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Abstract: Ionospheric disturbances are mainly caused by solar and Earth surface activity. The
electromagnetic data collected by the CSES (China Seismo-Electromagnetic Satellite, popularly known
as the Zhangheng-1 satellite) can capture many space disturbances. Different spatial disturbances
can exhibit distinctive shapes on spectrograms. Constant-frequency electromagnetic disturbances
(CFEDs) such as artificially transmitted VLF radio waves, power line harmonics, and satellite platform
disturbances can appear as horizontal lines on spectrograms. Therefore, we used computer vision and
machine learning techniques to extract the frequency of global CFEDs and analyze their strong spatial
signal characteristics. First, we obtained time-frequency spectrograms from CSES VLF electric-field
waveform data using Fourier transform. Next, we employed an unsupervised clustering algorithm
to automatically recognize CFED horizontal lines on spectrograms, merging horizontal lines from
different spectrograms, to obtain the CFED horizontal-line frequency range. In the third stage, we
verified the presence of CFEDs in power spectrograms, thus extracting their true frequency values.
Finally, for strong CFED signals, we generated eight revisited periods, resulting in 10,230 power
spectrograms for analyzing each CFED’s spatial characteristics using a combined periodic sequence
and spatial region that included frequency offsets, frequency fluctuations, and signal non-observation
areas. These findings contribute to enhancing the quality of CSES observational data and provides a
theoretical basis for constructing global CFED spatial background fields and earthquake monitoring
and early prediction systems.

Keywords: China Seismo-Electromagnetic Satellite (CSES); constant-frequency electromagnetic
disturbances (CFEDs); spectrogram; frequency extraction; spatial characteristics

1. Introduction

Since the 1980s, electromagnetic satellites have detected various spatial disturbances [1–7],
including solar magnetic storms, substorms, lightning, atmospheric tides, artificial very-low-
frequency (VLF) signals, power harmonics generated by power systems, and electromagnetic
disturbances generated by satellite platforms themselves. These electromagnetic wave distur-
bances exhibit different shapes on spectrograms [8]. In order to meet the needs of navigation
communication, ground-based VLF transmitting stations emit continuous electromagnetic
waves at a constant frequency between 10 and 50 kHz. Due to their constant frequency, they
are represented as a horizontal line on time-frequency diagrams [8]. The harmonic radiation
generated by the ground power system is shown on spectrograms as several parallel lines that
are significantly higher than the background intensity and are separated by 50/60 Hz [8,9],
as shown in Figure 1. There is a weak current during the operation of the satellite in orbit,

Remote Sens. 2023, 15, 3815. https://doi.org/10.3390/rs15153815 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15153815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4481-0534
https://orcid.org/0000-0001-6604-0003
https://orcid.org/0000-0002-4436-3845
https://doi.org/10.3390/rs15153815
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15153815?type=check_update&version=2


Remote Sens. 2023, 15, 3815 2 of 25

generated by the solar cell panel receiving sunlight, providing power to the satellite payload.
This current flow produces low-frequency magnetic-field disturbances [10], such as changes
in the magnetic field observed by DEMETER’s induction magnetometer—from 19.5 to 20 kHz
in terms of power spectrum data [9]. Disturbance from DEMETER’s own body occurs mainly
in the frequency range of 1 to 8 kHz, with smaller disturbances occurring below 19.5 Hz, such
as at frequencies 7.33 Hz, 19.53 Hz, 39.06 Hz, and their harmonics [11]. Current flows are
generated when the solar wings on solar cell panels provide power, and these noises mainly
manifest in the form of machine harmonics at frequencies of 8 Hz, 13.25 Hz, 31 Hz, 77 Hz,
and their harmonics [12]. These constant-frequency electromagnetic disturbances (CFEDs)
are presented as spectral horizontal lines on the spectrogram, which are higher than the
background intensity level.
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to monitor ionospheric disturbances is to use VLF transmitters to transmit continuous VLF 
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sphere. When the satellite flies over the transmitting station, the VLF signals are received 
synchronously by the satellite [19]. 

The main characteristics of VLF electromagnetic waves emitted from artificial source 
transmitters are low energy loss and long transmission distance. They can propagate over 
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quency range [24]. However, when electromagnetic waves propagate through the 

Figure 1. VLF spectrogram of an electric-field component recorded by the DEMETER satellite on
13 November 2007 in the frequency range 10–13 kHz. The y-axis represents frequency, the x-axis
represents time, latitude, and longitude, and the color bar represents intensity.

Earthquakes are one of the most destructive natural disasters. Strong earthquakes often
cause hundreds of thousands of deaths and property losses. A large number of studies
have shown that electromagnetic anomalies are very sensitive to earthquakes [13–16]. When
super-strong and shallow earthquakes occur, the energy of VLF and ultra-low-frequency (ULF)
electromagnetic waves will become stronger, causing space ionospheric disturbances, which
are used for short-term strong earthquake prediction [17,18]. One way to monitor ionospheric
disturbances is to use VLF transmitters to transmit continuous VLF electromagnetic waves to
space at different frequencies, which can penetrate the ionosphere. When the satellite flies
over the transmitting station, the VLF signals are received synchronously by the satellite [19].

