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Abstract: Wildfire is one of the main hazards affecting large areas and causes great damage all over
the world, and the rapid development of the wildland-urban interface (WUI) increases the threat
of wildfires that have ecological, social, and economic consequences. As one of the most widely
used methods for tracking fire, remote sensing can provide valuable information about fires, but
it is not always available, and needs to be supplemented by data from other sources. Social media
is an emerging but underutilized data source for emergency management, contains a wealth of
disaster information, and reflects the public’s real-time witness and feedback to fires. In this paper,
we propose a fusion framework of multi-source data analysis, including social media data and remote
sensing data, cellphone signaling data, terrain data, and meteorological data to track WUI fires.
Using semantic web technology, the framework has been implemented as a Knowledge Base Service
and runs on top of WUIFire ontology. WUIFire ontology represents WUI fire–related knowledge
and consists of three modules: system, monitoring, and spread, and tracks wildfires happening in
WUIs. It provides a basis for tracking and analyzing a WUI fire by fusing multi-source data. To
showcase the utility of our approach in a real-world scenario, we take the fire in the Yaji Mountain
Scenic Area, Beijing, China, in 2019 as a case study. With object information identified from remote
sensing, fire situation information extracted from Weibo, and fire perimeters constructed through
fire spread simulation, a knowledge graph is constructed and an analysis using a semantic query is
carried out to realize situational awareness and determine countermeasures. The experimental results
demonstrate the benefits of using a semantically improved multi-source data fusion framework for
tracking WUI fire.

Keywords: wildland-urban interface; multi-source data fusion; knowledge graph; ontology

1. Introduction

In recent years, wildfires around the world have increasingly affected human society
and ecosystem services [1–3]. As the area where human development meets with wildland
fuels, the wildland-urban interface (WUI) is bound to be affected by both structure firebrand
and vegetative firebrand, making this coupled spatial expression more susceptible to fire
risk [4–6]. With urbanization, the urban area is extended to the suburban or forest area,
and the fire-infected WUI area will continuously increase [7–9]. Due to the intricate
composition of the WUI, it poses a greater risk of physical harm or damage compared
to other landscapes [10,11]. Therefore, tracking such fires requires more effective and
efficient methods.
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Since the Internet has been pervasive for some time, and mobile devices and various
sensors are interconnected, exploiting large-scale data sources (for example, social networks,
IoT sensors) is a practicable method for emergency response [12–15]. The mission to
promote satellite remote sensing abilities is unprecedentedly successful in some countries,
such as the USA, China, Japan, India, and others, enabling Earth observation anywhere
and anytime. The fusion of those multi-source data is something rather new and will likely
draw more attention in the coming years. Such integration should result in developments
supporting disaster monitoring and management, in a way that is a major improvement
on the analytical capability provided by a single data source [16,17]. However, as this
fusion has often been pursued while accompanied by an inference problem involving a
limited number of features that have been acquired from a single sensor, researchers have
therefore often been unable to fully account for the physical phenomenon at hand, resulting
in several challenges in aggregating data from various data sources [18].

The fusion of information from different sensors has long been an interest in data
analysis, although data from different, often incompatible sensor modalities, and their com-
plexity make it difficult for researchers to articulate them in a comprehensive form [19,20].
Satellite remote sensing (RS) data are widely used to record information about the Earth’s
surface from space. Satellite RS devices can acquire high-resolution surface information,
extract a variety of spatial and temporal characteristics of different surface targets, and
serve as a reliable data source [21–23]. However, the technology is not time-sensitive
and not always available, and needs to be supplemented with other sources of data. The
linking of social media information with RS or GIS data can make emergency responses
more effective [24]. Social networks offer a distinct opportunity to obtain socially aware
information relevant to disaster management. Through the extraction and analysis of its
content, the emergency management information of an evolving disaster can be mapped in
more detail [25–27]. For example, wildfires detected by processing social media streams
(e.g., by monitoring posts relevant to wildfires) can be validated by analyzing sensor data
or additional data collected from the area of interest [28]. In [29], by studying the social
networks in metropolitan areas, it was found that real and perceived threats, as well as
actual disaster impacts, can be directly observed by examining the composition of social
media information flows. Schnebele et al. [30] propose a new method to combine RS and
voluntary geographic data to generate risk maps, showing that even small amounts of
voluntary ground data can greatly improve risk-assessment results. Cervone et al. [31]
have fused RS images with data obtained from social media to assess damage to transport
infrastructure in the event of a disaster or emergency. They have demonstrated the value of
this technique in situations where the impact of environmental disasters is extreme. But
most of the existing data fusion studies on disasters are task-specific and lack integration
of monitoring and dynamics [32,33]. And, there is currently a lack of methods for stan-
dardizing data from different sources. Such standardization will lead to the extension of
analyses and their compatibility with other disasters [34,35]. In WUI fire areas, few studies
have been performed on fusing geospatial and RS data [36–38], internet posts [39–41], and
fire spread dynamics [42–45]. Such a fusion is necessary in order to acquire situational
awareness and execute decision analysis more effectively and efficiently.

