
Citation: Bratic, G.; Oxoli, D.;

Brovelli, M.A. Map of Land Cover

Agreement: Ensambling Existing

Datasets for Large-Scale Training

Data Provision. Remote Sens. 2023, 15,

3774. https://doi.org/10.3390/

rs15153774

Academic Editors: Stefano Nativi,

Gregory Giuliani, Joan Masó and

Paolo Mazzetti

Received: 28 June 2023

Revised: 19 July 2023

Accepted: 28 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Map of Land Cover Agreement: Ensambling Existing Datasets
for Large-Scale Training Data Provision
Gorica Bratic * , Daniele Oxoli and Maria Antonia Brovelli

Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy;
daniele.oxoli@polimi.it (D.O.); maria.brovelli@polimi.it (M.A.B.)
* Correspondence: gorica.bratic@polimi.it

Abstract: Land cover information plays a critical role in supporting sustainable development and
informed decision-making. Recent advancements in satellite data accessibility, computing power,
and satellite technologies have boosted large-extent high-resolution land cover mapping. However,
retrieving a sufficient amount of reliable training data for the production of such land cover maps
is typically a demanding task, especially using modern deep learning classification techniques that
require larger training sample sizes compared to traditional machine learning methods. In view of
the above, this study developed a new benchmark dataset called the Map of Land Cover Agreement
(MOLCA). MOLCA was created by integrating multiple existing high-resolution land cover datasets
through a consensus-based approach. Covering Sub-Saharan Africa, the Amazon, and Siberia, this
dataset encompasses approximately 117 billion 10m pixels across three macro-regions. The MOLCA
legend aligns with most of the global high-resolution datasets and consists of nine distinct land cover
classes. Noteworthy advantages of MOLCA include a higher number of pixels as well as coverage for
typically underrepresented regions in terms of training data availability. With an estimated overall
accuracy of 96%, MOLCA holds great potential as a valuable resource for the production of future
high-resolution land cover maps.

Keywords: training data; high-resolution land cover; global land cover; machine learning; deep
learning; satellite image classification; classification accuracy assessment

1. Introduction

In today’s world, precise and comprehensive land cover (LC) mapping is becoming
increasingly crucial for sustainable development and well-informed decision-making. Be-
yond its relevance in climate studies [1], LC information finds utility in other fields as well.
For instance, in ecology, LC data aids in estimating habitat fragmentation and predicting
International Union for Conservation of Nature (IUCN) Red List categories for species [2].
Additionally, LC serves as a crucial variable in hydrological investigations, as exemplified
by studies conducted in the upper Crepori river basin in Brazil and the Gumara catchment
in Ethiopia [3,4].

The applications of LC data extend to monitoring various phenomena across different
regions. Examples include monitoring the desertification process in the Qubqi desert in
China [5], tracking urbanization progress in Abuja, Nigeria [6], and observing agricultural
expansion in the Mato Grosso state of Brazil [7]. These cases illustrate the diverse range of
uses for LC data in monitoring and understanding our changing environment.

The inclusion of open data policies by some providers of satellite imagery has un-
deniably accelerated the progress of LC mapping [8–10]. This favorable development,
along with advancements in computing capabilities and satellite technologies, has made
significant contributions to the field. Nevertheless, there are still persistent challenges in
the domain of LC mapping.

To fully harness the potential of satellite Earth observation resources for land cover
mapping, it is crucial to address a significant challenge: the availability of appropriate

Remote Sens. 2023, 15, 3774. https://doi.org/10.3390/rs15153774 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15153774
https://doi.org/10.3390/rs15153774
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2777-3751
https://orcid.org/0000-0002-3226-5586
https://orcid.org/0000-0003-3161-5561
https://doi.org/10.3390/rs15153774
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15153774?type=check_update&version=2


Remote Sens. 2023, 15, 3774 2 of 19

training data. Specifically, the effectiveness of machine learning (ML) algorithms used
to generate land cover maps relies heavily on the quality and relevance of the training
data [11,12].

In the case of extensive classification tasks such as global high-resolution land cover
(HRLC) mapping, the requirements for training datasets become even more demanding.
This is because the training data needs to encompass vast geographical areas and offer
representative samples with a high level of detail that can capture the diverse landscape
characteristics worldwide. Furthermore, deep learning techniques, which are current state-
of-art-techniques for LC classification, typically require larger training datasets compared
to classical ML techniques [13–15].

