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Abstract: The urgent necessity for precise and uninterrupted PM2.5 datasets of high spatial–temporal
resolution is underscored by the significant influence of PM2.5 on weather, climate, and human
health. This study leverages the AOD reconstruction method to compensate for missing values in the
MAIAC AOD throughout Hubei Province. The reconstructed AOD dataset, exhibiting an R2/RMSE of
0.76/0.18, compared to AERONET AOD, was subsequently used for PM2.5 estimation. Our research
breaks from traditional methodologies that solely depend on latitude and longitude information.
Instead, it emphasizes the use of climate feature as an input for estimating PM2.5 concentrations. This
strategic approach prevents potential spatial discontinuities triggered by geolocation information
(latitude and longitude), thus ensuring the precision of the PM2.5 estimation (sample/spatial CV
R2 = 0.91/0.88). Moreover, we proposed a method for identifying the absolute feature importance
of machine-learning models. Contrasted with the relative feature-importance property typical of
machine-learning models (a minor difference in the order of top three between geolocation-based and
climate-feature-based models, and the slight difference in the top three: 0.08%/0.17%), our method
provides a more comprehensive explanation of the absolute significance of features to the model
(maintaining the same order and a larger difference in the top three: 0.99%/0.72%). Crucially, our
findings demonstrated that AOD reconstruction can mitigate the overestimation of annual mean
PM2.5 concentrations (ranging from 0.52 to 9.28 µg/m3). In addition, the seamless PM2.5 dataset
contributes to reducing the bias in exposure risk assessment (ranging from −0.11 to 9.81 µg/m3).

Keywords: MAIAC AOD; daily PM2.5; LightGBM; population-weighted exposure risk

1. Introduction

Air pollution, chiefly from PM2.5 (particulate matter with a diameter of 2.5 microns or
less), presents a significant health hazard [1], causing respiratory illnesses [2], cardiovascu-
lar complications [3], and even premature mortality [4]. Various methods, ranging from
ground-based monitoring stations [5] to numerical simulations [6] and satellite remote sens-
ing [7], have been utilized over recent decades to collect PM2.5 data. Ground-based stations,
while precise, are spatially sparse and unevenly distributed. Prior research typically com-
bined spatial interpolation methods such as Kriging [8] and inverse distance weighted [9]
with station observations to develop spatiotemporally continuous PM2.5 datasets, albeit
with restricted accuracy. Numerical simulations leverage algorithms to mimic atmospheric
processes and predict spatial–temporal PM2.5 concentrations, with accuracy heavily depen-
dent on emissions inventory, meteorological input data, and parameterization of chemical
and physical processes [10].

Over the past decade, satellite remote sensing has gained prominence as a potent
tool for capturing aerosol optical depth (AOD), a parameter closely related to surface
PM2.5 levels. Satellite-derived AOD possesses several advantages, including extensive
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spatial coverage, repeated observations, and global data availability [11]. Moreover, the
application of machine-learning techniques to estimate PM2.5 concentrations from satellite
AOD measurements has gained traction [12], leveraging the correlation between AOD
and ground-based PM2.5 observations to facilitate estimations in regions lacking ground-
based monitoring stations. However, the utility of satellite AOD is curtailed by weather
conditions such as cloud cover and rain, resulting in spatial gaps in AOD and PM2.5
datasets [13]. In response, researchers have proposed an AOD reconstruction method to
create a comprehensive AOD dataset, which has proven beneficial for PM2.5 estimation [14].
Yet, the conventional practice of using latitude and longitude as input features leads to
spatial discontinuities in the resultant PM2.5 dataset [15–17]. This inconsistency arises
due to longitude and latitude being referenced to two straight lines of zero degrees rather
than a two-dimensional spatial plane. Meanwhile, existing studies interpreting feature
contributions typically employ the relative feature-importance attribute [18,19], neglecting
the interplay between input features and, thereby, resulting in an inaccurate interpretation
of feature significance in the estimation model [20].

To mitigate the issues outlined above, this study proposes a novel approach that
substitutes climate feature for latitude and longitude information to describe spatial char-
acteristics, thus creating a more accurate PM2.5 estimation model. Additionally, a random
rearrangement method will be used to calculate absolute feature importance. Our study
primarily focuses on Hubei province in China, covering the period from 2015 to 2020. The
initial stage involves filling the gaps in the satellite AOD dataset, which are caused by
factors such as cloud cover and rain. Following this, machine-learning algorithms will be
deployed to estimate daily average PM2.5 concentrations. Furthermore, we will evaluate
the significance of AOD reconstruction for PM2.5 exposure risk.