Semantic technologies can help integrate data from different sources into a unified
model [46–49]. Using ontologies of semantic technologies, data from different sources
can be transformed into a unified model, enabling better understanding of susceptibility,
vulnerability, the overall situation, and other aspects of disasters, thus better supporting
disaster management and response decisions [50,51]. To date, ontology modeling and
query and reasoning languages such as the Resource Description Framework (RDF) [52],
Web Ontology Language (OWL) [53], and SPARQL [54] have been used as recommended
by W3C. In the domain of disaster management, the application of ontologies and the
corresponding semantic techniques is becoming common. These ontology-related efforts in
the domain of disaster monitoring and assessment use data integration, information sharing
and reuse, and query answering. Kyzirakos et al. [55] combined ontologies and geospatial
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data to capture knowledge using semantic annotations encoded in ontologies. In [56], an
ontology-based framework consisting of two existing ontologies was proposed to support
the intelligent data analysis of detected data of disasters. Scheuer et al. [57] propose a new
OWL ontology for flood risk assessment, describing the core flood risk concepts, tasks
and map types. However, there are still some limitations to existing research. Ontology
construction is critical to the application of semantic technologies in disaster modeling; the
relationships between disasters and their causes, consequences, and mitigation strategies
can be complicated and difficult to represent using ontology modeling approaches; ontology
construction is a time-consuming and knowledge-intensive task [58]. Another challenge is
that the expert knowledge of varied disasters is disparate, not only the distinctive driving
logic, but also the operations of emergency response are completely different, and domain
and task ontologies for specific disasters are still required to construct according to their
business process. There is no semantic modeling specifically for WUI fire, but the semantic
information related to forest fire and building fire can be used in semantic modeling [59,60].
Inspired by previous works, this paper proposes an OWL-based WUIFire ontology to fill
the gap in the context of tracking WUI fire, where our domain ontology is incorporated
into the process of analysis about fire situation and mitigation strategy.

In this paper, we propose a fusion framework by considering multi-source hetero-
geneous data including social media data and earth observation data that could indicate
fire situation and support emergency response. Based on WUI fire knowledge, concepts
and properties were extracted to build the WUI fire domain ontology (WUIFire ontology),
which captures the relationships among wildfire systems, social media data, and sensor
network data, enabling the integration of different data for tracking fire. The data from
heterogeneous sources are instantiated to form spatio-temporal knowledge base. The
proposed framework is evaluated based on scenarios and evidences from the wildfire in
the Yaji Mountain Scenic Area on 30 March 2019 as a case. The experimental results show
the applicability of the incident situation analysis mechanism and demonstrate the benefits
using semantically improved multi-source data fusion for early warning and situational
awareness of WUI fire.

2. Methodology
2.1. Overall Framework

First, we outlined the implementation of the proposed fusion framework. Figure 1
presents the internal architecture.
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The architecture consists of four parts: Data Resource, Knowledge Base Service,
Knowledge Storage, and Intelligent Analysis. In first part, heterogeneous data is collected
from different data sources. Specifically, social media posts are typical of unstructured data,
and weather forecast; signaling location data are classified as structured data. Terrain data
are extracted from DEM, ground object data are identified from RS images, and both can be
transformed into structured data.

The Knowledge Base Service is the core component of the framework, and runs on
top of the WUIFire ontology, which developed semantic integration mechanisms taking
into account the data from various sources. More specifically, Knowledge Base Service
receives data automatically or manually, which allows human–computer interaction and
knowledge-base updating. Through mediation by Knowledge Base Service, the data or
instructions are semantically integrated into the knowledge base and drive query and
reasoning for problem solving. The reasoning mechanism as a set of SPARQL queries is
used to search information during a fire event to form a unified reasoning process.

In this paper, we concentrate on WUIFire ontology, which is designed to represent
the process of a fire happening in a WUI area including its occurrence, spread, and re-
sponse, and contains the formal representation of the WUI fire information including types,
properties, and interrelationships of different entities (see more in Section 4).

WUIFire is built based on GeoSPARQL, Semantic Sensor Network (SSN), and Sensor,
Observation, Sample, and Actuator (SOSA) [61]. The SSN and SOSA ontologies constitute
modular and extensive knowledge representations for sensor applications, developed by
the World Wide Web Consortium (W3C) and the Open Geospatial Consortium (OGC).
Because we consider different data sources as different sensors that integrate the WUIFire
ontology, the SOSA and SSN ontologies are used to describe general concepts of sensors
and sensor networks. SOSA provides the core relationships between sensors, observations,
results, measurement objects, and measurement procedures. More detailed attributes,
system descriptions and deployment features are annotated using SSN. Geographical
information is represented using OGC GeoSPARQL, which supports the use of RDF to
represent and query geographic spatial data in the Semantic Web [62]. It provides a generic
definition of a spatial object (as an instance of the class geo:SpatialObject) that has geometry
in the real world. The Dimensionally Extended Nine-Intersection Model (DE-9IM) has been
used to define the relation tested by the query functions introduced in GeoSPARQL. Each
query function is associated with a defining DE-9IM intersection pattern.