Dimitrovski et al. [16] summarized 22 open-access training datasets used for deep
learning approaches. The datasets comprise image chips of different dimensions primarily
obtained from aerial imagery, supplemented by a limited number sourced from satellite
imagery. The biggest dataset—among the ones revised—is Big Earth Net which has samples
covering approximately 750,000 km2 which are located only in Europe [17]. There are also
datasets with global coverage such as Resisc45 [18] and MLRSNet [19] but covering smaller
areas than Big Earth Net—470,000 km2 and 182,000 km2, respectively.

The practice of global HRLC producers to obtain training data includes photo-
interpretation, utilization of existing LC data at various resolutions, and sometimes a
combination of the two [20]. DynamicWorld project, the first project for near-real-time
global LC mapping, generated its own training dataset of 5 billion 10 m pixels and re-
leased it publicly [21]. The dataset was derived by the photo-interpretation of Sentinel-2
images, dominantly performed by non-expert annotators. The same training was reused
by Esri LC [22]. The collection of training data was based on a photo interpretation for
datasets such as Finer Resolution Observation and Monitoring of Global Land Cover
(FROM-GLC) [23–25], World Settlement Footprint (WSF) [26,27], Global Surface Water
(GSW) [28], and Forest Non-Forest (FNF) [29]. Various HRLC production projects utilized
existing LC data in different ways to support their training dataset collection. For in-
stance, the GlobeLand30 (GL30) dataset allowed photo-interpreters to refer to existing LC
datasets during their work [30]. In the case of the initial version of Global Human Settle-
ments Built-up (GHS BU) datasets, a combination of low-resolution LC (LRLC) and HRLC
datasets were employed, with a weighted voting system favouring the HRLC data [31].
HRLC and medium-resolution LC (MRLC) data, along with photo-interpretation, were
utilized to derive the Tree Canopy Cover Dataset [32]. The Global Mangrove Watch (GMW)
dataset combined both HRLC and LRLC datasets [33,34]. The European Space Agency’s
(ESA) World Cover dataset used existing MRLC and HRLC data to extract training data,
although the specific method employed remains unclear [35]. Initially, the Global Cropland
dataset relied on photo-interpreted samples [36]. The generated LC data was then sampled
to obtain training data for subsequent iterations until satisfactory accuracy was achieved.
The Global Land Cover with a Fine Classification System at a 30-m resolution (GLC_FCS30)
dataset utilized refined MRLC data, obtained through a specific procedure that considers
only homogeneous samples [37].

It is apparent that HRLC producers were aiming to incorporate existing LC data into
their training data extraction process, likely due to the high cost associated with global
data collection. However, they did not always consider the reliability of training samples
derived from existing HRLCs, as observed in the case of GMW.

Among the listed global existing HRLCs, the highest overall accuracy (OA), equal to
86%, was achieved for GL30 and the first release of Esri LC [38,39]. The details of GL30
accuracy are not published, while the second release of Esri LC merged Grass and Scrub
classes into a single class—Rangeland to compensate for the low accuracy of these classes
in the first release. Although achieving an accuracy of 86% is a noteworthy advancement
for HRLC products, it is evident that there is room for further enhancements, especially in
specific classes [40].
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In this paper, we present the training benchmark dataset that was generated by
borrowing two concepts of training sample generation techniques: reuse of existing
data [31–33,35–37] and consensus among multiple annotators in the case of photo in-
terpretation [23,41]. During the human labeling of training samples, human error is often
mitigated by having multiple annotators. If there is no consensus among them, or at least
among the majority, the sample is rejected.

