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Abstract: Homogeneous band- or pixel-based feature selection, which exploits the difference between
spectral or spatial regions to select informative and low-redundant bands, has been extensively
studied in classifying hyperspectral images (HSIs). Although many models have proven effective,
they rarely simultaneously exploit homogeneous spatial and spectral information, which are benefi-
cial to extract potential low-dimensional characteristics even under noise. Moreover, the employed
vectorial transformation and unordered assumption destroy the implicit knowledge of HSIs. To
solve these issues, a dual homogeneous pixel patches-based methodology termed PHSIMR was
created for selecting the most representative, low-redundant, and informative bands, integrating
hybrid superpixelwise adjacent band grouping and regional informative mutuality ranking algo-
rithms. Specifically, the adjoining band grouping technique is designed to group adjacent bands into
connected clusters with a small homogeneous pixel patch containing several homolabeled adjacent
spatial points. Hence, the processing is efficient, and the superpixelwise adjoining band grouping
can perceptually and quickly acquire connected band groups. Furthermore, the constructed graph
and affiliated group avoid vectorial transformation and unordered assumption, protecting spectral
and spatial contextual information. Then, the regional informative mutuality ranking algorithm is
employed on another larger pixel patch within each homogeneous band group, acquiring the final
representative, low-redundant, and informative band subset. Since the employed dual patches consist
of homolabeled spatial pixels, PHSIMR is a supervised methodology. Comparative experiments
on three benchmark HSIs were performed to demonstrate the efficiency and effectiveness of the
proposed PHSIMR.

Keywords: hyperspectral image classification; band selection; homogeneous region; adjacent band
grouping; regional informative mutuality

1. Introduction

There has been a growing interest in distinguishing disparate land-cover objects
with available hyperspectral images (HSIs) recorded by special satellites [1-3]. Unlike
traditional remote sensing imagery, HSI generally holds tens of thousands of sophisticated
areal observations with hundreds of consecutive-wavelength spectral variables. It has been
proven that abundant spectra and intensive scene pixels are beneficial to recognize different
unmarked surfaces [4,5]. Despite the potential mentioned above, the attributes also have
inevitably brought some obstacles to classifying HSIs, which include, but are not limited to
the following: (1) the increments of band number and pixel size remarkably increase the
time and cost of data processing and storage, and (2) the irreparable lacking of class labels
and the huge spectral dimension quickly bring Hughes phenomenon, which significantly
decreases the performance of classification or detection techniques [6,7].

It is known that reducing the number of recorded spectra is an effective solution
to these issues [8,9]. In reality, since there exist amounts of redundancy, many highly
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correlative adjacent spectral variables may negatively influence the usefulness of global
information [10]. Therefore, feature selection, i.e., band selection, is a helpful way to solve
the mentioned problems by finding a band subset of meaningful details and low similarity
to improve the analysis efficiency. Moreover, the band selection protects the input HSI's
original spatial information. It is conducive to further investigation, precisely the main
reason that makes band selection outshine other dimension reduction methods [11,12].

Recently, many valid spectral band selection models have been presented, which can
be seen as homogeneous [13-15] and global in manner [16-21], according to whether HSI
is divided into disparate hybrid homogeneous groups. Among the global ways, several
spectral bands are straightly acquired from the global information with specific metrics
or strategies. However, since different homogeneous regions correspond to objects with
distinct characteristics, globally measuring the informative scores of any bands is inappro-
priate [22,23]. Unfortunately, it may even be prevented from working when performing
on vast HSI under limited facility conditions. According to the similarity among bands or
pixels, homogeneous manners typically divide the whole spectral or spatial pixel set into
different homogeneous groups, performing specific metrics or strategies within each group
to acquire the final integrated band subset. The retained features are more irrelevant and
less redundant, and the burden of data analysis is significantly reduced.

Generally speaking, homogeneous methodologies can be divided into nonadjacent [13-15]
and adjacent manners [24-34]. The former tends to formulate band clusters with quan-
tified similarities among any two variables, ignoring contextual information because of
unordered assumptions [24]. Fortunately, the latter utilizes context to segment the entire
HSI into connected homogeneous groups [24-34]. Recently, several novel adjacent manners
have been presented and proven effective. Among these techniques, researchers usually
establish a graph with a projection of spectral bands with a 2-D spatial structure to segment
the pixel set into diverse homogeneous regions [28-34] or employ algebraic algorithms
to divide the spectral set into neighboring groups [24-27]. For instance, to extract the
contextual information of spectral bands, Wang et al. [24] developed a neighborhood band
grouping mechanism to shrink the correlation evaluation to connected bands, which is
conducive to protecting the main structure of highly related spectral variables. Identically,
Zhang et al. [33,34] utilized graph representation to display spatial and spectral structural
information, where nonadjacent bands are also considered irrelevant. Although these
methods can group adjacent variables, they must be revised. Firstly, it should be noted
that neither the 1-D algebraic algorithm nor the 2-D similarity graph of one dimension
considers the structural information of the other dimension. Specifically, most similarity
indexes, such as Euclidean distance [24], entropy [26,27,35], and I; ;-norm [33,34], regard
that the bands or pixels (the other dimension) are equally essential by assuming that the
bands are independent or stretching the 2-D pixel matrix into a 1-D vector. Even the
graph-based superpixel segmentation [31-34] is employed on a 2-D pixel matrix with a
spectral transformation. The vectorial shift or unordered assumption leaves the central
but implicit information out of consideration, including textual and geometric information
conducive to classification.

After dividing, the adjacent manners usually adopt specific metrics to acquire the
top influential bands within each group and then integrate them [24-34]. However, the
weighting indexes have some issues. The metrics include two categories: individual
metrics [36,37] and mutual metrics [38—40]. The former only considers each spectrum’s
information, whereas the latter focuses on the relationship with other similar bands. These
indexes either focus on the most quantified informative band of partial pixels or the most
relevant band of each group, making it impossible to acquire representative and informative
information simultaneously. Some models employed a combination of information and
correlation qualifications to solve this problem [24,38]. Unfortunately, this type of algorithm
may integrate conflicting indicators of disparate purposes, ignoring precise quantification
of the significance of each component to the aggregative indexes. Furthermore, several
adjacent band grouping models adopted a voting strategy [32] or iterative learning [33,34]
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within each group to search for proper subsets, which may bring more burdens of data
processing.