Knowledge Storage hosts the WUIFire ontology and also offers instance organization.
We chose GraphDB as a graph database in this research as it offers several additional
functions, allowing users to do more with time information. Meanwhile, GraphDB’s
support for querying with spatial relationships also makes GeoSPARQL more convenient
and clear to implement. Based on different modules in the WUIFire ontology, the data are
converted into triples for building the instance dataset. The instance data set is stored in
the Key–Value databases.

The WUIFire ontology is constructed by Protégé, the built-in predicate of equivalence
class can be used to formalize domain knowledge. Ontology is stored in GraphDB. Ontotext
GraphDB is a semantic database management system for knowledge discovery, semantic
data management, and semantic search which complies with the W3C standard [63]. Then,
we used SPARQL for the spatio-temporal semantic query. In this method, the query can
perform tracking fire by retrieving all information related to the fire-spread process of the
query results.

2.2. WUIFire Ontology

Following the semantic technologies we mentioned above, we propose the WUIFire
ontology to represent WUI fire-related knowledge schema, which are used to fuse multi-
source data and fire dynamics to track WUI fire. Due to length constraints, we have omitted
cardinality restrictions in the following visualization, where classes and properties starting
with a colon are defined in WUIFire.
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The main purpose of WUIFire ontology is to provide a specific vocabulary, relation-
ships, and axioms for the WUI fire domain. We have adopted a top-down approach to
define the WUIFire ontology. We have organized it into three modules for illustration.

2.2.1. WUIFire System Module

To formalize the concepts and relationships of knowledge in a fire system from a
structural division perspective, we refer to the Public Safety Triangle framework [64], which
consists of three elements: incident, hazard-bearing body, and emergency management,
which are interconnected by disastrous factors [65]. Figure 2 shows the Public Safety
Triangle framework.
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Correspond to Public Safety Triangle, the whole process of WUI fire system consists
of three main classes: Incident, Emergency Response and Affected Entity. Their hierarchy is
shown in Figure 3. Incident refers to events that cause catastrophic damage, and in WUI
fires mainly refer to events that cause fires to occur, including anthropogenic causes and
natural causes. Affected Entity refers to the object of the incident, including human, objects,
and social systems (socio-economic operation system composed of human and objects
together). Emergency Response refers to a variety of human interventions in emergency
management that can prevent or reduce the spread of fire. Classes are connected to each
other by corresponding object properties. For example, the relations between Incident and
Affected Entity are delineated through the hasTrigger property and those of the Incident and
Response Department (subclass of Emergency Response) through the hasObligation property.
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The above classes and properties, as components of WUIFire System Module, describe
the entire process of WUI fire from ignition to extinguishment, forming the conceptual
basis of WUIFire ontology and providing abundant knowledge to support the following
two modules.
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2.2.2. WUIFire Monitoring Module

The WUIFire Monitoring Module is a core part of WUIFire ontology. It imports SSN,
SOSA, and GeoSPARQL ontologies to define terms related to detect and monitor WUI fires.

According to the knowledge domain of wildfire monitoring, the classes and properties
contained in the sensor and observation perspective of SSN and SOSA ontologies are
extended. As illustrated in Figure 4, we perceive the different data sources as different
sensors. Social media provides a means to collect disaster evolution data from the crowd,
and they also function as a textual sensor, providing rich information about the disaster
situation, and we have defined social media as a sensing sensor; cellphone signaling data
show the real-time distribution of residents and tourists, which are used to assess the risk
of residents and tourists, and are defined as location sensor; weather stations that provide
meteorological data are regarded as meteorological sensors; and DEM, which contributes
terrain data, is regarded as a terrain sensor; RS image, which is regarded as surface sensor,
is used to extract the vegetation, building, water, road and other geographical features.
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Based on SSN and SOSA ontologies, the specific classes are defined via the sosa:observation
class from the disaster-observation perspective first. For example, as an important part
of social media output, each post can be seen as an independent observation. A user
who publishes a post is a subclass of the SensingSensor class, i.e., SMUser (social media
user), and is distinguished by a unique identifier, which is linked to the Post class via
the sosa:madeObservation property. Figure 5 illustrates a partial view of the classes and
properties used for the posts to extract information. Except for the Post class, other related
properties have been defined as well. The definitions of axioms in the ontology are given
in Description Logic (DL) language [66] as follows:

: Post v ∀sosa : madeBySensor. : SMuser

Post v ∀hasTheme.FireTheme

Due to wide range of properties involved in WUI fire, domain-specific classes need to
be defined by semantically extending the ssn:ObservableProperty class. By distinguishing
the observed properties into stable properties and properties that require continuous
observation (i.e., MonitoringProperty). A part of these axioms is listed below.