Adhering to the above principles, we reuse existing HRLC datasets, but only those
portions in which there is exclusive consensus among multiple datasets. From a practical
standpoint, multiple HRLCs are combined using the intersection method to retain only
the areas where all datasets agree on LC classes while disregarding areas of disagreement.
Accordingly, the dataset obtained is named Map Of Land Cover Agreement (MOLCA). The
main purpose of MOLCA is to serve as a reference training dataset, from which to extract
samples that are functional for the creation of new HRLC maps. MOLCA was designed
to provide training samples mainly for large-scale HRLC mapping using ML and deep
learning techniques, which typically demand extensive training data for satellite imagery
classification. This dataset was produced within the Climate Change Initiative HRLC (CCI
HRLC) project of the ESA. MOLCA has 117 billion 10 m pixels (11.7 million km2) distributed
over an area of 19 million km2. Classes included in the MOLCA legend are Bareland, Built-
up, Cropland, Forest, Grassland, Shrubland, Water, Wetland, and Permanent ice and snow,
which depicts LC in the period between 2016–2020. The accuracy estimate of MOLCA
shows an OA of 96%. MOLCA offers distinct advantages over alternative methods of
training data collection, including a substantially larger number of available pixels and
coverage for regions that are frequently underrepresented in existing benchmark training
datasets, such as Africa and Siberia [17,42–49]. Standing on the analyzed literature, MOLCA
outperforms other existing open-access training datasets in terms of spatial coverage
and precautions taken to ensure a high level of accuracy, due to the consideration of
multiple—instead of individual—HRLC maps for the generation of training samples. These
key features of MOLCA are promising to foster its use in future HRLC map production.
Furthermore, the availability of MOLCA as open data further enhances its potential for
widespread use.

The structure of this paper is as follows: Section 2 outlines the region considered for
MOLCA generation, input datasets, data generation concepts and methodology, and the
validation approach. Section 3 presents statistical information and the accuracy evaluation
of the generated dataset. The analysis and interpretation of the results are discussed in
Section 4, while the concluding remarks are provided in Section 5.

2. Materials and Methods

MOLCA was produced in the context of the CCI HRLC project of the ESA. The region
of interest for the project encompasses three macro-regions of the world: Amazon, Siberia,
and Sub-Saharan Africa (see Figure 1).

The region of interest extends over 19,163,868 km2–4,526,839 km2 in the Siberia,
6,203,824 km2 Amazon, and 8,433,205 km2 Sub-Saharan macro-region. The objective of the
CCI HRLC project was to determine the impact of the increased spatial resolution of land
cover data on climate models. Besides the selected regions being only partially represented
by existing LC training datasets, they are also landmarks for climate change. For these
reasons, they were selected for the first implementation of MOLCA.

2.1. Input Datasets

In the derivation of MOLCA, multiple global HRLCs were used as common input
across all three regions of interest. However, within each region, an additional regional
HRLC was incorporated into the MOLCA computation. The global datasets employed
included two general-purpose HRLCs, namely FROM-GLC and GL30, along with two
thematic HRLCs specific to the built-up class (WSF and GHS BU Sentinel-1—GHS BU
S1NODSM), one thematic HRLC for water (GSW), and one thematic HRLC for forests
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(FNF), as indicated in Table 1. As for the regional HRLCs, MapBiomas was used for
the Amazon region, CCI Africa Prototype for Africa, and ESA DUE (Data User Element)
GlobPermafrost for Siberia. All regional datasets fall under the general type.

Figure 1. Regions where MOLCA data are produced.

The baseline year for these datasets ranged from 2016 to 2020, and the spatial resolution
varies from 10 m to 30 m. The most used CRS is WGS84, while a few datasets are supplied
in UTM or Web Mercator (see Table 1).

Table 1. Existing global and regional HRLCs used for MOLCA creation in the three regions of interest.

Existing HRLC Baseline Year Coverage Resolution CRS Type

FROM-GLC 2017 Africa, Amazon, Siberia 10 m WGS84 General

GL30 2020 Africa, Amazon, Siberia 30 m UTM General

GHS BU S1NODSM 2016 Africa, Amazon, Siberia 20 m Web Mercator Thematic built-up

WSF 2019 Africa, Amazon, Siberia 10 m WGS84 Thematic built-up

FNF 2018 Africa, Amazon, Siberia 25 m WGS84 Thematic forest

GSW 2019 Africa, Amazon, Siberia 30 m WGS84 Thematic water

MapBiomas 2019 Amazon 30 m WGS84 General

CCI Africa Prototype 2016 Africa 20 m WGS84 General

ESA DUE GlobPermafrost 2016 Siberia 20 m UTM General

In this work, we utilized the 2017 map from FROM-GLC, which is a collection of
irregular time series of general-purpose land cover (LC) maps developed by Tsinghua
University [23–25]. The map has a resolution of 10 m and consists of 10 classes in its legend.
It is provided in World Geodetic System 1984 (WGS84) Coordinate Reference System (CRS)
in the form of 10° × 10° tiles (http://data.ess.tsinghua.edu.cn, accessed on 28 June 2023).
The reported OA of this map is 73%.