Recently, due to the excellent generalization capability of distinguishing distinct spatial
and spectral information in an underlying nonlinear structure, deep learning-based tech-
niques have been increasingly applied in the classification of remote sensing images [41-46].
However, similar to existing nondeep learning models, most existing deep learning models
rarely simultaneously exploit homogeneous spatial and spectral information, ignoring
exploring the redundancy between the bands and the pixels simultaneously. Furthermore,
these deep learning techniques overrely on the amounts of training samples and ask for
sufficient internal storage, precisely opposite to our objectives of utilizing a small pixel
patch to conduct band selection efficiently.

Above all, there are several open questions when it comes to the adjacent band- or
pixel-based local feature selection:

e  The data processing requires careful consideration and efficient utilization of original
structural, morphological, or supplementary information. Specifically, when deal-
ing with either pixels or bands, the other is usually turned into tractable vectors or
mutually independent vertexes. As a result, the central but implicit features may be
abandoned, bringing distorted estimation to some extent.

e  For the score evaluation of each spectral band, the metrics need to consider the
otherness of heterogeneous regions. Furthermore, the components of existing hybrid
indexes may conflict when setting up particular metrics to obtain a subset.

To address the issues mentioned above, a novel feature selection methodology of dual
homogeneous patches-based hybrid superpixelwise adjacent band grouping and informa-
tive mutuality ranking is created for hyperspectral classification, referred to as PHSIMR.
The dominating contributions of the proposed framework are highlighted as follows.

1.  We design a hybrid superpixelwise adjacent band grouping on a homogeneous pixel
patch to acquire similar and adjacent band groups, combing a finely designed algo-
rithm to smooth boundary curves automatically. Instead of finding one component of
hundreds of spectral features as the graph’s vertexes, our method retains complete
and ordered contextual and morphological spectral and spatial information within the
homogeneous spatial region. Moreover, the adopted pixel patch only contains several
homolabeled adjacent spatial points so that the processing is efficient.

2. The article also created a metric for band selection termed simplified informative
mutuality, which can naturally measure each band’s influential score in the correlation
degree with other homogeneous bands. Analogously, the proposed regional informa-
tive mutuality ranking algorithm is employed on homogeneous band groups and a
pixel patch containing more homolabeled samples than the former utilized.

3. Based on the employed homogeneous pixels and bands, the designed model is ef-
ficient, considers spatial and spectral contextual information, and can formulate
representative, low-redundant, and informative band subsets. A series of comparative
experiments on three benchmark HSIs demonstrates the efficiency and effectiveness
of the proposed PHSIMR.

The remainder of this paper is organized as follows. Section 2 introduces the detailed
descriptions of our band selection model, including homogeneous patch-based hybrid
superpixelwise adjacent band grouping-based and homogeneous-multivariate patch-based
informative mutuality. After that, a series of comparative experiments in Section 3 is
conducted on three publicly available hyperspectral data sets. The discussion is given in
Section 4. Finally, Section 5 presents the conclusion.

2. Proposed Methodology

In this section, we expound on the proposed band selection module, whose flowchart
is demonstrated in Figure 1.
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Figure 1. Schematic view of the proposed PHSIMR. The red circle represents an instanced spatial
region for adjacent band grouping, while the blue circle stands for the selected top informative band
within each homogeneous spectral group.

First of all, the hybrid superpixelwise adjacent band grouping algorithm is conducted
on a small homogeneous pixel patch. Specifically, we employed a small homogeneous
pixel patch containing several neighboring homolabeled spatial pixels to construct a hybrid
spatial-spectral graph, a 2-D grayscale image with all bands in rows and selected pixels in
columns. Subsequently, the entropy rate superpixel segmentation (ERSS) [23] is performed
on the 2-D grayscale image to acquire adjacent homogeneous band groups, combing
with a finely designed algorithm to smooth boundary details automatically. Then, the
developed regional informative mutuality ranking algorithm is exploited on a larger pixel
patch to select the most representative, low-redundant, and informative bands holding
top informative scores within each homogeneous band group. The second homogeneous
pixel patch is more extensive than the former, and the dual homogeneous spatial patches
are homolabeled.

2.1. Hybrid Superpixelwise Adjacent Band Grouping

For HSIs, it is known that adjacent homolabeled objects usually show similar spectral
distributions among various bands. The particular affinity between geographic region
and object category makes it possible to analyze HSI from a regional point of view [22].
Meanwhile, remarkable similarity exists among adjacent homogeneous spectral bands [24].
It is worth noting that the interference of noises is much smaller than the difference
between heterogeneous features. Above all, since local adjacent pixels marked with the
same class label are highly homogeneous, exploiting spectral contextual information from
a homogeneous patch is feasible.

2.1.1. Construction of Hybrid Spatial-Spectral Graph

The input original HSI data cube can be represented as a three-order data cube
H € RW*CxB in which W, C, and B represent the numbers of rows, columns, and bands
of the original HSI, respectively. Before band grouping, we employ a local pixel patch
containing homolabeled adjacent pixels to explore spectral bands’ geographic correlation.
It is known that the distance of pixels in HSI represents the distance of the geographical
locations in the actual scene [1]. Therefore, the closer the land-surface objects are, the more
likely they are to exhibit similar properties. Inspired by this, a hybrid spatial-spectral band
graph, Ggyxx € RP*K is constructed, where each row represents one band vector within
the spatial area of K (K > 2) adjacent uniform pixels as:

X11 X12 -+ X1K

X21 X2 -+ X2K
GB><K = : : . : = (xij)BXK (1)

X1 XB2 - XBK
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where x;; is the jth observation of the ith spectrum vector, and K is the pixel length of the
hybrid remodeling graph. Since the spectral dimension is fixed in rows, the hybrid spatial-
spectral band graph Gp,x € RE*K mainly depends on the choice of K homogeneous pixels.

An ingenious strategy is designed to form actionable local pixel regions to obtain an
optimal result, considering the consistency of pixel structure with natural structure. More
precisely, we determine a local homogeneous pixel patch within a specific homolabeled
area and experiment on the pixel patch according to the Euclidean square distance. After
immobilizing a reference pixel, the Euclidean square distance is calculated to measure the
distance from a geographically adjacent pixel to the fixed reference pixel. The distance
map of 6 x 6 local pixels is shown in Figure 2, where each cell stands for one pixel, and
the corresponding value is the distance to the initial spatial point located in the upper left
corner of a testing patch, shown by the red regular hexagon.
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Figure 2. Examples of the selections of pixel patches of different sizes K. Each cell holds the Euclidean
square distances from a specific geographically adjacent pixel to the fixed reference pixel (whose
value equals 0).