StableProperty v ssn : ObservableProperty

MonitoringProperty v ssn : ObservableProperty
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TerrainProperty v StableProperty

SurfaceProperty v StableProperty

MeteorologicalProperty v MonitoringProperty

SensingProperty v MonitoringProperty
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The place where the fire occurred and the surrounding environment, represented as
a grid of cells. Each cell is assigned a fuel type, moisture content, and other attributes
that affect the fire’s behavior, most of them being extractable from RS images. Each grid
is refined as an instance of class (see explanation below), and each instance is connected
to the instance of the ssn:ObservableProperty class. This facilitates follow-up of subsequent
queries and analysis.

In the fusion framework, time and space are important for tracking and understand-
ing events and its trends. In order to filter data by time scale, such as filtering out posts
for a certain period of time, observations and results will be represented by combining
time aspects from SOSA (provide object properties for exporting time) and extensions of
GraphDB (provide relation types for filtering time). For example, when searching for social
media posts within a time period, a group of functions built in GraphDB to compute the
difference between two timestamps was used. ofn is the default prefix for implemented
Ontotext GraphDB SPARQL functions. They take two timestamps as input and output
integer literals. ofn:hoursBetween returns the duration as hours, and ofn:minutesBetween re-
turns the duration as minutes. It is more efficient than performing an explicit mathematical
operation between two literals.

As said in Section 3, GeoSPARQL is based on DE-9IM to describe the spatial relation-
ships between geofeatures. In our study, we utilized the Boolean query functions defined
for the Simple Features relation family, along with their associated DE-9IM intersection
patterns. For example, when querying for properties within a geospatial area, numerous
functions allow for spatial analysis between different geometry; each function accepts
two geometries (geom1 and geom2) of the geometry literal (i.e., ogc:geomLiteral for any
GeoSPARQL literal that describes a geometry, where ogc is the prefix for the OGC (Open
Geospatial Consortium) standard.. The prefix geof stands for GeoSPARQL function. If there
is an attribute corresponding to geom2 in geom1, using geof:sfContains(geomLiteral geom1,
geomLiteral geom2) or geof:sfOverlaps(geomLiteral geom1, geomLiteral geom2) corresponding
to Contains or Overlaps in DE-9IM, the spatial relation between the two geometry can be
identified. Each function returns true if the specified relation exists between geom1 and
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geom2, and false otherwise. With Boolean operations, if a coordinate is given, properties in
a specific grid containing the coordinate can be extracted.

2.2.3. WUIFire Spread Module

This module mainly aims at fire-spread simulation for the WUI environment and
appends the semantics to the fire-spread models. Its composition is shown in Figure 6.
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To describe fire spread, the module consists of three core classes: Input, Process,
and Output.

The Input class includes a variety of initial properties needed for the fire-spread model,
including terrain properties, meteorological properties, and surface properties, which can
be obtained from the Monitoring Module above.

The Process class includes the physical or mathematical models used in the fire-spread
process. The most commonly used models in China are the Wang Zhengfei model and
Rothermel model. The Wang Zhengfei fire-spread model is a relatively advanced fire-
spread model in China at present, which has the widest range of application in China, and
its modification form is shown in Equation (1) [67].

R = R0KsKrK f (1)

where R: rate of speed; R0: initial fire-spread speed; Ks: fuel spatial distribution-adjusted
and arrangement-adjusted index; Kr: wind-speed-adjusted factor; and Kf: slope-adjusted
factor.

The Rothermel model describes the spread of fire from a macroscopic perspective [68,69].
It has a high degree of abstraction and has a wide range of application. The equation is as
shown in Equation (2):

R =
Ir × ξ

ρεQ
(1 + φw + φs) (2)

where R : rate of speed; Ir : reaction intensity; ξ : propagating flux ratio; φw : wind factor;
φs : slope factor; ρ : bulk density; ε : effective heating number; and Q : heat of preignition.

The Output class includes output parameters after fire simulation. These parameters
are treated as different geographic objects. For example, a fire incident spot belongs to the
class geo:Feature and its location belongs to the class geo:Geometry; it represents the location
of the fire, as represented below in DL:

IncidentSpot v ∃geo : hasGeometry.SpotLocation

By using the geo:asWKT property, each geometry indicates the geographic location of
the object in WKT (Well-Known Text) string format; WKT refers to a literal value (rdfs:Literal)
specifying coordinates for each geometry, e.g., the coordinate of SpotLocation is represented
as follows:

SpotLocation v ∃geo : hasWKT.rdfs : Literal
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Similarly, using GeoSPARQL spatial relation analysis, an instance of the SpotLocation
class has a WKT value, which means that it will fall within the scope of one of the grids,
whose properties can be extracted through reasoning.

Likewise, based on the fire-spread system, fire perimeters from different times through
simulation are imported as instances of the FirePerimeter class (a subclass of geo:Geometry).
Using spatial queries, the properties related to the burned area can be obtained. Therefore,
by fusing information from various sources, data from each source can be presented simply
by querying.

3. Results
3.1. Use Cases and Correspondent Datasets

This section presents WUI fire-tracking experiments with multi-source fusion through
a case study, showing that the proposed framework is effective for multi-source fusion,
expertise formalization, and WUI fire-spread prediction.