As for the GL30 dataset, it is a regular time series of general-purpose LC maps at a
resolution of 30 m, developed by the National Geomatics Center of China (NGCC) [30].

http://data.ess.tsinghua.edu.cn
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The legend of GL30 consists of 10 classes. For this work, we used the 2020 product
version. The reported OA for this map is 86%, as mentioned on the GL30 website (http:
//globeland30.org, accessed on 28 June 2023). The distribution of the GL30 product is
based on the Universal Transverse Mercator (UTM) projection. The tile size of GL30 varies
depending on the location, with most tiles (between 60°N and 60°S) being 5° × 6° in size,
although some tiles can be 5° × 12° or even larger.

A comprehensive set of thematic maps called the Global Human Settlement Built-
up (GHS BU) distinguishes between built-up and non-built-up surfaces [50,51]. These
maps were developed by the Joint Research Centre (JRC) of the European Commission.
Various GHS BU products exist, each one differing in terms of input imagery, baseline year,
and production method. In this study, the GHS BU S1NODSM product, which is based on
Sentinel-1 imagery from 2016, was employed. It consists of two classes: Built-up and non-
built-up. The product is distributed as a compressed file folder containing 2° × 2° tiles that
cover the entire globe (https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/GHSL, accessed
on 28 June 2023). The original CRS of the tiles is Web Mercator projection (EPSG:3857).
The accuracy of GHS BU S1NODSM is described qualitatively in comparison to another
LC dataset [50].

Another thematic LC product specifically focused on built-up areas is the WSF from
the German Aerospace Center—DLR [27]. It encompasses two classes: Settlements and non-
settlements. The product includes two maps with a spatial resolution of 10 m, representing
2015 and 2019. The 2019 map was utilized in this research. WSF is available as 2° × 2°
tiles in the WGS84 CRS (https://download.geoservice.dlr.de/WSF2019, accessed on 28
June 2023). The WSF map for 2019 exhibits an OA of 84% and a Kappa value of 0.65,
although information regarding User’s Accuracy (UA) and Producer’s Accuracy (PA) is
currently unavailable [52].

The GSW family comprises a collection of multi-temporal thematic LC maps that
focus on inland water bodies [28]. Produced by JRC, these annual maps span 37 years,
from 1984 to 2021. The GSW product offerings include various aspects such as monthly
water history, seasonality, yearly history, water occurrence, change intensity, recurrence,
transitions, maximum water extent, monthly recurrence, and metadata. They are available
for download at https://global-surface-water.appspot.com/download, accessed on 28
June 2023. For this study, the yearly history for 2019 was employed. The yearly history
combines two water classes, seasonal and permanent. The UA and PA for the entire time
series, including the 2019 map, exceed 95%.

The FNF map is a thematic LC map that classifies forested regions worldwide [29]. De-
veloped by the Japan Aerospace Exploration Agency (JAXA), it provides a multi-temporal
representation of forest areas with irregular time intervals. The map covers the periods
from 2007 to 2010 and from 2015 to 2020, categorizing areas as forest, water, or not water,
with an approximate resolution of 25 m. The FNF map for 2019 was used in this research.
The accuracy of this specific product is not specified. The product is distributed in two tile
sizes: 1° × 1° or 5° × 5° from https://www.eorc.jaxa.jp/ALOS/index_e.htm, accessed on
28 June 2023.

MapBiomas project focuses on generating maps for six Brazilian biomes, namely the
Amazon, Atlantic Forest, Cerrado, Caatinga, Pampa, and Pantanal [53]. These maps
provide a general overview of LC types at 30 m of spatial resolution annually, dat-
ing back to 1985. MapBiomas utilizes a hierarchical legend with three levels of clas-
sification. The first level consists of six broad classes, which are further subdivided
into more specific classes at the second and third levels. Since its inception in 2016,
the project has undergone several collections with different data processing methodolo-
gies. The MOLCA creation specifically used the map from Collection 7 for the year 2019,
which achieved an OA of 89% [54]. MapBiomas is licensed under the Creative Commons
CC-BY-SA license, which means it is freely available and can be accessed through vari-
ous means, including GoogleEarthEngine (GEE), the GEE app—Toolkit, the MapBiomas
dashboard, the QGIS plugin, or direct download in GeoTiff format via a provided link on

http://globeland30.org
http://globeland30.org
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/GHSL
https://download.geoservice.dlr.de/WSF2019
https://global-surface-water.appspot.com/download
https://www.eorc.jaxa.jp/ALOS/index_e.htm
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https://mapbiomas.org/en/colecoes-mapbiomas-1?cama_set_language=en, accessed on
28 June 2023. The default CRS used is WGS84.