As the sample region’s size rises, adding other samples to the pixel patch no longer
decreases the overall distances to the reference sample. Hence, the selection strategy will
help us find the optimal experimental patch as small as possible while validating the
effectiveness of spatial homogeneity (found in the following subsection). In addition, local
patch processing can significantly reduce the computational cost and exploit contextual
characteristics to increase the performance of the band group.

2.1.2. Superpixelwise Adjacent Band Grouping

After hybrid graph construction, M connected homogeneous band regions can be
generated by conducting ERSS [23] on Gp«k as follows:

M .
Gpxk(M) = Y fest - hinhy =0 (i #7) 2

Here, Gp«x(M) represents the results by dividing the whole B bands into M con-
nected clusters. The ERSS is steered on the spatial-spectral graph for generating level
and smooth boundaries among heterogeneous bands. Instead of creating only one com-
ponent by projecting spatial vectors or spectral variables [22], the proposed model retains
the original spectral contextual features and primary texture information. Adjacent band
grouping maps on the different experimental pixel regions in Indian Pines are demonstrated
in Figure 3.
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Figure 3. Superpixelwise adjacent band grouping results on different experimental patches of 36 or
64 adjacent pixels. K* stands for the pixel size of the chart that holds randomly selected homo-labeled
pixels. K** denotes the size of random pixels sampling from the global spatial set.

In Figure 3, K represents the number of pixels of the remodeling homogeneous hybrid
graph, K* stands for the pixel size of the chart that holds randomly selected homolabeled
pixels, and K** denotes the size of random pixels sampling from the global spatial set. The
number of resulting band clusters W is fixed at 8, with boundary curves in green.

According to Figure 3, the performance of the proposed neighboring and local regional
approach is superior to other sampling groups. Compared to (c)—(f), the borders of (a) and
(b) are closer to the proposal we want to achieve, i.e., smooth and horizontal truncation
to distinguish disparate spectral channels. The homogeneous pixel-patch methodology’s
necessity, feasibility, and serviceability have been proven.

This strategy increases the averaging distance of selected pixels as the number of
selected adjacent pixels rises. It is known that the spread of pixels in HSI represents
the distance of the geographical locations in the actual scene. Therefore, the closer the
land-surface objects are, the more likely they are to exhibit similar properties. Concretely,
the overall similarity among the selected pixels increases as the testing region expands.
Thus, we can easily find the minimum number of adjacent pixels to construct the 2-D
grayscale image, obtaining more smooth heterogeneous band boundaries and reducing
operating costs significantly. The superpixel-based band grouping method can not only
regard the bands and pixels as variables and protect the original pixelwise value, but also
set the stage for visualized neighboring band grouping with a 2-D variable graph rather
than 1-D parallel spectral variables. Therefore, the complete and ordered contextual and
morphological spectral and spatial information within the homogeneous spatial region are
retained, significantly improving the effectiveness and efficiency of the proposed model
by conducting a regional informative band selection on dual homogeneous pixel patches
within each homogeneous band group.

Although our approach is excellent, it is difficult to achieve faultless performance for
the noticeable humps among the heterogeneous bands. There are two treated solutions
to this issue: one is reducing the samples as much as possible; the other is manipulating
a simple parallel shifting scheme. The latter can be achieved as follows. Assuming that
one boundary is located in the nth band, the marker value v of the ith pixel x;,; below the
ultimate curve must meet the requirement of R = 0, where R is given by:

K
R=) v(x,;) mod K s.t.2 < K <36 ©)]
=1

where the mod is adapted to return the residue R when the former number of the mod is
divided by K. Since the parameter tuning region contains 6 x 6 pixels, the upper limit of
Kis fixed at 36. The bands are entirely separated by manually moving the nonhorizontal
boundaries into a straight line along the band direction. In reality, the optimum size of the
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experimental region is almost always at most 16 invariably. The parallel shifting scheme is
figuratively illustrated in Figure 4.
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Figure 4. An example of heterogeneous boundary smoothing with parallel shifting optimization.

2.1.3. Model Optimization

The solution to the problem of how to acquire the optimal patch size is displayed
in this part. To weigh the performance, a measure of confusion E; of the nth band of
Gpxx(M) is adopted as follows:

! 1

C C

En(K) =) plog( )t =1, L Y cu=K 4)
t=1 t=1

where [ is the number of indexes acquired by the ERSS on the nth row of Gpxx (M), and cy¢
denotes the length of index t developed by the ERSS. Perfect always results in the same
index for each spectral row. Otherwise, [ will surpass 1, so the confusion value is over 0.
The confusion measure is also termed information entropy, which can reflect the confusion
degrees of data distribution. Considering all rows of spectral bands, the global perplexity
index is given by

E(K) = iEn(K),nzl, 2,...,B (5)
n=1

The index E(K) can explicitly measure the mass of the result on Gpyx (M) with K pix-
els. It is known that the less experimental confusion, the better the acquiring performance.
Therefore, the treated way of obtaining the illustration is

argmin E(K) s.t. K=S,...,36 (6)
K

Here, since the parameter tuning is on the local pixel region of 6 x 6, the upper limit of
K is fixed at 36. On the strength that the satisfactory E(K) = 0 will appear simultaneously
with the same M and different K, S is set as the initial setup of the minimal patch size of
K, significantly affecting the outcomes. In practice, different values of K result in various
maps. Consequently, a threshold needs to be set for the parameter S. The specific setting
of S is illustrated in the experiment section. Above all, the minimum column length that
corresponded to the minimized E(-) is size of the final optimal experimental patch.

2.2. Informative Mutuality Ranking

After band grouping, we acquire M homogeneous connected band clusters, where
adjacent spectral features have high intergroup variability and high intragroup correlation.
A representative and low-redundant band subset can be set up by picking the most infor-
mative element within each group. A homogeneous pixel patch is adopted, similar to the
aforementioned pixel patch for adjacent band grouping. The utilized patch is larger than
the former one (i.e., H > K), but they both belong to a homolabeled region. Such operation
reduces the running cost of band selection while avoiding the sampling uncertainty and
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unknown influence of other heterogeneous samples, which is proven effective via the
experiment results.