2. Materials and Methods
2.1. Study Region

Hubei Province, nestled in the heart of China, is defined by its richly varied topography.
As depicted in Figure 1, the province, with openings to the south, is flanked by mountain
ranges to the west, north, and east, creating a unique geographical pattern. This unique
positioning places Hubei Province within the influence of four haze pollution zones: the
North China Plain, Yangtze River Delta, Pearl River Delta, and Sichuan Basin [21]. This
makes the province notably vulnerable to the ingress of external air pollutants, which can
significantly exacerbate the already substantial pollution levels. Moreover, the accelerated
growth and development of heavy industries—notably the automobile, machinery, and
steel sectors—have further strained the local air quality [22]. This dual pressure from both
external influxes and local industrial expansion creates a challenging scenario for air-quality
management in Hubei Province.

2.2. Datasets
2.2.1. PM2.5 Station Data

This study employs data from 136 PM2.5 monitoring stations acquired from the China
National Environmental Monitoring Centre (CEMC, http://www.cnemc.cn/, accessed on
25 July 2023). The annual average PM2.5 levels at each station are visually represented
in Figure 1, with Xiangyang recording the highest value, closely followed by Jingmen.
To generate a daily estimation of PM2.5 levels, hourly readings from 2015 to 2020 were
compiled into daily averages. This was done under the condition that only the data
with an effective duration exceeding 16 h per day were incorporated. Consequently, a
comprehensive set of 261,586 ground PM2.5 records pertaining to the study area in Hubei
Province was compiled for further PM2.5 analysis.

http://www.cnemc.cn/
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Figure 1. Study area map showing 136 PM2.5 recording sites (colorful dots) and elevation (color 
shading, unit: meters). 
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Figure 1. Study area map showing 136 PM2.5 recording sites (colorful dots) and elevation (color
shading, unit: meters).

2.2.2. AOD Data

The Multiangle Implementation of Atmospheric Correction (MAIAC) Aerosol Optical
Depth (AOD) products, furnished with a spatial resolution of 1 km × 1 km, are developed
using data from NASA’s MODIS TERRA satellite, which collects data at 10:30 a.m. local
time, and the AQUA satellite, operating at 1:30 p.m. local time [23]. This study utilizes
the MAIAC AOD products at 550 nm for Hubei Province, spanning a period of six years
from 1 January 2015 through 31 December 2020, sourced from the Google Earth Engine
(https://code.earthengine.google.com, accessed on 25 July 2023). However, the accuracy of
satellite AOD can be compromised due to atmospheric conditions, such as cloud cover or
precipitation [13], resulting in spatiotemporal gaps in the MAIAC AOD data. As illustrated
in Figure 2, the year 2017 had the highest annual effective observation rate of the MAIAC
AOD, being approximately 4% higher than the other years.

To fill in these data gaps in MAIAC AOD, this study applies the Modern Era Retro-
spective analysis for Research and Applications, Version 2 (MERRA2) dataset. In particular,
we use the 550 nm AOD measurements, having a spatial resolution of 0.625◦ × 0.5◦ [24],
obtained from the Goddard Earth Sciences Data and Information Services Center (GES
DISC) at NASA’s Goddard Space Flight Center (https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2, accessed on 25 July 2023). To facilitate the AOD reconstruction process, these
hourly AOD values were translated into daily averages.

AERosol RObotic NETwork (AERONET, https://aeronet.gsfc.nasa.gov/, accessed
on 25 July 2023), a widely established international network, has the core mission of
monitoring and characterizing aerosol properties. However, AERONET’s AOD at 550 nm
is currently unavailable. To overcome this limitation, we applied a quadratic polynomial

https://code.earthengine.google.com
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2
https://aeronet.gsfc.nasa.gov/
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interpolation method that relies on measurements at 440 nm, 500 nm, and 675 nm to
estimate the AERONET 550 nm AOD [25]. The adopted formula is described as follows.

lnτα = a0 + a1lnλ + a2(lnλ)2, (1)

where τα is the AERONET AOD at λ nm, and a0, a1, and a2 are unknown parameters
that can be calculated by the AERONET AOD at 440 nm, 500 nm, and 675 nm. The level
1.5 AOD at the site of SONET_Hefei (31.905◦N, 117.162◦E, as shown in Figure 1) was used
in this study.
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2.2.3. Meteorological Fields