The CCI Africa Prototype is a general-purpose LC map with a resolution of 20 m,
produced by the ESA CCI LC team, representing the LC state in Africa for the year 2016.
The legend of the CCI Africa Prototype consists of Tree-covered areas, Shrub-covered areas,
Grassland, Cropland, Vegetation aquatic or regularly flooded, Lichen and mosses/sparse
vegetation, Bare areas, Built up areas, and Snow and/or ice and open water. The product
can be downloaded as a single GeoTiff file in WGS84 CRS for the entire African continent
from https://2016africalandcover20m.esrin.esa.int, accessed on 28 June 2023. Accuracy
assessments of the CCI Africa Prototype were conducted for four countries: Kenya, Gabon,
Ivory Coast, and South Africa [55]. The OA was found to be 44% for South Africa, 47% for
Ivory Coast, 56% for Kenya, and 91% for Gabon.

The ESA DUE GlobPermafrost map describes the LC of permafrost regions, including
Western Siberia (Russia), Barrow (Alaska), Teshekpuk (Alaska), Mackenzie Delta (Canada),
Umiuaq (Canada), Kytalyk (Russia), Lena Delta (Russia), Seward Peninsula (Alaska),
and Yukon Delta (Alaska) [56]. The legend of ESA DUE GlobPermafrost is very detailed on
polar LC types (21 in total). Each permafrost region has a corresponding GeoTiff file, which
can be downloaded from the PANGAEA data publisher under the Creative Commons
Attribution 4.0 International license [57]. The CRS used for ESA DUE GlobPermafrost is
the UTM projection, and the OA of the map is estimated to be 83%.

2.2. MOLCA Methodology Concepts

The creation of MOLCA involves intersecting multiple HRLC datasets to determine
areas of agreement. Only the areas where all the HRLCs agree are retained, while pixels
showing LC class discrepancies among the intersected HRLCs are designated as null.
From a theoretical standpoint, there is a high probability that the MOLCA has high accuracy,
because a manyfold agreement increases the odds of pixels being accurate [58]. Pixels
that are accurately classified have a high likelihood of being found in corresponding
positions across different datasets, as correct classification is a primary objective during
the classification process. Conversely, errors in the LC derivation result from undesired
factors associated with the classification process. These errors can be influenced by various
factors, such as the quality and quantity of training data, the suitability of the classification
algorithm, the accuracy and quality of satellite imagery, the complexity of the LC types
being classified, as well as the presence of atmospheric phenomena such as clouds. Since
different agencies and procedures are responsible for producing most of the existing HRLCs,
it is expected that errors in different datasets are independent and not replicated across
them. Thus, the MOLCA methodology’s primary benefit arises from its utilization of
multiple HRLC maps to create the training dataset. This approach is anticipated to improve
the classification accuracy compared to relying solely on training samples extracted from
individual HRLC-existing maps.

2.3. MOLCA Generation Procedure

A schema of the MOLCA generation procedure is shown in Figure 2. Different parts of
the procedure are grouped into preparation, data harmonization, and MOLCA generation.

The procedure of creating MOLCA started by downloading the identified HRLC
products (see Table 1) for regions of interest. This was conducted automatically with
Python [59] when feasible, otherwise, it was conducted manually. The legends of these
datasets were carefully compared to determine common classes across them. The classes
that consistently appeared across multiple datasets were chosen as the target classes for
MOLCA. Details on MOLCA legend are included in Table A1 of Appendix A. To align the
legends of the existing datasets with the target legend of MOLCA, a correspondence table
was created for each dataset and stored in a textual file. Based on correspondence tables,
txt files with reclassification rules were created to be used in later steps. The reclassification
rules contain information about the original raster value, the target raster value, and the

https://mapbiomas.org/en/colecoes-mapbiomas-1?cama_set_language=en
https://2016africalandcover20m.esrin.esa.int
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target class label. The legend harmonization was performed manually because a single
class might have a different name and code in different HRLCs.