The main characteristics of VLF electromagnetic waves emitted from artificial source
transmitters are low energy loss and long transmission distance. They can propagate
over long distances between the Earth and the ionospheric waveguide system and exhibit
significant wave–particle interaction effects [20–23]. When a satellite passes over an artificial
source transmitter, it can receive the artificial source signal within a specific stable frequency
range [24]. However, when electromagnetic waves propagate through the ionosphere,
many parameters, including velocity and phase, as well as refraction and scattering effects,
change. Therefore, the various electromagnetic responses that are excited by artificial source
VLF signals in the ionosphere have different spatiotemporal characteristics [25]. There are
more than 40 artificial-source VLF and low-frequency radio-wave transmitters worldwide,
widely used for long-distance navigation, maritime navigation, underwater communication
navigation, and ionospheric disturbance detection [26]. During the propagation process
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of VLF/LF radio waves, anomalies are generated when the lower ionosphere above the
propagation path is disturbed by various factors such as solar flares, magnetic storms,
lightning discharges, and earthquakes.

The advancement of satellite detection technology has led to the utilization of electromagnetic-
field detection as the primary scientific objective for exploring ionospheric environments. The
identification of artificial VLF/LF signals from the ground is typically achieved through the use of
electromagnetic detectors, which rely on probe potential detection and inductive magnetometers.
Due to the proliferation of VLF/LF artificial transmitters worldwide, satellites can effectively
record information at each station, serving as mobile spatial receiving stations that provide a
platform for studying the detection of anomalous VLF/LF artificial source signals by satellites,
including their use in seismic detection applications.

At present, the signal-to-interference-to-noise ratio (SNR) method is used for detecting
satellite VLF radio wave signals to obtain earthquake-related disturbances. Studies have found
that the SNR of the VLF radio wave signal decreases significantly before earthquakes, with
recovery after the event and similar variations observed by multiple stations [27–33]. Similarly,
the amplitude method used to detect satellite VLF wave signals can show a significant decrease
or increase in the amplitude of the VLF wave signal before an earthquake [31–35]. Most of
the current studies on electromagnetic response backgrounds are based on specific VLF
transmitting stations and do not consider the global change characteristics of VLF constant-
frequency electromagnetic disturbances (CFEDs) [36,37]. We attempt to utilize global CFEDs
to study the anomalous changes before an earthquake. This necessitates an initial analysis
and discussion of the spatial distribution characteristics of these CFEDs.

Therefore, this article uses CFED horizontal-line features on spectrograms [8,38] and
integrates computer vision technology, unsupervised clustering methods, and statistical
analysis. We have established a method for identifying CFEDs on time-frequency spec-
trograms, verifying and extracting their frequencies using power spectrograms. We then
analyzed the spatial characteristics of each strong CFED using periodic sequences and
spatial regions. This research provides a theoretical foundation for improving the quality
of CSES observation data; studying and finding out what causes frequency fluctuation
and frequency offset; investigating the characteristics of ionospheric anomalies potentially
induced by earthquakes and the relationship between ionospheric disturbances and the
occurrence of earthquakes; and targeting space-based earthquake monitoring and early
warning systems.

2. Data Collection

On 2 February 2018, China launched its first satellite for the seismo-electromagnetic moni-
toring of the ionosphere over seismic-prone areas—the CSES (China Seismo-Electromagnetic
Satellite, also known as the Zhangheng-1 satellite). Its goal is to obtain global electromagnetic
field, ionospheric plasma, and high-energy particle observation data, to carry out real-time
ionospheric dynamic monitoring and seismic-precursor tracking detection in China and sur-
rounding areas, and to explore the mechanism of seismic ionospheric disturbance [39]. The
CSES’s scientific mission is to monitor the variations in the main parameters of the topside
ionosphere (electric and magnetic fields, plasma parameters, charge particle fluxes) caused by
natural emitters, especially earthquakes or those that are artificial [40].

The CSES carries eight types of scientific payloads [41,42]. The space electric-field
detection is completed by the electric-field detector (EFD), which provides data application
services for seismic observation research. The detection frequency bands are divided into:
ULF (0–16 Hz), ELF (6 Hz–2.2 kHz), VLF (1.8 kHz–20 kHz), and HF (18 kHz–3.5 MHz). The
CSES’s full orbit is divided into ascending and descending orbits. The ascending orbit is
from the south latitude to the north, and the descending orbit is from the north latitude to
the south. There are 76 orbits in 1 revisited period, and the revisited period is 5 days. The
flight time of each orbit is approximately 94.6 min [43]. The orbital spacing in one period is
between 4.7◦ and 4.8◦ [44]. The working range is from 65◦ S to 65◦ N.
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The data in this study are selected from the waveform data and power spectrum data
of the Z components of the CSES electric-field VLF band. According to the CSES satellite
data specification, the data structure is shown in Table 1.