Motivated by matrix-based Rényi’s o-order multivariate entropy function [47], we in-
tegrate the information weighting index into the above hybrid graph-based adjoining band
grouping. Meanwhile, the measurement of informative importance on each intragroup
spectral feature is also predigested because of its inherent nature. Specifically, a region that
contains H adjacent homolabeled pixels can be reformulated as Gp . Supposing that all
bands have been partitioned into M homogeneous and balanced groups, the corresponding
band subset I'; of the kth group is formulated by

M
Fk = {ﬂi,ﬁ%,, fk}, s.t. kgl l"k = (GBXH)T (7)

where @y is the length of the kth homogeneous group, and ,BZ" (ny=1,2,...,@) stands
for the kth band vector of the set I';. Actually, most of the set I'; holds the same index k
by the ERSS via Equation (2). Within any homogeneous band subset I'y (k=1, 2, ..., M),
the locally informative mutuality A( ,sz) of the band ,BZ" with other homoregional spectral

bands I}, ® ,sz = {,Bi, e :"71, Z"H, e, wk} can be generated by
A(BEF) = Pu(BrF) + o (Ti @ B*) — u(Tx) ®)

where @ ( ,BZ") is the matrix-based Rényi’s x-order entropy function on ,BZ" , which is a
natural extension and generalization of the widely used Shannon’s entropy. The matrix-
based Rényi’s x-order entropy can not only evaluate the entropy of the single variable
(i.e., Dy ,BZ" )) or the multivariate joint entropy among multiple variables (i.e., g ( ,sz ),
which can be formulated without probability density estimation as

Pu(BL) = Su(BY) = - log, (ir(B)")) ©)

Here, tr denotes the trace function of the input square matrix, @, ( Zk) =S, (BZ" ), and
B.* represents the normalized Gram matrices evaluated over the band ,*. By exploring
the normalized positive definite square matrix over multiple spectral bands, the entropy
can be directly calculated from the hyperspectral data without inaccurate probability
density estimation over the high-dimensional data cube. Denoting C o D the Hadamard
product between the matrices C and D holding multiple spectral variables, the matrix-based
multivariate joint Rényi’s «-order entropy of I'y can be rewritten as:

BloB2o..-0B%
@y (T;) = So(BL,B,...,B) =S k— k k 10
() (B k ) ‘ tr(BllcoB,%o---oBfk) 10

where B}, B%, ...,and Bkwk are the normalized Gram matrices estimated over spectral bands

ﬁi, i, ...,and ﬂf", respectively. The utilization of the Gram matrices Bi, B%, ...,and Bkwk
simplifies the calculation of the joint distribution to paired-element multiplication. Further-
more, based on the commutativity of the Hadamard product, the simplified multivariate
patch-based informative mutuality A(B}*) of Bi* can be defined as

A(BLF) =0u(BLF) + 0o (Ty @ BF)

1 ne—1 ne+1 @,
5. (B") 45, BkooBr oBy 0B (1)
—Ca k o 1 i’lk—l Vlk+1 @y
tr(Bko...OBk OBk OBk )

It is worth noting that Equation (11) stands for the quantized informative score of the
band ,BZ", and @ (T} @ ,BZ") denotes the quantized informative score of the rest. Since the
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total information @, (T) is fixed, more significant remaining informative quantization will
lead to larger informative mutuality. Moreover, more enormous rest information means a
higher correlation of ﬁzk with other homogeneous bands. From this point, Equation (11)
reflects the quantized information of each band’s influential score, i.e., the correlation
degrees with other homogeneous bands. In other words, more considerable A( ﬁZ") means
a higher correlation with other homogeneous bands.

Based on the homogeneity of each band group, the selected band has the highest
correlation with other intragroup bands and low relation with other intergroup bands.
Thus, the obtained band subset of representative, low-redundant, and informative is finally
formulated as follows:

{argmax K(ﬁ’fl ), argmax K(ﬁgz), ...,argmax /K(,B’;}I’I)} (12)

n 2 o
By B, M

Unlike some typical band selection methods that evaluate the correlation between
spectral variables and category labels, the band selection strategy in our article is narrowed
into partial domains. Thus, the computing burdens and costs tomes can be remarkably
reduced. With the local homogeneous spatial and spectral patches, we rank the evaluations
of simplified informative mutuality according to the descending order and then find the
top values within each spectral group.

2.3. Time Complexity Analysis

The computational complexity of the proposed PHSIMR in Algorithm 1 will be dis-
cussed as follows. P denotes the number of all spatial pixels, i.e., P = W x C. The main
contribution to the complexity of the hybrid superpixelwise adjacent band grouping is the
acquisition of UM | Ty, requiring the complexity of O(BK x log(BK)). To calculate K, the
time cost is O(P). Besides, heterogeneous boundary smoothing is obtained by Equation (3),
which takes O(BK) to achieve Equation (7). The main contribution of the complexity of the
homogeneous and multivariate patch-based informative mutuality is to rank the mutuality
values within each band group via Equations (11) and (12). They take O(H3@?) for the
informative calculation within the kth homogeneous band group and O(wy) for ranking.
Above all, the overall time complexity of MGSR is O(BK x log(BK) + P + Z,I(Vi 1 H3@?).

Algorithm 1 PHSIMR

Input: Hyperspectral data set H € R"**B the number of selected bands M, the initial setup of

homogeneous patch size for S, the patch size for information ranking H.
Output: The final spectral band subset.
1: Search for the optimal homogeneous patch size for K with S via Equation (6).
: Establish a homogeneous hybrid spectral-spatial graph Gp,x € RE*K.
: Segment Gpyx € RE*K into U{(Vil hy via Equation (2).

= W N

: Smooth heterogeneous boundary to obtain homogeneous band groups Ty, = {81, 82, ..., ﬁ‘,fk}
via Equation (3).

: Construct another homogeneous patch Gy g € REXH.

: Calculate simplified informative mutuality within each band group Iy via Equation (11).

: Rank the mutuality values within T to find the top band argmax A( B*) via Equation (12).

o N O U1

: Integrate all top bands into the final band subset.

3. Experiments and Analysis

In this section, we first briefly introduce three employed benchmark hyperspectral
data sets. Then, the experiment’s procedure for classification setting, parameter tuning, and
comparative approaches is presented. Finally, the comparison results on different remaining
bands are displayed to verify the effectiveness and efficiency of the proposed algorithm.



Remote Sens. 2023, 15, 3841

10 of 21

3.1. Benchmark Data Sets

To demonstrate the performance of the proposed algorithm, we adopt three publicly
available benchmark HSI data sets, which are Indian Pines, Salinas, and Botswana. Table 1
summarizes the critical information of each data set.