3.1.1. Study Area

We take Yaji Mountain Scenic as the study area. Its location is shown in Figure 7. The
Yaji Mountain Scenic Area is located in Pinggu District and Miyun District, northeast of
Beijing. Yaji Mountain Scenic has a cherished history and with a 8404.18 square meters
complete ancient building complex, Yaji Mountain Scenic Area is a typical WUI area with
95% forest coverage. The historical buildings are surrounded by forests, and are susceptible
to fire; meanwhile, as a famous scenic spot in the east of Beijing, there are several village
gathering areas around the Yaji Mountain Scenic Area, with a large number of human
activities. In this study, we constructed a fire scenario by simulating the spread of wildfire
with reference to the Yaji Mountain Scenic Fire in 2019, and exploit our proposed data
fusion framework to track the fire.
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3.1.2. Correspondent Datasets

Table 1 provides the source information of the experimental sensor data.
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Table 1. Source information from experimental sensor data.

Sensor Data Sources

Sensing Weibo post Weibo
Surface RS Image Sentinel-2 and UAV Images

Meteorological Weather Data Meteorological Administration
Terrain DEM National Geomatics Center of China (NGCC)

Location Phone Signaling Data China Unicom Big Data

The social media data came from posts on the Weibo platform, using crawlers to crawl
Weibo posts about fires. Text-mining technology is used for text classification and entity
recognition of crawled fire posts.

Because different targets have different phenological and spectral features, this study
selects multi-temporal and multi-source RS image data to improve the classification accu-
racy, including the following: Google images in summer and winter (resolution is 0.5 m,
acquisition time: 16 August 2018 and 7 March 2020), summer and winter Sentinel-2 images
(resolution: 10 m, acquisition time: 21 August 2018 and 31 December 2019, respectively),
and ultra-high-resolution UAV data (acquisition time: 28 September 2020).

Other data include the following: DEM data that are used to extract slope, aspect and
elevation; phone signaling data, which provide hourly statistics on the location of people
and crowd structure information (including permanent residents, tourists, students, the
elderly, infirm groups, etc.) in 250 m grids, which indicates the distribution and number
of residents and tourists; meteorological data, which comes from four meteorological
monitoring stations around the Yaji Mountain scenic Area, which are monitored on an
hourly scale, including wind speed, wind direction, relative humidity and temperature.

3.1.3. Data Processing

In this study, we use Weibo Advanced Search combined with a crawler and Weibo
API to collect posts about Yaji Mountain Scenic Fire and extract significant content from
them using deep learning.

To collect as many posts as possible concerning the Yaji Mountain Scenic Fire, we set
the keywords (in Chinese) “Yaji Mountain”, (“Miyun District”) and (“forest fire”) in the
form of “location” + “disaster type”, set the time period from 0:00 on 30 March 2019 to
23:55 on 31 March 2019.

Since the information generated in social media platforms during fires is highly
variable and the quality of posts obtained determines the accuracy and reliability of the
disaster information subsequently extracted from it, it is necessary to filter out posts that are
completely unrelated to the description of the fire event as well as the posts that are related
to the event but are uninformative. Specifically, we grouped posts into three categories:
Irrelevant, Informational, Others. Among them, posts in the Irrelevant category have no
content related to the event; the posts in the Informational category are related to the
event and contain useful information; in the Others category, posts have some relevance
to the fire event but no useful information can be extracted. The classification of posts is
achieved by fine-tuning the training of the Bert model, which is widely used in natural
language processing. For the training data of the categorization model, we manually
categorize a set of posts in the Informational category to obtain the corresponding labels
through crowdsourcing.

Meanwhile, in order to obtain more useful information about fires from the classified
Weibo data above, we train a fire-oriented entity-recognition model based on the Bert
pre-training model to automatically extract information from all the crawled Weibo post
content. We have conducted a performance analysis of social media categorization and
information extraction. For the categorization of posts, we obtained an F1 score of 0.912 on
the test set, and for the information extraction of posts, for several categories of disaster in
formation that we need to extract, we obtained an F1 score of 0.895 or more. The content of
entity recognition includes five categories: fire situation, local weather, response action, fire
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damage and ignition reason. They are converted into triples as instances of the FireTheme
class, then we make artificial discrimination of the converted FireTheme class, checking
other reliable sources including trusted news outlet or official report by cross-validation
to see if they confirm or refute the contradictory information. So, they are linked with the
knowledge of wildfire management as mentioned above.

RS images were used to extract features including vegetation (coniferous forest, broad-
leaved forest, and shrub forest), roads, and buildings. Rule-based object-oriented classifica-
tion and sample-based object-oriented classification are used for target-feature extraction.
The Geospatial and RS image target extraction situation in Yaji Mountain Scenic Area is
shown in Figure 8.
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Spatial analysis and resampling to convert the data to 30-m grid vector data. We
created a converter that treated each grid as a geometry class (geo:Geometry), conform-
ing to the GeoSPARQL format specification, and each grid is stored as an instance with
unique WKT values, terrain properties, meteorological properties, surface properties, and
location properties.