Figure 2. Schema of the MOLCA generation procedure.

Since different datasets used different tiling systems, it was necessary to find matching
tiles across the datasets. This matching process was automated using Python pandas,
shapely, rasterio, and geopandas libraries. The rest of the procedure was automatized
by using a combination of GRASS GIS and Python. Principal GRASS GIS modules used
for MOLCA generation included r.import, g.region, r.stats, r.reclass, r.patch, r.category,
and r.cross [60]. These modules were run through the grass.script library of Python. Some
Python libraries independent of GRASS GIS were also used, such as numpy.

A reference dataset was selected to serve as a guidance for the CRS, extent, and spatial
resolution of MOLCA tiles. A tile from the ESA CCI HRLC product was chosen, which had
a size of 100 km × 100 km, a resolution of 10 m, and used the WGS84 CRS. Information
about spatially matching tiles of reference dataset with non-reference datasets was stored
in a CSV file.

Prior to importing data into the GRASS GIS database, its default CRS was set to WGS84
CRS. Then, the datasets were imported and automatically reprojected if their source CRS
was not WGS84. The extent and resolution of the imported non-reference data tiles were
adjusted to the ones of reference tiles. These non-reference tiles were clipped or merged to
match the extent of the reference tile. Furthermore, the non-reference tiles were reclassified
in accordance with the MOLCA target legend, following reclassification rules. Resampling
to target resolution was conducted on the fly when processing operations were executed.

The next step was to extract areas of agreement. A cross-product was computed from
the non-reference datasets, which generated a raster map with different values representing
combinations of class values found within the input layers. The cross-product labels
were analyzed to identify agreement labels, which were defined as labels that appeared
consistently across all input HRLCs or at least two HRLCs, with other labels considered
null. The agreement labels and their associated values were converted into reclassification
rules. Finally, the cross-product was reclassified into the MOLCA.

2.4. MOLCA Validation

The accuracy of MOLCA was evaluated against photo-interpreted samples collected
by the authors in one part of the African region. The accuracy metrics were determined
using a conventional error matrix [61] which was filled with classes derived from photo-
interpretation, along with their corresponding MOLCA classes found at the same sam-
pling locations. The number of samples was estimated based on Cochran’s equation [62].
The sample count was determined to be 1068; an additional 130 samples were preven-
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tively included to take into account the chance of discarding some samples due to photo-
interpretation uncertainties.

Each class within the MOLCA was considered a distinct stratum. An equal number of
samples was selected in each stratum, with the exception of Bareland and Wetland because
their count in MOLCA was low. Consequently, the number of samples for these classes
was set to match the maximum number of pixels present in MOLCA, specifically 22 for
Bareland and 6 for Wetland. The samples within each stratum, except for Bareland and
Wetland, were randomly selected, while all pixels belonging to Bareland and Wetland were
converted into samples.

The sampling survey was designed in Open Foris Collect platform [63], while photo
interpretation was conducted in Open Foris Collect Earth software [63] where the photo-
interpreter could use either Google imagery or temporal profiles of vegetation indices
from Landsat 7/8, Sentinel-2, and MODIS imagery to assign a class label to a sample. A
total of 148 samples were discarded due to low confidence in the photo-interpretation
deriving from poor image quality, clouds, or a high degree of similarity with other classes.
The remaining 1050 samples were used for MOLCA validation.

3. Results

A total of 2075 MOLCA tiles were created and made publicly available on Zenodo
(https://doi.org/10.5281/zenodo.8071675, accessed on 28 June 2023). The datasets include
893 tiles in the African, 658 tiles in the Amazonian, and 524 tiles in the Siberian macro-
region of interest. The tiling grid used for MOLCA follows the Sentinel-2 Level-1C product
tiling grid. Accordingly, the identifier assigned to each MOLCA tile corresponds to the
identifier of the corresponding Sentinel-2 Level-1C tile. Figure 3 shows an example of
MOLCA tile in the Amazon region.