First, waveform data of the Z component of the VLF electric field are converted from
the time domain to the frequency domain using Fourier transform. Figure 2 shows the
time-frequency spectrogram obtained by transforming the waveform data from descending
orbit No. 051760.
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Table 1. EFD VLF level 2 data-structure description.

Name Content Type Size Attribute Remark

VERSE_TIME Relative
time 64-bit int N × 1 Unit: ms

UTC_TIME Absolute
time 64-bit int N × 1 YYYYMMDD

HHMMSSms

WORKMODE Work
mode 16-bit int N × 1

1: Inspection
2: Detailed

investigation
−1: Invalid

A131_W X 64-bit float N × 2048 Unit: mV/m X component of electric-field waveform in WGS84 coordinate
system

A132_W Y 64-bit float N × 2048 Unit: mV/m Y component of electric-field waveform in WGS84 coordinate
system

A133_W Z 64-bit float N × 2048 Unit: mV/m Z component of electric-field waveform in WGS84 coordinate
system

A131_P CH1 64-bit float N × 1024 Unit:
mV/m/Hz0.5 Probe ab direction power spectrum

A132_P CH2 64-bit float N × 1024 Unit:
mV/m/Hz0.5 Probe cd direction power spectrum

A133_P CH3 64-bit float N × 1024 Unit:
mV/m/Hz0.5 Probe ad direction power spectrum

ALTITUDE
Satellite

orbit
height

32-bit float N × 1 Unit: km The value in WGS84 spherical coordinate system

MAG_LAT Geomagnetic
latitude 32-bit float N × 1 Unit: degree
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Table 1. Cont.

Name Content Type Size Attribute Remark

MAG_LON Geomagnetic
longitude 32-bit float N × 1 Unit: degree

GEO_LAT Geographical
latitude 32-bit float N × 1 Unit: degree The value in WGS84 spherical coordinate system

GEO_LON Geographical
longitude 32-bit float N × 1 Unit: degree The value in WGS84 spherical coordinate system

FREQ
Power

spectrum
frequency

32-bit float 1024 × 1

FLAG 32-bit int N × 1 Data Quality Label

3. Methodology

The study methodology consists of three main steps, as illustrated by the operational
flowchart in Figure 3.
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Figure 3. Flow chart of the entire work. This study is mainly in the third module: Exploration of the
spatial distribution characteristics of CFEDs. In the figure, the green box represents the raw data
collected by the CSES, the purple box represents various operations, the yellow box represents the
intermediate data generated by various operations, the red elliptical box represents the data obtained
for processing based on previous experiments in this paper, and the red gradient rectangular box
represents the main process of this paper.

In the first stage, we recognize the horizontal lines generated by CFEDs on the time-
frequency spectrogram and obtain the frequency range of CFEDs through the statistical
analysis of a significant number of spectrograms.

In the second stage, using the frequency range obtained in the first step, we generate
power spectrograms to validate the presence of CFEDs and automatically extract their
actual frequencies.

In the third stage, we generate power spectrograms for multiple revisited orbital periods
of each CFED. By analyzing the single orbital sequence and multiple revisited orbital periods
in the same spatial domain, we aim to uncover the spatial characteristics of CFEDs.
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3.1. CFEDs Automatic Recognition

CFEDs are represented as horizontal lines on the time-frequency spectrogram. The
recognition of these lines is performed automatically using the following steps.

3.1.1. Graying

Since line recognition is based on the brightness relative to the background color,
color information is unnecessary. To simplify the matrix and improve the computational
speed, we first convert the spectrogram to grayscale. Grayscale conversion can be achieved
using various methods, and in this study, we utilize the blue channel [45]. Gray = RGB.B
represents the spectrogram, where RGB is the original spectrogram and B represents the
blue channel. The grayscale result is shown in Figure 4b.
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3.1.2. Horizontal Feature Enhancement

To enhance the edge of horizontal lines and improve line recognition accuracy, we
employ a horizontal convolution kernel [46]. The convolution kernel is described by
Equation (1).

kernel = [1, 0,−1] (1)

The convolution operation is performed as described in Equation (2), where Gray
represents the grayscale spectrogram and Cov_dst represents the convolution result. The
convolution result is shown in Figure 4c.

cov_dst(x, y) = ∑
0 ≤ x′ < kernel.cols,
0 ≤ y′ < kernel.rows

kernel(x′, y′)× gray(x + x′ − anchor.x, y + y′ − archor.y) (2)

3.1.3. Binarization

Binarization is used to convert each pixel into black or white, simplifying the image
and helping the algorithm to accurately recognize lines. The binarization operation is
described by Equation (3), where i and j represent pixel coordinates. In this experiment, we
set max = 255 and tresh = 10. Figure 4d illustrates the binarization result.

bi_map(i, j) =

{
max i f cov_dst(i, j) > tresh
0 otherwise

(3)

3.1.4. K-Means Clustering

The K-means clustering algorithm is an unsupervised clustering analysis technique in
machine learning. Initially, the data are divided into K groups, and K objects are randomly
chosen as the initial clustering centers µj (j = 1, 2 . . . k). The distance between each object
x(i) and each seed clustering center µj is then calculated, and each object is assigned to
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the nearest clustering center using Equation (4). The cluster center and assigned objects
represent a cluster.

c(i) := argmin
j
||x(i) − µj||2 (4)

For each assigned sample, the cluster center is recalculated according to Equation (5).
This process is repeated until the termination condition is satisfied. In this study, K is set to
2 [45], enabling unsupervised clustering of the binary graph in both linear and nonlinear
ways. The experiment was terminated after 10 iterations. Figure 4e shows the result of the
line clustering, marked by red dots on the spectrogram.