The ERA5, representing the fifth generation of reanalysis datasets, boasts a spatial and
temporal resolution of 0.625◦ × 0.5◦/1 h and stands as a comprehensive global dataset
disseminated by the European Centre for Medium-Range Weather Forecasts (ECMWF) [26].
A notable extension of this dataset, the ERA5-Land product, elevates the accuracy of ERA5’s
land surface parameters by providing a more detailed spatial resolution of 0.1◦ × 0.1◦ [27].
This specialized dataset lays a particular emphasis on the land surface characteristics, thus
yielding higher quality data.

For the purpose of this study, we sourced a variety of parameters from both ERA5 and
ERA5-Land (accessible via CDS, at http://cds.climate.copernicus.eu, accessed on 25 July
2023), each demonstrating significant correlations with aerosols [28–30]. These parameters,

http://cds.climate.copernicus.eu
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instrumental in the reconstruction of aerosol optical depth (AOD) and the estimation of
PM2.5, include the boundary layer height (blh), total column water (tcw), relative humidity
(rh), surface pressure (sp), total precipitation (tp), the 10 m u-component of wind (u10), the
10 m v-component of wind (v10), and the 2 m temperature (t2m).

2.2.4. Additional Data

The SRTM Version 3 Digital Elevation Model (DEM) dataset, unveiled by the National
Aeronautics and Space Administration (NASA) in January 2015, has garnered considerable
acclaim for its precision and widespread adoption as one of the most preferred DEMs
available [31]. This study utilizes the SRTM DEM Version 3 with a grid resolution of 1 km,
obtained from the Resources and Environmental Science and Data Center of the Chinese
Academy of Sciences (http://www.resdc.cn, accessed on 25 July 2023). The data, and its
representative usage, are illustrated in Figure 1.

Nighttime light remote sensing offers a unique methodology for assessing nocturnal
terrestrial environments and human activities, by discerning faint sources of light emissions
after sundown. We leverage this nighttime light data to evaluate the extent of human
activity, which, in turn, aids in the estimation of PM2.5 levels. The research utilizes annual
nighttime light data (NTL), gathered over the course of 2015 to 2020, which carries a spatial
resolution of 15 arc-seconds. This dataset was acquired from the study by Chen et al. [32]
(https://doi.org/10.7910/DVN/YGIVCD, accessed on 25 July 2023).

In addition to the above, the study also incorporates annual population data from
2015 to 2020, carrying a spatial resolution of 1 × 1 km. This data, sourced from World-
pop [33] (https://www.worldpop.org/, accessed on 25 July 2023), facilitates the assessment
of PM2.5 exposure risk as weighted by population density, a key focus area of this research.

2.2.5. Data Reprocessing

In the present study, our initial focus was on refining the datasets to include only
geographical coordinates ranging from 108◦E to 118◦E and from 28.5◦N to 34◦N. This
strategic decision effectively restricted our study area to Hubei Province. Following this
initial step, we subjected the trimmed datasets to a uniform interpolation process. The
result was a refined resolution of 0.01◦ × 0.01◦ (550 × 1000), thus ensuring consistency
across all the datasets. The subsequent phase of our research involved the organization and
combination of the hourly datasets—for instance, meteorological variables and MERRA2
AOD—on a daily basis. This collation process was performed using a simple yet effective
daily averaging method. Here, we computed the mean value for each variable over a span
of 24 h, adhering to Beijing time (East 8). This approach enabled us to standardize our data
and pave the way for further utilization.

2.3. The Framework of This Study
2.3.1. Climate Feature

Yang et al. [15] indicated that the utilization of geolocation information (specifically lat-
itude and longitude) within a decision-tree model can result in spatial discontinuities in the
resulting dataset. This happens because grids with identical latitude or longitude may be
assigned identical values during the mapping process, thus leading to the aforementioned
spatial discontinuities. Addressing this issue, our study puts forward a novel methodology
that uses climatic features as an alternative to latitude and longitude to account for spa-
tial proximity. Particularly, we leverage average meteorological data and MAIAC AOD
averages (as depicted in Figure 3) to represent climate features. The distinctiveness of these
climatic features fluctuates in relation to their respective spatial distances, thus allowing
them to act as effective substitutes for longitude and latitude values.

http://www.resdc.cn
https://doi.org/10.7910/DVN/YGIVCD
https://www.worldpop.org/
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Figure 3. Spatial distribution of climate feature. Climate feature is the collection of the mean of
meteorological data and AOD data.