The fire spread simulation is carried out with reference to the fire environment of
the Yaji Mountain Scenic Area on 30 March 2019. According to the fire that occurred at
about 12:00 on 30 March 2019, the fire spread is simulated based on the meteorological
data and feature data of that day, and constructed in the fire scenario. According to the
actual situation and the monitoring data of study area, applying the Rothermel model and
Huygens diffusion principle, based on the ArcEngine platform, using the C# language, a
two-dimensional simulation of the spread of the fire in hourly units is achieved. The two-
dimensional simulation of forest fire-spread in hours was implemented, extracting their
WKT values through the gdal library and importing them as instances of the FirePerimeter
class (subclass of geo:Geometry).
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3.2. Analytics

Based on the framework mentioned above, this research obtained 782 Weibo posts
related to Yaji Mountain Scenic Area. Figure 9 shows a timeline with the major events
related to the Yaji Mountain Scenic Fire and the number of relevant Weibo posts per two
hours, with examples of posts (translated by authors) taken at key moments in the event.
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selected posts contents.

Because the fire started in a sparsely populated area, the first post mentioning the fire
was published at 15:30, about three hours after the fire started. The lag of posts from the
public also seems to have been highlighted by a limited initial response from the platform
focused on the event. After this point in time, the social activity was then in line with the
situation in the field. And this trend of low comment remained in place for some time until
fire situation gradually worsened; this has attracted the attention of some people. The peak
in posts around 18:00 on 30 March corresponds with the most critical moment in the event
when weather conditions were conducive to the spread of the fire, high temperatures and
strong winds. The intensity of this period included a lot of posts using “Break news” to
introduce the situation of this fire. Since then, posts became fewer again and only caused
another spike in social posts as the fire was put out. Between 0:00 and 8:00, very few posts
were published, which is because people were sleeping and the fire in Miyun District was
put out at night. In the morning, news about the fire was being widely commented upon by
citizens. The posts during this period mainly reported to the public the process of replaying
the whole fire incident and did little to help track the fire.

In order to track the state of the fire on a small time scale, we collated the fire simulation
perimeters derived from the fire spread simulation system and integrated them into the
fusion framework for processing and analysis. In addition, since the fire department took
action and the fire was no longer a naturally spreading process, the simulated fire scenario
should also reflect the effect of response action, and we have obtained the mitigation
information based on the phone signaling data and Weibo data, and adjusted the simulation
parameters of the model to exclude unreasonable circumstances, obtaining more realistic
simulation results. In this case, the simulated fire perimeters up to 4 p.m. and 7 p.m. are
shown in Figure 10.



Remote Sens. 2023, 15, 3842 13 of 20Remote Sens. 2023, 14, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 10. Fire perimeter obtained from the spread simulation to 4 p.m. and 7 p.m. 

Although affected by the actual data obtained on the spot, there is a certain deviation 
between the corrected simulation results and the actual fire scenario. We compared the 
results to the actual fire investigation report from the government. The report shows that 
the fire approached Bixia Yuanjun Temple at 6:40 p.m., and the simulation results also 
showed that the fire spread near the building (as shown in Figure 10). In addition, at 6:30 
p.m., a report released by the state media showed that the spread of the fire could be ob-
served at the entrance of the Yaji Mountain Scenic Area (i.e., the observation point in Fig-
ure 10), as shown in Figure 11, which also confirms that the fire spread near the scenic 
building area at that time. 

Figure 10. Fire perimeter obtained from the spread simulation to 4 p.m. and 7 p.m.

Although affected by the actual data obtained on the spot, there is a certain deviation
between the corrected simulation results and the actual fire scenario. We compared the
results to the actual fire investigation report from the government. The report shows that
the fire approached Bixia Yuanjun Temple at 6:40 p.m., and the simulation results also
showed that the fire spread near the building (as shown in Figure 10). In addition, at
6:30 p.m., a report released by the state media showed that the spread of the fire could be
observed at the entrance of the Yaji Mountain Scenic Area (i.e., the observation point in
Figure 10), as shown in Figure 11, which also confirms that the fire spread near the scenic
building area at that time.

The simulation results including the spread area and direction of fire generated by
the corrected model are roughly the same as those of Yaji Mountain fire at a similar time,
which shows that the simulation results of fire spread are reasonable and can be used with
confidence to simulate and analyze the behavior of fire in the system and construct the fire
scene in this study. Nonetheless, as is well known, fire behavior simulation is a challenging
and ongoing issue in the academic field, which requires not only modeling research but
real-time and accurate data input (e.g., wind, moisture, and fuel). We used the popular
Rothermel fire spread model to make a simulation to construct the fire scenario, taking
several kinds of variables such as meteorological data, terrain data, and forest data as
input parameters. Due to the input data accuracy and acquisition problems, quantitative
assessment is very difficult for a post-event analysis.