Table 1. Essential information on three benchmark HSIs.

Data Set Spatial Size Spectral Class Labeled Samples
Indian Pines 145 x 145 200 16 10,249
Salinas 512 x 217 204 16 54,129
Botswana 1476 x 256 145 14 3248

1. Indian Pines: This data set was recorded by the airborne AVIRIS sensor over an Indian
Pines test site. After removing 24 water-absorption spectral bands, there are 200 valid
spectral bands within the wavelength range between 400 and 2500 nm, and the size of
each band is 145 x 145 pixels. This image covers a mixed vegetation site divided into
16 land-cover classes [48].

2. Salinas: The airborne AVIRIS sensor from the Salinas Valley test site also gathered
this data set. After removing the bands of water absorption and noise, the image
cube contains 204 spectral signatures within the wavelength range between 400 and
2500 nm with the size of 512 x 217 pixels. Additionally, the data set includes 16 types
of different land covers.

3. Botswana: This data set was acquired by the NASA EO-1 satellite sensor from Botswana.
After removing several noisy bands, the test data cube contains 145 spectral signatures
within the wavelength range between 400 and 2500 nm with a size of 1476 x 256 pixels.
Additionally, the data set includes 14 classes of different land covers.

3.2. Experimental Procedure
3.2.1. Classification Setting

To measure the quality of the retained band subset, a widely used multiclass nonlinear
classifier, a support vector machine (SVM) [49], is employed to evaluate the quality of
the acquired band subset. The parameters of RBF kernel-based SVM are obtained by
fivefold cross-validation. Moreover, 10% of labeled pixels of each class are randomly
employed for training tasks on Indian Pines and Botswana, leaving the rest as the testing
sets. Considering the vast amounts of labeled samples in Salinas, the size of the training sets
is set as 1% per class to reduce execution costs. Except for parameter sensitivity experiments
that operate SVM once, most experimental results are acquired by averaging the values
from fivefold cross-validations to eliminate the effect of random operating that may bring
errors. Moreover, for distinct approaches, the corresponding training set is identical for
each validation.

Specifically, each algorithm is adopted on the input HSI to acquire the subset of orig-
inal spectral features. After that, the SVM classifier is adopted to the resulting subset.
After classification experiments, three well-known and convincing precision indexes are
conducted to evaluate the capability of band selection for all methods, which are aver-
age accuracy (AA), overall accuracy (OA), and kappa coefficient (Kappa). Furthermore,
the classification map using different colors for distinct classes can also demonstrate the
classification results.

3.2.2. Comparison Methods

To validate the effectiveness of the proposed band selection algorithm, several novel
band selection approaches are compared with the proposed model in different numbers of
retained spectral features and different HSI data sets.

Several great local band selection methods are taken as matched groups to make
parallel appraisals of the effectiveness of our model in different numbers of band subsets.
Enhanced fast density-peak-based clustering (E_FDPC) [32] prioritizes the product values
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of local density and intracluster distance of each point within each cluster to form band
subsets. Optimal clustering framework (OCF) [15] presents an optimal clustering frame-
work and a ranking on clusters strategy to obtain the optimal result for a particular form of
objective function under a reasonable constraint. According to our entropy-based model
and E_FDPC mentioned above, we adopt the entropy-E_FDPC type of OCF to conduct
comparisons. Fast neighborhood grouping band selection (FNGBS) [24] devises a novel
refined band partition strategy and chooses representative bands with local density and
partial information entropy. The graph-regularized spatial-spectral subspace clustering
method (GRSC) [31] selects top representative bands by combining a self-representation
subspace clustering model with a region-aware similarity graph. Robust dual graph self-
representation (RDGSR) [34] uses ERSS on the input data’s first principal component to
extract spatial and spectral information and learns the optimal coefficient matrix to obtain
the ideal band subset. It is worth noting that E_FDPC and OCF are clustering-based band
selection methods, whereas others are grouping-based band selection models.

We gathered and tested the corresponding code of each compared method with
parameters set similarly to the suggested values. In addition, a method that takes all
spectral bands (All_Bands) as the input of the experimental classifier also serves as one
of the control groups. We gathered and tested the corresponding code of each compared
method with parameters set the same as the suggested values as much as possible. Among
these competitors and the proposed method, since the number of retained bands is an
unknown key parameter to each model, the sizes of the experimental subset are set within
the range from 5 to 50.

3.3. Model Study
3.3.1. Parameter Tuning

Two hyperparameters must be tuned in advance with a grid-search strategy, i.e., the
number S in Equation (6) of adjacent samples when operating spatial-spectral adjacent band
grouping and the size H in Equation (7) of the homogeneous region when calculating patch-
based informative mutuality. Parameter S is formulated for self-established spatial-spectral
grayscale images to produce homogeneous and no-overlap regions of the spectral band. H
is used to pick the final band within each resulting homogeneous region. Since these two
fundamental parameters are chosen from the same part of only one label, we try to find the
ideal experimental area before analyzing the impacts of these two essential parameters.

The ideal experimental area should cater to the following factors, which are (1) suf-
ficient pixels and (2) low noise interference. The former can be easily observed from the
input data, but the latter needs band grouping experiments until the heterogeneous group
boundary approximates a straight line. To this end, we experiment on each data set with
each category, finding that the optimal experimental areas of Indian Pines, Salinas, and
Botswana are Grass-pasture, Grapes-untrained, and the 8th class, respectively; this no
longer describes the corresponding specific experimental results because of space cause. In
a word, the two parameters above are tuned within these areas. Considering the computa-
tional time and different amounts of labeled samples, the number of homogeneous pixels
H is set to 100, 200, 300, and 400 when using Indian Pines and Salinas (or 50, 100, 150, and
200 for Botswana), respectively. The initial manipulative value S for band grouping covers
the integers from 2 to 4.

It should be noted that the classification accuracy usually rises as the number of bands
rises, until the dimension arrives at a specific big integer. Such a phenomenon may result
from the obtained boundaries of heterogeneous band regions that need to be more precise
or attributed to the features on homogeneous pixels being too similar to be distinguished.
Fortunately, although no setting can be optimal for all dimensions, the proposed band
selection method can easily acquire satisfying performance.