To clarify, meteorological data in themselves do not inherently contain geolocation
information. For instance, the temperature of 30 ◦C does not have any hidden geolocation
information. Hence, previous studies have employed latitude and longitude to convey
geolocation information (such as [time, lon, lat, and mete]). Our study diverges from
this norm by utilizing the mean values of multiple meteorological variables instead of
geographic coordinates (such as [time, climate feature, and mete]). These mean values,
indicative of climatic characteristics, enable us to evaluate the spatial proximity of two
points based on the closeness of their respective meteorological means, rather than the
geographic distance derived from latitude and longitude. Therefore, we are circumventing
the limitation Yang et al. [15] mentioned via the utilization of the climate feature.

2.3.2. LightGBM

The Light Gradient Boosting Machine (LightGBM) is a highly esteemed gradient
boosting framework, notable for its outstanding performance, efficiency, and accuracy [34].
Developed by Microsoft, it utilizes a unique algorithm designed to expedite training
and handle large-scale datasets more proficiently. The distinguishing characteristic of
LightGBM is its leaf-wise growth strategy. This approach prioritizes the expansion of
leaves that possess the most significant potential for loss reduction when constructing
decision trees.

Furthermore, LightGBM introduces advanced features, such as histogram-based bin-
ning and exclusive feature bundling, amplifying its predictive prowess. The strategic
optimizations adopted by LightGBM offer numerous advantages, encompassing shorter
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training durations, less memory consumption, and enhanced model performance. Given
these attributes, LightGBM is particularly suited for applications that necessitate precise
predictions and can process substantial data volumes [35].

In this study, we capitalize on the efficacy of LightGBM for the reconstruction of aerosol
optical depth (AOD) and PM2.5 estimation, demonstrating its capability to manage complex
datasets efficiently. To ascertain the optimal set of hyperparameters for LightGBM, an
exhaustive range of values was assessed. Specific hyperparameters, including n_estimators
(ranging from 2 to 500), max_depth (from 4 to 20), num_leaves (from 5 to 128), subsample
(from 0.1 to 0.99), colsample_bytree (from 0.1 to 0.99), and learning_rate (from 0.01 to 0.5),
were optimized employing the Bayesian optimization algorithm [36]. This approach was
taken to ensure the achievement of the highest possible model performance.

2.3.3. AOD Reconstruction and PM2.5 Estimation

Currently, the availability of satellite AOD data is restricted due to spatial gaps caused
by factors such as cloud cover, rainy weather, and other causes. To overcome this limitation,
this study integrates climate features, elevation, meteorological variables, and MERRA-2
AOD as input features of LightGBM. The MAIAC AOD is used as the training label with
the objective of filling in the missing values in the MAIAC AOD. The reconstructed AOD
dataset plays a critical role in accurate seamless PM2.5 estimation.

To evaluate the benefits of incorporating climate feature in PM2.5 estimation, three dis-
tinct scenarios (see Table 1) were developed with the help of reconstructed AOD. The overall
methodology employed in this research is illustrated in Figure 4, outlining the framework
of our study. Our study aims to improve the reliability of PM2.5 estimation, contributing to
a better understanding of air pollution dynamics and its impact on public health.

Table 1. Summary of designed PM2.5 estimation cases.

Cases Input Features Label

Baseline Time, DEM, NTL, METE, AOD
PM2.5+Geolocation Time, Geolocation, DEM, NTL, METE, AOD

+Climate feature Time, Climate feature, DEM, NTL, METE, AOD
Note: DEM is the elevation; NTL is the nighttime light data; METE is the 8-variable meteorological matrix; AOD
is the reconstructed seamless AOD; Time refers to the year, month, day, DOY (day of the year, 1 to 365/366) and
cumulative day (c-day, 1 to 2192); latitude and longitude are Geolocation information; Climate feature is the
collection of meteorological mean data and MAIAC average AOD.

2.3.4. Population-Weighted Exposure

To demonstrate the significance of AOD reconstruction, this study will compare the
disparities in assessing population-weighted exposure risk between the gap PM2.5 datasets
constructed by MAIAC AOD and the seamless PM2.5 datasets constructed by reconstructed
AOD. The population-weighted exposure (PWE) can be calculated using the formula
below [37].