SPARQL is used to query the social media posts and observing properties around Yaji
Mountain Scenic Area. By calculations of the time function, that we mentioned above, we
take 4 p.m. on March 30th (4 h after ignition) as an example, where all social posts from
the five minutes prior 4 p.m. were extracted. Meanwhile, the simulated fire perimeter
is spatially queried with the grid containing the various properties by the functions in
GeoSPARQL. The conditions of the posts are depicted in Table 2; through the query, we can
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obtain all the properties near 4 p.m. contained in the grid that intersect the boundary of the
fire perimeter, one of which (red grid in Figure 10) is shown in Table 3.
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Figure 11. Fire situation at 6:40 p.m. at the entrance of Yaji Mountain Scenic Area from official
report. (Signs in various languages on the right side point to the entrance of the Scenic Area)
https://news.sina.cn/sh/2019-03-30/detail-ihtxyzsm1871507.d.html (accessed on 28 July 2023).

Table 2. Set the time for the query result of the post at 4 p.m.

sosa:resultTime :hasValue :FireTheme

2019-03-30T15:56:00 “Strong winds” :LocalWeather

2019-03-30T15:58:00
“The municipal fire brigade
mobilized its forces to carry

out fire control.”
:ResponseAction

2019-03-30T15:58:00 “The temperature is too high.” :LocalWeather
2019-03-30T15:59:00 “Spread to Pinggu” :FireSituation

Table 3. Relevant properties of the marginal area near 4.p.m. (red grid of Figure 10).

Category Property Name :hasValue

Meteorological

:Aspect 59
:Slope 13

:WindScale16 4.38419
:WindSpeed16 7.02996

:WindDirection16 114.509
:RelativeHumidity16 11.9688

Location :PersonNumber16 0
Surface :Landuse coniferous forest

To follow the progress, social posts provide interesting spatio-temporal information.
The origin place and reason of the fire was cited several times in posts. Then, a series of
follow-up emergency operations were cited during the evening. As shown in Table 2, one of
the posts about the fire situation shows that topics are about “spread to Pinggu”, showing
that the fire spread in the Miyun district and moved towards the Pinggu district (the
fire was ignited in the Miyun district), this can be demonstrated by the fire investigation

https://news.sina.cn/sh/2019-03-30/detail-ihtxyzsm1871507.d.html
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report from the government: “At 15:30, a wildfire in Nanshan, Taibaozhuang Village,
Miyun, Beijing, was spreading towards Pinggu.” From Figure 7, we learn that the Pinggu
district is in the southeast of the Miyun district. “spread to Pinggu”, as well, represents
that the fire was spreading toward the southeast. The red grid in Figure 10 is one of the
intersections between the fire perimeter and grid instances, providing different categories
of properties. From Table 3, the wind-direction value in the red grid is 114.509, indicating
that the wind direction at that particular time was southeast. A post about local weather
cited “Strong winds”, with the wind speed values at 4 p.m. (7.02996) shown in Table 3,
and another post about local weather said that “The temperature is too high.”, which
was confirmed by a fire investigation report: “At 15:40, due to the high temperature and
increased wind at the fire site, some of the fire lines had formed a crown fire, surface fire
three-dimensional burning situation.” Additionally, posts on the theme of fire operation
equally lay a solid foundation for cooperation and emergency-response coordination
between different government departments and provide support for decision making. As
shown in Table 2, a post about response action was “The municipal fire brigade mobilized its
forces to carry out fire control.”, as also confirmed by the investigation report: “According
to the fire situation, firefighters are difficult to close to fight with wind extinguishers, high-
pressure water pumps to open the breakthrough gradually forward.” All examples above
prove the consistency between the simulated fire scene and the actual fire and emergency
situation. From the above, social media data, although they have a slight delay, can provide
meaningful references including on-site fire situation and firefighting conditions that other
data sources cannot provide, which is helpful for domain experts and firefighting personnel
to track the wildfire situation, and facilitate their fire operation decisions. For example,
in the process of emergency response in the Yaji Mountain fire, according to the Weibo
information obtained, around 9 p.m. on 31 March, a post said that reburn was found
near the town of Liujiadian, 2.5 km away from the western fireline in the Miyun District,
while the official report showed that firefighters did not receive the command from the
headquarters for the reburn area until 10 p.m. That is, the actual disposal of the fire does
not take into account the actual existence of valuable information in social media; if social
media and other multi-source data are combined in the actual emergency response, a better
mitigation strategy can be obtained.

4. Discussion

Due to the large differences in data from different sources, the fusion of heterogeneous
data sources for disasters is a complicated process that involves integrating data from
various sources. Heterogeneous data sources vary significantly in terms of their quality,
accuracy, and reliability. Semantic technologies have a great potential in disaster modeling.

Starting from the domain knowledge of the WUI and wildfire system, we have pre-
sented the WUIFire system module using a corresponding ontology to enrich domain
knowledge from the semantic perspective. By organizing different types of fire into dif-
ferent sections, the Public Safety Triangle framework is utilized to carry out knowledge
semantics on emergency management of the whole fire. It can improve the search of pre-
cious information that is necessary to set priorities for wildfire emergency response. Several
advantages can be found by using an ontology-based knowledge-modeling approach in
the WUI fire domain. For example, it can effectively represent multi-source expertise in
the form of triples, which can facilitate the management of WUI fire scenarios. Also, it
enables the refinement and multi-perspective representation of domain-specific informa-
tion. In addition, the approach enables effective query and intelligent inference of implicit
information by taking advantage of semantic queries and inference mechanisms.