Table 2 shows the classification results of Indian Pines on different parameter settings.
One can observe that the influence of parameter H is more significant than parameter S.
Moreover, the results obtained by S =2 and S = 3 are similar. Based on the results, the



Remote Sens. 2023, 15, 3841

12 of 21

parameters S and H are set to 2 and 300, respectively. The classification results of parameter
sensitivity experiments on Salinas and Botswana are depicted in Tables 3 and 4, respectively.
Similarly, the parameter settings are such that S =2 & H =400 and S =4 & H = 50 are
empirically set as the fixed values for Salinas and Botswana, respectively.

Table 2. Classification results in OA (%) with different parameter sets and dimensions on
Indian Pines.

S H 5 10 15 20 25 30 35 37 40 42
100 71.03 75.85 78.15 78.43 79.08 81.42 79.38 80.40 81.70 80.41
5 200 72.84 77.21 78.46 77.41 78.39 81.35 81.32 81.25 82.02 79.12
300 72.21 76.87 79.78 79.82 80.90 81.79 82.28 82.31 82.62 80.32
400 73.37 78.02 79.07 80.44 81.34 81.64 82.11 82.69 82.36 79.13
100 71.03 78.85 78.99 80.42 79.08 81.42 80.49 80.40 79.19 78.22
3 200 72.84 78.64 78.99 80.30 78.39 81.35 80.87 81.25 78.46 78.29
300 72.21 80.11 80.58 81.80 80.90 81.79 81.71 82.31 79.89 79.00
400 73.37 79.63 79.20 80.96 81.34 81.64 81.85 82.69 79.52 77.55
100 71.03 78.85 78.99 78.94 79.08 81.42 79.38 80.40 79.19 78.22
4 200 72.84 78.64 78.99 79.16 78.39 81.35 81.32 81.25 78.46 78.29
300 72.21 80.11 80.58 80.35 80.90 81.79 82.28 82.31 79.89 79.00
400 73.37 79.63 79.20 80.47 81.34 81.64 82.11 82.69 79.52 77.55
Table 3. Classification results in OA (%) with different parameter sets and dimensions on Salinas.
S H 5 10 15 20 25 30 35 37 40 42
100 89.82 89.76 91.42 91.09 91.72 91.70 91.46 91.68 91.42 90.97
5 200 89.44 90.27 91.57 91.49 91.79 91.76 91.71 91.56 91.45 91.04
300 89.60 90.57 91.10 91.62 91.70 91.38 91.70 91.50 91.50 90.92
400 89.50 90.31 90.93 91.42 91.65 91.94 91.93 91.76 91.56 90.99
100 89.82 90.12 91.42 91.09 91.40 91.50 91.23 91.47 90.95 90.97
3 200 89.44 90.20 91.57 91.49 91.65 91.63 91.75 91.35 91.04 91.04
300 89.60 90.62 91.10 91.62 91.58 91.78 91.61 91.39 90.94 90.92
400 89.60 90.61 90.97 91.63 91.26 91.79 91.82 91.36 91.01 90.87
100 89.82 91.16 91.42 91.09 91.30 91.50 91.23 91.47 90.95 90.97
4 200 89.44 90.92 91.57 91.49 91.64 91.63 91.75 91.35 91.04 91.04
300 89.60 91.15 91.10 91.62 91.56 91.78 91.61 91.39 90.94 90.92
400 89.60 90.82 90.97 91.63 91.51 91.79 91.82 91.36 91.01 90.87
Table 4. Classification results in OA (%) with different parameter sets and dimensions in Botswana.
S H 5 10 15 20 25 30 35 37 40 42
50 85.94 90.26 90.44 90.95 90.64 90.13 91.33 89.78 90.88 91.12
5 100 85.91 90.26 90.81 90.33 89.72 89.13 90.85 90.33 90.50 90.44
150 86.15 88.82 88.93 90.26 89.54 89.58 90.54 90.47 90.37 91.12
200 86.66 88.79 88.52 90.50 89.92 90.06 90.54 90.23 90.02 91.22
50 85.94 90.26 89.99 90.78 90.57 90.61 90.30 90.95 91.36 91.12
3 100 85.91 90.26 90.20 89.85 90.61 90.40 89.99 90.64 91.16 91.36
150 86.15 88.82 89.00 89.78 90.81 89.65 89.89 90.26 90.88 90.78
200 86.66 88.79 89.17 89.85 90.71 90.26 90.88 90.95 91.70 91.33
50 85.94 90.26 89.99 90.57 90.57 90.61 91.05 90.95 91.36 91.12
4 100 85.91 90.26 90.20 90.06 90.61 90.40 90.98 90.64 91.16 91.36
150 86.15 88.82 89.00 89.99 90.81 89.65 90.57 90.26 90.88 90.78
200 86.66 88.79 89.17 88.79 90.71 90.26 91.40 90.95 91.70 91.33
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3.3.2. Ablation Study

The proposed band selection algorithm consists of two main phases: dividing the
input bands into distinct homogeneous groups in a spatial-spectral manner and picking
the most informatively representative band within each group using local adjacent pixels.

To validate the effectiveness of each component, we utilize a classic divide-and-
conquer strategy to conduct an ablation study. Specifically, to illustrate the effectiveness
of adjacent band grouping, the proposed homogeneous and multivariate patch-based
informative mutuality (HMIM) and partial information entropy (PIE) are employed as
control groups without band grouping. HMIM is a comparative method that picks the most
informatively representative band by the same mutual information index as our model
without processing to segment bands. PIE is a simplified variant of HMIM, evaluating
the importance of each spectral band by randomly selected samples. PIE aims to rank
Shannon’s entropy values of all bands in descending order to acquire an optimal subset.

To verify the effectiveness of the proposed band-picking index, HS-PIE (hybrid super-
pixelwise adjacent band grouping with PIE) is introduced, which employs the aforemen-
tioned partial information entropy after the proposed band grouping algorithm. HS-RIM
(HS and random pixel-based informative mutuality) is also adopted on random pixels,
utilizing the proposed band-picking index without homogeneous processing. In addition,
the results of our model and all bands are demonstrated. The classification results for
different components and different numbers of bands are shown in Figure 5.
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Figure 5. Classification results in OA (%) of different components and different numbers of remaining
spectral bands. Results by SVM classifier on (a) Indian Pines, (b) Salinas, and (c) Botswana.

