as it requires only open images and programs (with the exception of MATLAB, which
is necessary to execute the free StaMPS commands). Results for any case study can be
obtained by following the manuals available online and applying only a few rules or filters.
This replicability enables our methodology to be easily incorporated as an additional input
to risk assessment procedures.

However, our methodology presents several challenges that must be addressed in the
future. For example, the large amount of data required to compare registered displacements
year by year makes computational performance more expensive. To overcome this, we
suggest exploring the possibility of achieving comparable results with a single analysis
(classical method) by dividing its trend directly by years. This would optimize the analysis,
making it more restrictive in identifying vulnerable zones and reducing false alarms.

6. Conclusions

A methodology for the automated detection of vulnerable zones in the built envi-
ronment, based on an annual comparison of the accumulated variation of the displace-
ment trend, has been proposed. The detection of vulnerable areas is achieved using the
MT-InSAR technique through radar satellite images (Sentinel-1), and has been tested in
real-world scenarios.

The proposed methodology offers an accessible and cost-effective approach to moni-
toring infrastructure assets, aiming at preventing eventual structural collapses. The use of
free and widely available radar images (Sentinel-1) and MT-InSAR technology, along with
free software programs (SNAP, StaMPS, QGIS), makes this approach highly accessible.

By comparing displacement trends between pixels at the same geographical location
over time, the methodology successfully detects potentially vulnerable zones, as demon-
strated by four real cases of infrastructure collapse where the areas of potential risk were
detected before the actual collapse occurred.

The simplicity of the methodology and its replicability make it a valuable tool for
creating risk maps. This allows authorities to focus their attention on areas that require
priority in situ inspection, leading to a rapid response in disaster prevention, reduction,
and relief. Overall, this work offers a significant contribution to the field of infrastructure
monitoring and provides a foundation for future research in this area.

As future work, we suggest also testing the decomposition of LOS displacement
to obtain E-W and up–down displacement, which could locate areas with a stronger
displacement trend. Finally, exploring the use of machine learning to discern potential false
risks by incorporating other sources of information could be further explored for a more
efficient and precise methodology that can rule out noise or false alerts in the results.
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