It is of interest to regard various data sources as different sensors in a flexible represen-
tation. We reviewed suitable ontologies, vocabularies, and data schemes, and suggested an
appropriate integration of existing concepts. GeoSPARQL is used to semanticize geospatial
information. SSN and SOSA are used to classify data from various data sources, that is, treat
data sources as different sensors for fire monitoring. Compared with traditional methods



Remote Sens. 2023, 15, 3842 16 of 20

using RS images to detect wildfires, the availability of social media data with real-time infor-
mation published by the public could support tracking wildfires. Also, social media content
also reflect the impact of the public, which supports social sensing for assessment [70]. It
can be beneficial to crisis managers and responders to fulfill their data needs by providing
them with valuable information on a natural hazard. Social media, as sensors generating
in situ data with short text that provide a more diverse and personalized perspective on
wildfires, can be further utilized [71]. However, there are still many shortcomings in using
social media data for multi-source data fusion. One significant pattern of social media
usage during crisis is that only users in affected areas tend to post information on social
media; hence, the amount of social media information will be influenced by the population
and economic development of the affected area. Another pattern is that different types of
disasters have different temporal patterns related to the evolution of social media content
and the number of posts [72]. For example, floods, earthquakes, rainstorms, and hurricanes
are often easily observed and predicted, which can usually be posted at all stages of the
disaster, while fires, which are usually small, only have a few posts that are published
about them, with most of the information mainly dependent on news [73].

Such issues have also emerged in our experiment; the potential of our proposed model
cannot be fully exploited because the Yaji Mountain Scenic fire only lasted for a day and
did not cause any casualties. Furthermore, Yaji Mountain Scenic Area is far away from the
metropolitan area, and there are few surrounding developed residential areas and social
activities are not active; so, this number of posts is relatively low compared to other events.
Asynchronous fluxes may be common and completely independent by the event itself, that
is, social media data cannot fully represent the trend of an event. For example, in Figure 9,
the decrease in the number of night-time posts is due to either the reduction in actual fire
intensity or because people sleep at night and needs to be judged by the supplement of
other data sources. Similarly, for data from different sources, the information presented
may be contradictory, and it also needs cross-validation to verify whether it is true or false.
In our experiment, an official report is regarded as the primary credible source of reference.

Although its effectiveness was limited when validated in the case above, it can still
provide considerable information for decision makers to minimize the adverse effects of
WUI fire on ecosystems and communities, predict fire behavior based on fire spread model,
and use multi-source information to track WUI fire. It is of great significance to prevent
and resolve major fire risks by dynamically tracking and managing fire risks according
to changing natural and social environment, and adjusting and changing risk response
policies, planning and management in time.

5. Conclusions

Sensor fusion is not a novel topic, and using social media data has been a widely
employed approach in many different contexts. However, the currently existing work
by researchers on the integration of heterogeneous data sources for fire monitoring and
management is not sufficient. The goal of this paper is to propose a coherent fusion
framework for the integration of many different technologies to track wildfires happening
in WUI areas, and how we combine these with multi-source data including instant social
media data and earth-observation data to provide more specific and accurate information
to track fires.

We use semantic web technologies, constructing an ontology framework on wildfires
(i.e., the WUIFire ontology), which formalizes domain expertise, and with the help of
ontology-based query and reasoning, a flexible semantic model enables the integration of
other knowledge from related domains, and the query and management of sensor data
becomes more convenient and intelligent. It provides a basis not only for analyzing the
WUI fire track process, but also a basis for investigating the social sensing of WUI fires.
Finally, we apply the framework to the 2019 Yaji Mountain Scenic Fire in Beijing, China.
Through the object information identified by remote sensing, the information extracted by
Weibo and the fire perimeters constructed by fire-spread simulation, the knowledge-base
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service was constructed and analysis through semantic query was carried out to assist in
emergency management better.

However, there are still some limitations. Addressing these limitations may require
further research and development of new technologies and methods. First, since the
construction of the ontological framework is related to personal understanding and the
description of disaster knowledge, it is inevitable that there are mistakes and omissions. In
future research, the ontological framework can be enriched by further summarizing WUI
fire knowledge through communication with domain experts. Then, the data still need
to be processed before they can be imported into the conceptual model, which cannot be
updated in real time and has a certain lag, and future improvements are needed to meet
the demand for real-time monitoring.

Finally, the application of social media data is still a great challenge; how to use the
pictures, videos and other multimedia information in social media to extract the information
in fire emergency more comprehensively and systematically will remain a difficult point
and trend for future research. In the future, we will examine the use of ontologies as
the basis for the knowledge base with practical applications, and writing rule sentences
with SWRL (Semantic Web Rule Language) of fire knowledge and fire dynamics to build
a comprehensive framework and achieve more complex query and reasoning based on
WUI fires.
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