One can observe that the proposed band selection algorithm is superior to other
algorithms in most cases, in that it acquires excellent accuracy across different data sets
and dimensions. On the one hand, the classification results of HMIM and PIE are markedly
lower than other band grouping-based models. It reveals that the proposed adjacent
band grouping method can effectively increase the representation of remaining bands,
thus increasing classification performance. On the other hand, the measure proposed in
this study is also superior to other band grouping-based methods, entropy-based models,
and all bands. Concerning HS-PIE, the proposed band-picking index can result in more
representative and informative bands that help for further investigation. The effectiveness
of the homogeneous operating region is also demonstrated by comparing HS-RIM with our
model. In conclusion, all our model’s components are practical and significantly improve
the classification performance.

3.4. Comparison Results
3.4.1. Effectiveness Study

To validate the effectiveness of PHSIMR, we conducted experiments to select different
sizes of spectral subsets by distinct local band selection models and evaluate the perfor-
mance of the results with the adopted SVM classifier. The averaged OA curves of all listed
algorithms and different band numbers on three benchmark hyperspectral data sets are
presented in Figure 6. It should be noted that the reason why the results of RDGSR are not
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shown in Figure 6b is that the PC is prone to be out of memory when we conduct RDGSR
on Salinas.

X
= All Bands
@) E FDPC
OCF
80 —%—FNGBS
GRSC
—6—RDGSR
—®&— Our Model
75 1
50 . + - * 86 . : * + * ; ; *
10 20 30 40 50 10 20 30 40 50 10 20 30 40
Number of bands Number of bands Number of bands

(@)

(b) (c)

Figure 6. Classification results (OA, in %) of different models with different numbers of bands on
(a) Indian Pines, (b) Salinas, and (c) Botswana.

Before further analysis, we mainly focus on the OA curves in Figure 6 to obtain
the optimal number of recommended bands. One can decide the size of the adopted
subset from two aspects. One is the absolute magnitude of accuracy, which means we
must compare the OA values of PHSIMR in different band numbers. Another is relative
accuracy, which compares our accuracy and the values corresponding to other comparative
models. Specifically, the proposed PHSIMR outperforms competitors according to OA
curves and classification maps in general. From the curves of the remaining algorithms,
one can find that it is difficult to exceed the entire spectral bands. Likewise, the accuracy
of the proposed model can surpass it with some settings, which can be attributed to the
precise adoption of informative and representative spectra subsets. PHSIMR considers
the contextual information of both spectral and spatial dimensions, thereby reducing the
redundancy and improving the quality of the band set.

Actually, the decision of the band number makes reference to the recommended num-
ber of bands algorithm in [24], which aims to find the minimum number of recommended
bands by determining the inflection point of the discrete probability curve of different
numbers of selected spectral bands. However, the algorithm in [24] defines the recom-
mended number of bands from the point of lowering the redundancy of remaining bands as
much as possible rather than enhancing the representative and informative characteristics
to promote classification accuracy. Therefore, the classification results obtained by the
recommended bands rarely meet the need for classification to recognize unlabeled spatial
pixelwise objects. Furthermore, the performances of all methods tend to become higher
as the subset size becomes larger, mainly attributed to the more discriminant features the
subset offers. For all HSIs, the advantages of PHSIMR are apparent once the band numbers
exceed a specific number. To this end, we integrated the recommended number of bands
algorithm in [24] with practical classification accuracy values in OA, finding the final size
of chosen band subset closer to both the minimum number of recommended bands and the
actual classification performance. Figure 7 provides the discrete probabilities acquired by
the algorithm in [24] of different band subsets on the employed three HSI data sets, where
the minimum number of bands is shown by the red dot.

However, according to the OA curves of different numbers of remaining bands in
Figure 7, we can find that the resulting OA values obtained by the recommended bands
rarely meet the need for satisfactory classification performance. To acquire the desired
results, we try to find an acceptable band subset that significantly outperforms comparisons
and holds as few bands as possible. Considering that more bands bring more computing
costs, the numbers of recommended bands are fixed at 18, 22, and 18 for Indian Pines, Sali-
nas, and Botswana, respectively. For each local band selection algorithm, the distributions
of selected bands of different models and data sets are displayed in Figure 8.
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Figure 7. Discrete probabilities of different numbers of bands on (a) Indian Pines, (b) Salinas, and
(c) Botswana. The red dot represents the minimum number of recommended bands.
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Figure 8. Distribution of the acquired top 18, 22, and 18 spectral bands selected by different methods
on (a) Indian Pines, (b) Salinas, and (c) Botswana, respectively.

Since remarkable correlations exist among adjacent bands, it is feasible to evaluate
the redundancy degrees of selected band sets according to the distribution shapes. From
the distributions plotted in Figure 8, the resulting subsets obtained by our method are
dispersed and robust to different HSIs. Unlike PHSIMR, the spectral subsets of E-FDPC,
GRSC, and RDGSR demonstrate aggregation characteristics, especially on Indian Pines
and Botswana. However, redundancy is not the sole criterion for testing the truth. When
combined with corresponding classification performance, we can more objectively evaluate
the quality of obtained bands. Although OCF and FNGBS can also select dispersed subsets,
the results could be more representative according to the OA curves in Figure 6. Above all,
our algorithm can produce both low-redundant and representative band subsets.

In addjition, the classification results are wholly given with the classification accuracy
values in Table 5 and maps in Figures 9-11 on Indian Pines, Salinas, and Botswana with 18,
22, and 18 bands, respectively.

Table 5. Classification accuracy values (%) followed by corresponding standard errors.

Data Set Index E_FDPC [32] OCF [15] FNGBS[24] GRSC[31] RDGSR [34] PHSIMR
Indi OA 69.57 £ 0.71  79.65+151  7849+1.05 7955+1.02 68214097  82.85+0.55
1131" 1an AA 70.00 £2.31 7836+147 7817 +145 7549+0.89 6650 +3.18  82.10 %+ 0.43

mes Kappa 64844090 7671 +175 75364122 77694081  6632+1.02  80.40 & 0.64
OA 90.82 +0.67 90.77+065 90.034+051  89.17 + 0.87 - 91.20 + 0.43

Salinas AA 9433 + 048 9458 4+042  93.89+033  92.63 & 0.39 - 94.75 + 0.33
Kappa 89.77 £0.75 89.70 072  88.88-+057  88.25-+0.23 - 90.18 + 0.48

OA 8921 +128  89.11+1.01 8845+132 88.65+076 87.114+131  91.00 + 1.06

Botswana AA 90.26 +£0.97  90.10 4099  89.48+1.39  89.804+1.03 8838+1.15  91.81+0.92
Kappa 8831 +139 8820+1.10 8749-+143 87914035 86.034+1.72 9026 + 1.15
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Figure 9. Classification maps of 10% training size on the Indian Pines data set by (a) All_Bands,
(b) E_FDPC, (c) OCF, (d) FNGBS, (e) GRSC, (f) RDGSR, (g) PHSIMR, and (h) ground truth. Different
colors represent different land-cover categories.