µi :=
∑m

i=1 1
{

c(i) = k
}

x(i)

∑m
i=1 1

{
c(i) = j

} (5)

3.1.5. Calculation of Recognized Line Frequency

Calculating the recognized line frequency involves establishing a proportional relation-
ship between the height of the time-frequency spectrogram and the frequency range. Figure 5
illustrates this relationship, and Equation (6) describes the column calculation. In this equa-
tion, line_freq represents the CFED frequency corresponding to the recognized line, max_freq
represents the maximum frequency depicted in the time-frequency spectrogram, map_height
represents the height of the time-frequency spectrogram, and line_height represents the height
of the recognized line on the time-frequency spectrogram. When affected by other space
electromagnetic waves, the line shape on the time-frequency spectrogram undergoes changes
such as thinning, thickening, interruption, or even disappearance, due to signal coupling
and background enhancement [28]. Therefore, while the line frequency does not accurately
represent the real frequency, it approximates the actual value. To accurately recognize, merge,
and extract the existence and frequency range of CFEDs corresponding to the line, a significant
number of time-frequency spectrograms must be analyzed.

line_ f req = max_ f re− max_ f req× line_height
map_height

(6)
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3.1.6. Combine the Lines to Determine the CFED Frequency Range

After recognizing lines on many spectrograms, each spectrogram has its own set of
horizontal lines. Subtle changes in the shape of these lines result in different line frequencies.
To determine whether the recognized lines on each spectrogram belong to the same CFEDs,
lines with intersecting linear frequencies between any two spectrograms are merged using
a union operation. Finally, all recognized lines on the spectrogram are merged in pairs
using a merging algorithm to obtain the frequency range for each CFED.

3.2. Confirmed CFEDs and Extract Its True Frequencies

By performing the above operations, we obtain frequency ranges for many lines. How-
ever, these ranges do not represent the true frequency values of CFEDs. To confirm the
existence of CFEDs within these ranges, we use power spectrograms. Using the power
spectrum data, we generate 8 discontinuous revisited periods, totaling 10,230 power spec-
trograms, according to frequency ranges. These power spectrograms help us determine the
presence and true frequency of CFEDs. Figure 6 illustrates one of the power spectrograms.
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Period 8 22 July 2020–26 July 2020 121 62 59 

SUM 1023 534 489 

Figure 6. One of the frequency ranges (12.005 kHZ, 12.207 kHZ) is obtained by merging a large
number of linear frequencies into different spectrograms. We use the frequency range (12.005 kHZ,
12.207 kHZ) to generate a power spectrogram on which there is a 12.05 kHz CFED. Note: In this
paper, we use the approximate center value of a frequency domain to represent the CFED frequency.

3.3. CFED Spatial Characteristics Statistics

To analyze the spatial characteristics of CFEDs, we use the following methods.
Generate multiple revisited orbital-period CFED power spectrograms.
Perform statistical analyses of ascending and descending orbits to explore features

and differences.
Analyze each CFED power spectrogram over a revisited orbital period to examine

spectral variation characteristics.
Analyze CFED spatial distribution characteristics in the same spatial domain by

examining multiple revisited orbital periods.

4. Experimental Results and Analysis
4.1. Experimental Environment

For this experiment, we used Matlab2020 to generate time-frequency and power
spectrograms. We used the Cartopy library in Python 3.7 to draw geographic information
and used CV2 and SKLearn libraries to recognize lines on time-frequency spectrograms.

4.2. Experimental Data

We randomly selected data from eight discontinuous revisited periods of CSES VLF data
observed in 2019 and 2020. The data were preprocessed to retain only the full orbital period
where the latitude range was (−64, 64) or (64, −64). Please refer to Table 2 for further details.
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Table 2. Experimental data of eight discontinuous revisited periods.

Orbital
Period Start and End Time

The
Time-Frequency

Spectrogram
Number

Descending
Number

Ascending
Number

Period 1 6 January 2019–10 January 2019 126 67 59
Period 2 20 July 2019–24 July 2019 126 65 61
Period 3 25 July 2019–29 July 2019 116 59 57
Period 4 30 July 2019–4 August 2019 142 74 68
Period 5 1 June 2020–5 June 2020 130 69 61
Period 6 26 June 2020–30 June 2020 131 69 62
Period 7 1 July 2020–5 July 2020 131 69 62
Period 8 22 July 2020–26 July 2020 121 62 59

SUM 1023 534 489

4.3. Strong CFED Signals

A strong CFED signal is a clearly identifiable CFED on the power spectrogram. The
CFED shown in Figure 7a is considered a strong CFED signal, while the one presented in
Figure 7b requires careful identification. In this paper, we focus only on clearly identifiable
CFEDs. We provide a detailed description of the spatial characteristics of 10 strong CFED
signals in Section 4.5.5.
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Figure 7. CFED power spectrograms. (a) Strong CFED signal at 11.8 kHz; (b) Weak CFED signal at
22.94 kHz.