PWE = ∑n
i=1 (Pi × Ci)/∑n

i=1 Pi, (2)

where the Pi is the population in grid i. Ci is the PM2.5 concentration in grid i.

2.3.5. Random Permutation Method for Calculating Absolute Feature Importance

The LightGBM incorporates the relative feature importance attribute that evaluates
the significance of input features by using metrics, e.g., the average depth of input features
across multiple base models or the number of feature splits in the base models. However,
this approach disregards the interactions among input features. This study will use a
random permutation method for calculating absolute feature importance to explain the
input feature contributions. The specific calculation method is outlined below.

(1) The whole sample was divided into two parts, with a ratio of 9:1. The training set
consisted of 90% of the data, while the remaining 10% was allocated for testing;
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(2) An initial LightGBM model is constructed and its performance on the validation set
(mean absolute percentage error, MAPE) is recorded as the baseline performance.

MAPEbaseline =
1
n∑n

i=1

∣∣∣∣xi − yi
xi

∣∣∣∣× 100%, (3)

where n represents the total number of test records, xi represents the ith record of
actual value, and yi represents the ith record of predicted value;

(3) For each feature, its value is randomly shuffled and the model’s performance on the
testing set is recomputed.

MAPEshuffle =
1
n∑n

i=1

∣∣∣∣xi − zi

xi

∣∣∣∣× 100%, (4)

where zi represents the ith record of repredicted value;
(4) The feature importance score can be determined using the following formula.

feature signficancej = MAPEshuffle − MAPEbaseline, (5)

absolute feature importancej= feature signficancej/∑m
i=1 feature signficancei (6)

where m represents the total number of input features.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 4. Graphical representation of our study design. 

2.3.4. Population-Weighted Exposure 
To demonstrate the significance of AOD reconstruction, this study will compare the 

disparities in assessing population-weighted exposure risk between the gap PM2.5 da-
tasets constructed by MAIAC AOD and the seamless PM2.5 datasets constructed by re-
constructed AOD. The population-weighted exposure (PWE) can be calculated using the 
formula below [37]. 

× n n
i i ii=1 i=1

PWE = (P C ) / P , (2) 

where the Pi is the population in grid i. Ci is the PM2.5 concentration in grid i. 

2.3.5. Random Permutation Method for Calculating Absolute Feature Importance 
The LightGBM incorporates the relative feature importance attribute that evaluates 

the significance of input features by using metrics, e.g., the average depth of input fea-
tures across multiple base models or the number of feature splits in the base models. 
However, this approach disregards the interactions among input features. This study 
will use a random permutation method for calculating absolute feature importance to 
explain the input feature contributions. The specific calculation method is outlined be-
low. 

(1) The whole sample was divided into two parts, with a ratio of 9:1. The training 
set consisted of 90% of the data, while the remaining 10% was allocated for testing; 

(2) An initial LightGBM model is constructed and its performance on the validation 
set (mean absolute percentage error, MAPE) is recorded as the baseline performance. 

× n i i
baseline i=1

i

x - y1MAPE = 100%
n x

, (3) 

Figure 4. Graphical representation of our study design.

2.4. Model Performance Evaluation

The 10-fold sample/spatial cross-validation (CV) approach was employed to assess
the precision of PM2.5 estimation in this study. Specifically, the sample/spatial CV was
repeated ten times, each iteration reserving 10% of the samples/sites for testing purposes
while utilizing the remaining 90% for training. The model’s overall performance was
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evaluated by combining the results from all ten test runs and utilizing the R2 (coefficient of
determination) and RMSE (root mean square error) metrics.

R2 = 1 − ∑n
i=1 (xi − yi)

2/∑n
i=1 (xi − x)2, (7)

RMSE =

√
1
n∑n

i=1 (xi − yi)
2 (8)

where n represents the total number of test records, xi represents the ith record of actual

value, yi represents the ith record of estimated value, and
−
x represents the mean of the total

actual value.