(@) AA=9460 (b)AA=9433 (c)AA=9458 (d)AA=9389 (e)AA=9263 (f)AA=9475 (8)

Figure 10. Classification maps of 10% training size on the Salinas data set by (a) All_Bands,
(b) E_FDPC, (c) OCF, (d) FNGBS, (e) GRSC, (f) PHSIMR, and (g) ground truth. Different colors
represent different land-cover categories.

(@)AA=9183 (b)AA=9026 (c)AA=90.10 (d)AA=8948 (e)AA=89.80 (f)AA=8838  (g)AA=9181 (h)

Figure 11. Classification maps of 10% training size on the Botswana data set by (a) All_Bands,
(b) E_FDPC, (c) OCF, (d) ENGBS, (e) GRSC, (f) RDGSR, (g) PHSIMR, and (h) ground truth. Different
colors represent different land-cover categories.

The missing values occur in Table 5, because the PC is out of memory when con-
ducting RDGSR on Salinas. Each subfigure from each group presents the visualization
classification result under the same training set. In Table 5, our framework acquires the
highest classification accuracy values in OA, AA, and Kappa on three HSIs.

From the maps in Figures 9-11, the visual effects developed by PHSIMR are the ones
closest to the land-cover objects. Concretely, although each map has many misclassified
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pixels, the ones of PHSIMR emerge with near-perfect boundary morphology and near-
pure homoclass pixel region. Figures 6-11 and Table 5 show that PHSIMR is generally
superior to all compared algorithms on the three data sets, demonstrating that the proposed
methodology is promising. Under such circumstances, our model is optimal among all
algorithms. All results show the effectiveness of PHSIMR.

3.4.2. Efficiency Study

To validate the efficiency of PHSIMR, all experiments are implemented in MATLAB
R2022a on a laptop with a 1.60 GHz CPU, Intel Core i5 processors, 8 GB memory, and
Windows 10 operating system. The computing time comparison on three HSI scenes and
computational complexity comparison of the listed local band selection techniques are
provided in Table 6. Each numerical cell only records the computational cost corresponding
to the progress of selecting a certain number of bands, and the deficiency value occurs
because the PC is out of memory when conducting RDGSR on Salinas. In addition, # is the
number of segmented pixel regions, d represents the latent feature dimension, T represents
the number of iterations, and ! denotes the number of clustering neighbors.

Table 6. Running time (seconds) and complexity comparison.

Data Set Indian Pines Salinas Botswana Time Complexity
E_FDPC [32] 0.2205 0.5742 1.1966 O(B%P)
OCF [15] 0.8823 1.6497 3.5848 O(B%P + B® + B2M)
ENGBS [24] 0.2030 0.8495 1.3367 O(B2P + B%)
GRSC [31] 18.9649 422477 24.3069 O(P x logP + P?B + (n + 1)B% + (B% + dIM)T)
RDGSR [34] 21.7016 - 9.2326 O(P2B + (B2P + B3)T)
PHSIMR 1.0108 1.0662 1.0505 O(BK x log(BK) + P + Y1 | H3@;?)

From Table 6, one can notice that the proposed algorithm has performed much better
than GRSC and RDGSR, which are graph- and iteration-based band selection methods
with ERSS. It should be noted that ERSS is a common component of PHSIMR, GRSC, and
RDGSR models. Unlike our model, the ERSS processing is conducted to the spatial but not
the spectral set, and they also employ an iterative algorithm that significantly increases the
running cost. Our method is more time-consuming than the remaining methods, except
for GRSC and RDGSR on Indian Pines and OCF and GRSC on Salinas. Nevertheless, the
proposed algorithm is superior to the remaining methods in Botswana. Combined with
Table 5, the proposed algorithm is relatively efficient and more effective than others across
the HSI scenes.

4. Discussion

In order to further evaluate the performance of the proposed method, we also tested
the selected band subsets with another two state-of-the-art spectral-spatial classifiers with
parameters set the same as the suggested values. One is a variable splitting and augmented
Lagrangian algorithm-based multinomial logistic regression (MLR) classifier [50], and
another is a superior MLR (SMLR) profiting from loopy belief propagation (LBP) strategy
to promote HSI classification [51]. Figure 12 presents the obtained overall classification
results over fivefold cross-validations as functions of different comparative techniques with
constant band subsets in Figure 7.

According to Figure 12, we found that the OA, AA, and Kappa values generated by
the proposed model outperform other methods in most cases, and the SMLR classifier
is more effective in classification than SVM and MLR classifiers. The introductions of
different classifiers convincingly and powerfully validate the extensive effectiveness of
the proposed band selection methodology for hyperspectral data sets. In summary, the
designed PHSIMR shows its statistically significant performance in almost all cases.
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Figure 12. Classification results (%) by SVM (blue), MLR (red), and SMLR (orange) under different
spectral subsets obtained by different models on Indian Pines (a—c), Salinas (d—f), and Botswana (g—i).

5. Conclusions

In this paper, we present a PHSIMR model, claiming the following contributions:
(1) designing a local homogeneous patch-based hybrid superpixelwise adjacent band
grouping methodology so that it can retain complete and ordered spectral contextual and
morphological information within each homogeneous spatial piece; (2) creating an efficient
homogeneous-multivariate patch-based informative mutuality on both spatial and spectral
homogeneous patches to formulate representative, low-redundant, and informative band
subsets. Comparative experiments on benchmark hyperspectral data sets demonstrate that
our model performs better against some state-of-the-art grouping-based band selection
models.

Our methodology, especially the hybrid graph establishment of 1-D parallel spectral
variables, sets the stage for dimension extension-based graph visualization. Moreover, this
paper employs ERSS on the restructured graph and manipulates a simple parallel shifting
scheme to acquire smooth band group boundaries. We also conduct a regional informative
band selection on dual homogeneous pixel patches within each homogeneous band group,
significantly improving the effectiveness and efficiency of the proposed model. We will
focus on two aspects to optimize the proposed methodology in the future: one is to create
an adaptive algorithm to obtain the optimal size of the band subset automatized; another
is to design a more stable and robust objective function to acquire enough smooth and
straight boundary curves conveniently.
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