4.4. Comparison of Ascending and Descending Signals

A complete orbit of the CSES includes ascending and descending orbits. The ascending
orbit moves from the south to the north latitude, while the descending orbit moves from
the north to the south latitude. Table 3 shows the power spectrograms of the ascending and
descending orbits for four CFEDs over a revisited period. Through comparative analysis,
we observe differences between the power spectrograms of ascending and descending
orbits. There is too much interference in the power spectrum of the ascending orbit, which
has a great influence on data analysis. Due to significant interference, the subsequent
analysis is focused solely on descending orbits.

4.5. Spatial Characteristics of Strong CFEDs

Before analyzing the spatial characteristics of CFEDs, we provide two types of fre-
quency variations: frequency fluctuation and frequency offset.

Frequency fluctuation: Within a single orbit’s data spectrogram, the actual frequency
of the CFED signal periodically increases or decreases relative to the expected frequency.
Figure 8 shows examples of frequency fluctuations. In Figure 8a, the CFED with a frequency
of 12.05 kHz exhibits frequency fluctuations in a latitude range of approximately (64.90, 15).
Similarly, in Figure 8b, the CFED with a frequency of 18.1 kHz shows fluctuations in a latitude
range of about (64.90, 15).
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Table 3. Comparison of descending and ascending orbits.

CFEDs
Frequency

(kHz)
The Spectrograms Tiling of Descending Orbits in a Period The Spectrograms Tiling of Ascending Orbits in a Period

6.05,
5.95

12.05

11.8

18.1
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Figure 8. On the same orbit, CFEDs with different frequencies exhibit frequency fluctuations in
the same spatial domain in one orbit data spectrogram. (a) CFED with a frequency of 12.05 kHz;
(b) CFED with a frequency of 18.1 kHz.

Frequency offset: Frequency offset refers to the difference between the actual frequency
of an electromagnetic wave and its expected or theoretical value. Figure 9 illustrates the
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frequency offset within the same CFED (the same constant-frequency electromagnetic
disturbance) and spatial domain. In Figure 9a, the CFED has a center frequency of about
11.80 kHz, while in Figure 9b, the CFED has a center frequency of about 11.85 kHz.
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Next, we delve into the spatial and frequency characteristics of strong CFEDs from
various perspectives.

4.5.1. CFED with a Frequency of 12.05 kHz

This CFED, represented in Figure 10, exhibits strong characteristics with a frequency
of 12.05 kHz.

Remote Sens. 2023, 15, x FOR PEER REVIEW 
 12 of 26 
 

 

  
(a) (b) 

Figure 9. Frequency offset between spectrograms, the same spatial domain, the same CFED, but 
different frequencies. (a) CFED’s center frequency is 11.8 kHz; (b) CFED’s center frequency is 11.85 
kHz. 

Next, we delve into the spatial and frequency characteristics of strong CFEDs from 
various perspectives. 

4.5.1. CFED with a Frequency of 12.05 kHz 
This CFED, represented in Figure 10, exhibits strong characteristics with a frequency 

of 12.05 kHz. 

 
Figure 10. CFED with frequency of 12.05 kHz. 

The CFED signal shows fluctuations within the descending orbit spectrogram, as 
shown in Figure 11. 

 
Figure 11. Illustrates the power spectrograms of the descending orbits for CFED at a frequency of 
12.05 kHz during Period 1, showing frequency fluctuations. 

Figure 10. CFED with frequency of 12.05 kHz.

The CFED signal shows fluctuations within the descending orbit spectrogram, as
shown in Figure 11.

Furthermore, Figure 12 shows the frequency offset between consecutive orbits of the
same CFED in the same spatial domain, highlighting the changes in frequency.

In the identical spatial domain, the power spectrogram reveals consistent discontinuity
characteristics for six revisited periods, as shown in Figure 13.

Figure 14 shows the approximate region, in descending orbits, where the 12.05 kHz
CFED cannot be observed—at the latitude range of about (−58, −22) and the longitude
range of about (31, 122).



Remote Sens. 2023, 15, 3815 12 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 
 12 of 26 
 

 

  
(a) (b) 

Figure 9. Frequency offset between spectrograms, the same spatial domain, the same CFED, but 
different frequencies. (a) CFED’s center frequency is 11.8 kHz; (b) CFED’s center frequency is 11.85 
kHz. 

Next, we delve into the spatial and frequency characteristics of strong CFEDs from 
various perspectives. 

4.5.1. CFED with a Frequency of 12.05 kHz 
This CFED, represented in Figure 10, exhibits strong characteristics with a frequency 

of 12.05 kHz. 