3. Results
3.1. AOD Reconstruction

Figure 5 illustrates the scatter plot comparing AERONET AOD with MERRA2 AOD
(Figure 5a) and reconstructed AOD (Figure 5b). The reconstructed AOD, with an R2/RMSE
of 0.76/0.18, surpassing the better performance of MERRA2 AOD (R2/RMSE = 0.61/0.21)
by 0.15 in R2 and −0.03 in RMSE. Based on the AOD reconstruction, this study produced a
seamless daily AOD dataset for Hubei Province, spanning 1 January 2015 to 31 December
2020, at a spatial resolution of 0.01◦ × 0.01◦. Additionally, as shown in Figure 6, the
reconstructed AOD exhibited higher monthly mean values compared to MERRA2 AOD,
with a difference ranging from 0.02 to 0.13. Regarding the spatial distribution of the
annual average AOD (Figure 7), the reconstructed AOD was notably higher than MERRA2
AOD in the Jianghan Plain (~0.15 higher); while in the western mountainous regions, the
reconstructed AOD was considerably lower than the MERRA2 AOD (~0.10 lower).
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Figure 8 provides an example of gapped and reconstructed daily AOD, demonstrating
a significant haze event occurring over a 4-day period. It is worth noting that the original
AOD data contained substantial gaps, especially on 15 December 2018, coinciding with the
highest PM2.5 observations. These gaps were a result of the declouding process. Through
the AOD reconstruction process, this study successfully restored this high AOD event,
capturing intricate small-scale features, which can be attributed to the integration of meteo-
rological information and MERRA2 AOD. Furthermore, as Figure 9 shows, we provide a
comparison between MODIS AOD and the reconstructed AOD on the 1st of February 2015,
April 2016, June 2017, August 2018, October 2019, and December 2020. This comparison
also effectively demonstrates the performance of our reconstruction across various days,
seasons, and years.

3.2. PM2.5 Estimation

The 10-fold sample/spatial CV results of different PM2.5 estimation experiments (in-
troduced in Table 1) are presented in Figure 10. The baseline represents the control case
without the geolocation (longitude and latitude) information or climate feature. In compar-
ing the baseline with the sample CV, which reflects the model interpolation capability, it is
observed that the geolocation or climate feature played a negligible role in PM2.5 estimation
(R2: increased from 0.90 to 0.91/0.91, RMSE: reduced from 11.59 to 10.75/10.76 µg/m3).
Compared with Huang et al.’s [38] study (sample CV-R2/RMSR = 0.89/13.10 µg/m3), our
model performed better. However, under spatial CV, which reflects the model extrapola-
tion capability, the geolocation or climate features demonstrated significant importance
in PM2.5 estimation (R2: increased from 0.79 to 0.87/0.88, RMSE: reduced from 16.58 to
13.08/12.94 µg/m3). This phenomenon indicates the crucial role of geolocation information
or climate feature in estimating PM2.5 over out-station areas. The difference between the
geolocation-based model and the climate-feature-based model was found to be insignifi-
cant. Figure 11a,b illustrates that both models yield similar results in terms of the sample
(R2 = 0.96) and spatial CV (R2 = 0.94). Furthermore, the disparities observed in the monthly
(−0.23~1.73 µg/m3, Figure 11c) or annual (0.29~0.97 µg/m3, Figure 11d) averages of the
datasets produced by the geolocation-based model and the climate-feature-based model
are minimal. Figure 12 shows the comparison between the daily PM2.5 from the air-quality
station and the estimated daily PM2.5 by our proposed method. The daily PM2.5 from the
air-quality station is significantly higher than the estimated PM2.5, due to the fact that most
of the air-quality monitoring stations are located in urban areas with severe air pollution.
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However, if the latitude and longitude contribute highly to the estimation model, grids
with identical longitude or latitude values may receive the same value during the mapping
process and lead to spatial discontinuities in produced PM2.5 dataset. Figure 13 presents
examples of estimated PM2.5 using geolocation information (left column) on 15 January
2015, 15 May 2017, and 15 September 2019, which display multiple spatial discontinuities.
Conversely, the images generated using climate features (right column) do not exhibit this
problem. Hence, employing the climate feature instead of geolocation information as the
input feature ensures the produced PM2.5 dataset with higher quality.
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4. Discussion

Previous studies [18,19] have commonly utilized the relative feature-importance at-
tribute from machine-learning models to assess the significance of input features. This
attribute is obtained through an ensemble approach that evaluates hyperparameters such
as n_estimators and max_depth in base models. However, the relative feature importance
calculated ignores the interactions between input features. To address this limitation,
we proposed a method for calculating absolute feature importance, which combines the
random permutation method [39] with MAPE (mean absolute percentage error).