 
Figure 10. CFED with frequency of 12.05 kHz. 

The CFED signal shows fluctuations within the descending orbit spectrogram, as 
shown in Figure 11. 

 
Figure 11. Illustrates the power spectrograms of the descending orbits for CFED at a frequency of 
12.05 kHz during Period 1, showing frequency fluctuations. 
Figure 11. Illustrates the power spectrograms of the descending orbits for CFED at a frequency of
12.05 kHz during Period 1, showing frequency fluctuations.

Remote Sens. 2023, 15, x FOR PEER REVIEW 
13 of 26 

Furthermore, Figure 12 shows the frequency offset between consecutive orbits of the 
same CFED in the same spatial domain, highlighting the changes in frequency. 

(a) (b) (c) 

Figure 12. Frequency offset of three orbits of the same CFED. (a,b) are in the same spatial domain, 
but the central frequency values are different.(c) There is a change in the central frequency. 

In the identical spatial domain, the power spectrogram reveals consistent disconti-
nuity characteristics for six revisited periods, as shown in Figure 13. 

Figure 13. The same signal discontinuity characteristics of different orbits with the same longitude 
and latitude in the six revisited periods. 

Figure 14 shows the approximate region, in descending orbits, where the 12.05 kHz 
CFED cannot be observed—at the latitude range of about (−58, −22) and the longitude 
range of about (31, 122). 

Figure 14. The approximate area of the 12.05 kHz CFED that cannot be observed by the descending 
orbits. 

4.5.2. CFED with a Frequency of 10 kHz 

Figure 12. Frequency offset of three orbits of the same CFED. (a,b) are in the same spatial domain,
but the central frequency values are different. (c) There is a change in the central frequency.

Remote Sens. 2023, 15, x FOR PEER REVIEW 
13 of 26 

Furthermore, Figure 12 shows the frequency offset between consecutive orbits of the 
same CFED in the same spatial domain, highlighting the changes in frequency. 

(a) (b) (c) 

Figure 12. Frequency offset of three orbits of the same CFED. (a,b) are in the same spatial domain, 
but the central frequency values are different.(c) There is a change in the central frequency. 

In the identical spatial domain, the power spectrogram reveals consistent disconti-
nuity characteristics for six revisited periods, as shown in Figure 13. 

Figure 13. The same signal discontinuity characteristics of different orbits with the same longitude 
and latitude in the six revisited periods. 

Figure 14 shows the approximate region, in descending orbits, where the 12.05 kHz 
CFED cannot be observed—at the latitude range of about (−58, −22) and the longitude 
range of about (31, 122). 

Figure 14. The approximate area of the 12.05 kHz CFED that cannot be observed by the descending 
orbits. 

4.5.2. CFED with a Frequency of 10 kHz 

Figure 13. The same signal discontinuity characteristics of different orbits with the same longitude
and latitude in the six revisited periods.

Remote Sens. 2023, 15, x FOR PEER REVIEW 
13 of 26 

Furthermore, Figure 12 shows the frequency offset between consecutive orbits of the 
same CFED in the same spatial domain, highlighting the changes in frequency. 

(a) (b) (c) 

Figure 12. Frequency offset of three orbits of the same CFED. (a,b) are in the same spatial domain, 
but the central frequency values are different.(c) There is a change in the central frequency. 

In the identical spatial domain, the power spectrogram reveals consistent disconti-
nuity characteristics for six revisited periods, as shown in Figure 13. 

Figure 13. The same signal discontinuity characteristics of different orbits with the same longitude 
and latitude in the six revisited periods. 

Figure 14 shows the approximate region, in descending orbits, where the 12.05 kHz 
CFED cannot be observed—at the latitude range of about (−58, −22) and the longitude 
range of about (31, 122). 

Figure 14. The approximate area of the 12.05 kHz CFED that cannot be observed by the descending 
orbits. 

4.5.2. CFED with a Frequency of 10 kHz 

Figure 14. The approximate area of the 12.05 kHz CFED that cannot be observed by the descending
orbits.



Remote Sens. 2023, 15, 3815 13 of 25

4.5.2. CFED with a Frequency of 10 kHz

The CFED signal with a frequency of 10 kHz is strong, as shown in Figure 15.
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4.5.3. CFED with Frequencies of 6.05, 5.95 kHz

This CFED consists of two frequencies that coexist or undergo simultaneous disconti-
nuity in the spectrogram, as shown in Figure 17.
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Minor frequency fluctuations are observed in the descending orbit power spectro-
grams, as shown in Figure 18.
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Figure 20. The same signal discontinuity characteristics of different orbits with the same longitude
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Similar to the previous CFED, Figure 21 shows regions in the descending orbits where
CFEDs with frequencies of 6.05 kHz and 5.95 kHz cannot be observed, specifically the
latitude range (−58, −22) and longitude range (31, 122).
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4.5.4. CFED with a Frequency of 20.5 kHz

The CFED signal with a frequency of 20.5 kHz appears strong, as shown in Figure 22.
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The four CFEDs mentioned above are analyzed in detail, while the others including
the four above are summarized in Table 4.
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Table 4. Spatial characteristics of strong CFEDs.

Frequency
kHz Spectrogram Descending Orbit Power Spectrograms of Period 1 Fluctuation Off Set Discontinuity Unobserved

Areas

12.05 Yes Yes Yes Lat (−58, −22)
Lon (31, 122)

10 No No No No

6.05
5.95 Yes Yes Yes Lat (−58, −22)

Lon (31, 122)

20.5 No No No No
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Table 4. Cont.

Frequency
kHz Spectrogram Descending Orbit Power Spectrograms of Period 1 Fluctuation Off Set Discontinuity Unobserved

Areas

15.58 No No No No

14.5 No No No No

18.1 Yes Yes Yes Lat (−58, 0)
Lon (34, 130)

11.8 No Yes Yes

Lat (−50, −36)
Lon (117, 122);
Lat (−58, −22)
Lon (104, 120);

Lat (−58, 0)
Lon (71, 120);

Lat (−58, −22)
Lon (38, 78)
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Table 4. Cont.

Frequency
kHz Spectrogram Descending Orbit Power Spectrograms of Period 1 Fluctuation Off Set Discontinuity Unobserved

Areas

17.7 No Yes Yes Lat (−58, −22)
Lon (33, 119)

23.7 No Yes Yes

Lat (−50, −36)
Lon (117, 122);
Lat (−58, −22)
Lon (104, 120);

Lat (−58, 0)
Lon (71, 120);

Lat (−58, −22)
Lon (38, 78)
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4.5.5. Show Strong CFEDs in Table

Table 4 summarizes the spatial characteristics of ten strong CFEDs, including the four
previously discussed CFEDs. The table provides information on frequency fluctuations,
offsets, signal discontinuity, and unobserved areas for each CFED. Lat represents latitude,
Lon represents longitude.

Through experimental analysis and statistics, we observe that these strong CFEDs
possess distinct spatial characteristics. Some are present throughout the period orbits, while
others exhibit frequency fluctuations or offsets and cannot be observed in specific areas.
However, they also share common characteristics. CFEDs with frequency offsets tend to be
unobserved in certain spatial domains. These unobserved areas are mainly concentrated
in the southeastern hemisphere, as shown in Figure 24. Further discussion is needed to
explore the shared and distinctive characteristics of these strong CFEDs.
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Figure 24. Nine strong CFEDs observed on the same orbit (051400). In (a), three strong CFEDs exhibit
stable signals, while in (b), six CFEDs display instability due to frequency offset over time. These six
CFEDs are mostly unobserved or are discontinuous within the same spatial domain.

5. Discussion

In this paper, regarding the horizontal-line characteristics of CFEDs in spectrograms,
we used computer vision techniques to recognize these lines and extracted the correspond-
ing CFED frequency values. The statistical analysis of the spatiotemporal characteristics
of global strong CFED events revealed the presence of frequency offsets, frequency fluc-
tuations, and data differences between ascending and descending orbits observed on the
CSES. Aiming at these spatiotemporal characteristics of CFEDs, we will now proceed to
discuss each of them separately.

5.1. Frequency Offset

Frequency offset is the difference between the actual frequency of a signal and the
expected frequency. During signal generation or transmission, various disturbances or
errors can cause the actual frequency to deviate from the set or expected frequency [47].
There are many reasons for frequency offset, such as temperature changes that can alter
the physical characteristics of electronic components and circuits, leading to frequency
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offset [48]. Over time, electronic components and circuits can be affected by aging and
degradation, resulting in frequency drift [49]. Issues with the quality and stability of the
power supply can cause frequency offset [50]. Environmental conditions such as humidity,
air pressure, and altitude can also affect the performance of electronic devices and circuits,
leading to frequency offset [51], among other factors.

Frequency offset can lead to a decrease in communication quality, signal distortion,
increased error rate, data loss, and damage. It has a significant impact on the correct recep-
tion, decoding, and processing of signals [52–55]. Therefore, studying and understanding
the characteristics and causes of frequency offset is crucial for effective signal transmission
and processing. Based on the statistical analysis of the experiments mentioned above,
several strong carrier-frequency-estimation devices exhibit noticeable frequency offsets.

In this paper, these CFEDs include 12.05 kHz, 6.05–5.95 kHz, 18.1 kHz, 11.8 kHz,
17.7 kHz, 23.7 kHz, etc. (We use the approximate center value of the frequency to represent
a CFED). These frequency offsets have a significant impact on the quality of data analysis.
Therefore, future research is needed to investigate the causes of these frequency offsets and
explore methods to reduce them.

However, frequency offset quantification analysis can also be used to detect and
monitor the stability and consistency of electromagnetic waves, as well as for applications
such as spectrum analysis and signal processing. When studying earthquake precursors
or other related phenomena, the occurrence of frequency offset may indicate changes
or abnormal conditions in the electromagnetic-wave propagation environment [56–60].
Future research can be conducted based on the phenomenon of frequency offset to explore
phenomena related to earthquake precursors.