As shown in Figure 14, the most important input feature in absolute/relative feature
importance is AOD/u10. This difference is due to the fact that the relative feature impor-
tance is influenced by the interaction between the input features, i.e., the input features are
increasing and decreasing in the same way or in the opposite way. Hence, the absolute
feature importance is more accurate for describing the significance of the input features to
the estimated model.
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Under the relative feature importance, the top three important features in both the
geolocation-based model and the climate-feature-based model are AOD (7.43%/6.78%), blh
(7.39%/6.82%), and u10 (7.35%/6.95%). The order of these features differs between the two
models but the differences are minimal (0.08%/0.17%), making it challenging to determine
which input feature is explicitly the most important, while under the absolute feature
importance, there is greater variability (0.99%/0.72%). Additionally, in both the geolocation-
based and climate-feature-based models, AOD (8.55%/6.13%), sp (7.89%/5.71%), and tcw
(7.56%/5.41%) occupied the top three of absolute feature importance, which indicates that
the absolute feature importance is more able to explain the feature contributions.
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On the other hand, to demonstrate the significance of AOD reconstruction, we com-
pared the annual mean difference between two datasets: the gap PM2.5 dataset (generated
without AOD reconstruction, model performance depicted in Figure 15, sample/spatial
CV R2 = 0.90/0.86) and the seamless PM2.5 dataset (produced with AOD reconstruction).
From 2015 to 2020, the gap PM2.5 dataset (left column in Figure 16) displayed higher aver-
age values (0.52~9.28 µg/m3) compared to the seamless PM2.5 dataset (center column in
Figure 16). The most substantial difference (9.28 µg/m3) was observed in 2017, which can
be attributed to the higher AOD coverage (as shown in Figure 2, the AOD availability rate
in 2017 exceeded 4%, surpassing other years). The annual average PM2.5 values fluctuated
downwards under the gap PM2.5 dataset for the period of 2015 to 2020. However, under
the seamless PM2.5 dataset, the annual average PM2.5 levels in Hubei Province exhibited
a consistent decrease each year. Moreover, the variation in annual mean PM2.5 values
(0.52~9.28 µg/m3, right column in Figure 16) also significantly contributed to disparities
in the population-exposure risk (−0.11~9.81 µg/m3, as shown in Figure 17). Hence, AOD
reconstruction is crucial for the accurate estimation of PM2.5 levels and the assessment of
exposure risk.
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5. Conclusions

In this research, we successfully employed the AOD reconstruction method, combined
with MERRA AOD, meteorological elements, elevation, and other variables, to interpolate
the missing values of MAIAC AOD. Following this, we utilized the reconstructed AOD
dataset, which demonstrated an R2 of 0.76 compared to AERONET AOD, to derive seamless
daily average PM2.5 concentrations across Hubei Province from 2015 to 2020. Our study
emphasizes the utility of incorporating climate features as inputs for PM2.5 concentration
estimation, steering away from the traditional dependence on latitude and longitude
data. This strategy mitigates the potential for spatial discontinuity that may arise from
latitude and longitude discrepancies, ensuring a more precise PM2.5 estimation, with a
sample/space cross-validation R2 of 0.91/0.88.

Moreover, our study introduces a novel method for evaluating the absolute feature
importance of machine-learning models. In contrast to the relative feature-importance
characteristics inherent in most machine-learning models, where the top three features
display a nonsignificant difference of 0.08%/0.17%, our proposed method offers a more
nuanced and stable interpretation of feature significance to the model, as evidenced by the
substantial difference of 0.99%/0.72% for the top three features. Furthermore, our research
discovered that AOD reconstruction can mitigate the overestimation of annual average
PM2.5 concentrations (ranging from 0.52 to 9.28 µg/m3) and decrease the bias in exposure
risk assessment (ranging from −0.11 to 9.81 µg/m3).

In conclusion, our results underscore the efficacy of the AOD reconstruction technique
in interpolating missing AOD values and estimating PM2.5 concentrations. Through the
incorporation of climate features and the implementation of the absolute feature-importance
method, we have enhanced the spatial continuity, accuracy, and interpretability of the PM2.5
estimations. These improvements amplify our understanding of air pollution dynamics
and can aid in devising targeted interventions for improving air quality. Further research
should investigate the applicability of this approach in different geographical contexts and
evaluate its potential for wider deployment in air-quality monitoring and management
systems.
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