5.2. Frequency Fluctuation

Frequency fluctuation is the periodic increase or decrease in the actual frequency of
a signal relative to the expected frequency over a certain period of time [61]. Frequency
fluctuations can be observed and quantified by the frequency-spectrum analysis of the
signal. There can be various reasons for frequency fluctuations. For example, temperature
variations can cause changes in the physical characteristics of electronic components and
circuits, leading to frequency fluctuations [62]. Over time, the aging and degradation of
electronic components and circuits can also cause frequency fluctuations [63]. Quality and
stability issues in the power supply can lead to frequency fluctuations [64]. Environmental
conditions such as humidity, air pressure, and altitude can affect the performance of
electronic devices and circuits, leading to frequency fluctuations [65].

Frequency fluctuations can cause a decrease in communication quality, signal distor-
tion, increased error rates, as well as data loss and corruption [66–69]. However, frequency
fluctuations also have significance. For example, they can be used to monitor and ana-
lyze the propagation characteristics and environmental changes of electromagnetic waves,
which is important for communication networks, radar systems, and more [70]. More
importantly, the occurrence of frequency fluctuations can indicate the possibility of earth-
quake precursors or other related phenomena, providing important clues for earthquake
research [71]. Signal-processing and frequency-spectrum analysis: by processing and an-
alyzing frequency fluctuations, useful information can be extracted from the signal and
used for frequency-spectrum analysis and signal-processing applications [72].

In this experiment, we observed frequency fluctuations in several CFEDs on the
CSES (Chinese Seismo-Electromagnetic Satellite), such as 12.05 kHz, 6.05–5.95 kHz, and
18.1kHz, etc. Our future work will focus on investigating the causes of these CFEDs’
frequency fluctuations, as well as further studying the extent and temporal-spatial domains
of fluctuations to prepare for seismic-precursor prediction research.

5.3. Data Difference between Ascending and Descending Orbits on the CSES

Based on experimental statistics and analysis, we found that there are some differences
in the quality of ascending and descending orbital data from the CSES satellite. These



Remote Sens. 2023, 15, 3815 21 of 25

differences manifest themselves as clearer, and there is less background disturbance in
power spectrograms generated during descending orbits compared to ascending orbits.
One of the reasons for the differences between ascending and descending orbit data is due
to their different orbital positions and inclinations, which result in changes in the related
physical environment and observation conditions [73,74]. Satellites ascend from lower
orbital altitudes to higher ones during ascending orbits, while they descend from higher
altitudes to lower ones during descending orbits, leading to different physical conditions
in different altitude ranges. Secondly, the ascending and descending orbits pass through
different times and locations on Earth, resulting in the observation of different physical
phenomena and environmental conditions at different times, thereby causing differences in
the data between ascending and descending orbits [75,76].

To address the differences in ascending and descending orbit data, it is common to
treat them as separate data sets, allowing for a better understanding and interpretation of
the characteristics and trends within each data set [77,78]. Additionally, based on factors
such as orbital altitude and local time, segment analysis or specific analysis methods can
be employed for the ascending orbit data [79,80]. In summary, when dealing with satellite
ascending and descending orbit data, it is important to recognize their differences and
employ appropriate data analysis and processing methods to fully understand and utilize
the characteristics and information within these two data sets.

5.4. Method Improvement

At present, we use artificial statistical methods to process data, but as the amount of data
increases, this operation is not accurate enough, and the workload is very large. The next stage
of work, based on computer vision technology, uses machine learning methods to automatically
identify CFEDs on the power spectrogram and accurately calculate the discontinuity area. Data
accuracy is very important for clearing waveform data or background fields.

In addition, we only processed 10 strong CFEDs signals. Using machine learning
methods, we can improve the ability of data processing not only for weak CFED signals
but also for CFEDs with a small geographical coverage.

6. Conclusions

Seismic ionospheric disturbances exhibit complex and diverse characteristics. To
enhance the early prediction of earthquakes using CSES satellite observation data, it is
essential to understand the spatial and temporal distribution of other electromagnetic dis-
turbances. Therefore, we used computer vision technology to extract the frequency ranges
of global CFEDs from time-frequency spectrograms obtained by the Fourier transformation
of waveform data. By analyzing a dataset of 1023 full-orbit waveform samples and 10,230
strong CFED power spectrograms captured during 8 revisited CSES EFD VLF periods, we
identified their spatial characteristics in both ascending and descending orbits, including
frequency fluctuations, frequency offsets, and unobserved areas. Through this analysis,
we discovered both shared and distinctive spatiotemporal features among these CFEDs.
These findings contribute to enhancing the quality of CSES observational data. In addition,
they hold significant value for studying the disturbance characteristics of other space elec-
tromagnetic waves, earthquake monitoring, early prediction efforts, and waveform data
cleaning through waveform suppression.

Moving forward, our research will focus on three main aspects: investigating the
factors contributing to these spatial features; exploring patterns of change in CFEDs and
other spatial disturbances—in particular, the variation in CFEDs before earthquakes; and
implementing CFED-suppression techniques to clean waveform data.
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