Figure 3. Example of MOLCA tile in the Amazon region (left), in Siberian region (center), and
African region (right). The names of the tiles from left to right in order are MOLCA_21KUU_v1.tif,
MOLCA_43VEH_v1.tif, MOLCA_36NXF_v1.tif, where the identifiers are 21KUU, 43VEH, and 36NXF.

In addition to the tile data, two supplementary files are also provided. The first file
contains the vector representation of MOLCA tile extents along with statistics such as the
number of pixels per class, the total number of pixels, and the proportion of valid values
for each tile in the attribute table. The second file in the CSV format includes the class codes
and labels for MOLCA.

3.1. MOLCA Statistics

Table 2 presents an overview of MOLCA statistics in terms of the class-wise number
of pixels and the number of HRLCs participating in the generation of each class in each
region, as well as the total number of pixels and the proportion of MOLCA in each region
of interest regardless of class.

https://doi.org/10.5281/zenodo.8071675
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Table 2. Statistics of MOLCA: number of pixels extracted for each class and the total number of
pixels per region, the proportion of the MOLCA in a region of interest, and number of existing
HRLCs that participated in the creation of a specific class. The number of HRLCs participating in the
generation of MOLCA in Siberia is denoted by “*” because ESA DUE GlobPermafrost is not covering
the entire region. “#” stands for “number of”.
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Bareland 70,522,207 3 * 10,974,208 3 17,527,789,276 3
Built-up 11,954,315 4 64,772,162 5 10,054,752 5
Cropland 3,045,996,831 2 4,740,455,996 3 4,142,663,163 3
Forest 15,748,595,107 4 * 26,141,725,251 4 13,429,492,002 4
Grassland 5,725,978,494 3 * 5,468,110,102 3 4,493,491,684 3
Permanent ice and snow 78,840,342 2 0 0
Shrubland 1,763,096 3 * 4,109,823,259 3 2,174,109,509 3
Water 5,424,855,889 5 * 1,718,120,337 5 2,550,708,631 5
Wetland 393,196,640 3 * 82,520,517 3 5,369,604 3
Total # pixels 30,501,702,921 42,336,501,832 44,206,814,559
Proportion of MOLCA in region of interest 43% 52% 40%

3.2. Accuracy

The result of the validation procedure based on 1050 samples is represented by the
error matrix and accuracy indexes of MOLCA, reported in Table 3. The accuracy indexes
include UA, PA, F1 score, OA, Kappa, and False Discovery Rate (FDR) The rows of the error
matrix represent MOLCA classes, while the columns represent classes of photo-interpreted
reference samples and accuracy indexes.

Table 3. Accuracy of MOLCA in the African region of interest.
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Bareland 0 0 0 0 0 0 0

Built-up 0 210 0 0 0 0 0

Cropland 0 3 76 5 18 2 0

Forest 0 0 0 184 0 0 0

Grassland 3 4 4 2 158 3 0

Shrubland 0 0 0 0 1 191 0

Water 0 0 0 0 0 0 186

UA 0% 100% 73% 100% 91% 99% 100%

PA 0% 97% 95% 96% 89% 97% 100%

F1 score 0% 98% 83% 98% 90% 98% 100%

OA 96%

Kappa 95%

FDR 4%

4. Discussion

MOLCA dataset has billions of LC pixels for the three regions of interest. Its legend
and temporal representatives are determined based on the characteristics of input HRLCs.
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To be included in MOLCA, a class must appear in at least two input HRLCs. Additionally,
the other input HRLCs should either have the same class or no class at all. If these condi-
tions are not met, the class will not be part of MOLCA. Moreover, the intersection procedure
eliminates small differences in legends between input HRLC datasets. When there is a vari-
ation in the definition of a specific class between different HRLCs, the MOLCA derivation
procedure ensures that only the common characteristics are retained. To illustrate, if one
HRLC defines Forest as an area of trees with at least 2 m height, while another HRLC sets
the threshold at 5 m, MOLCA will exclude any Forest patches with trees shorter than 5 m
during the intersection procedure. This exclusion occurs because there is no agreement on
the representation of Forest with trees below 5m in the second dataset. If classes with the
same name are significantly different in their definition, it might happen that they do not
constitute any agreement during MOLCA derivation, and therefore they will be eliminated.

Similarly, if there is a difference in the baseline years of input HRLCs, and a land
cover change happened between these years if the HRLC with a more recent baseline year
captures the changes, it will cause disagreement among the HRLCs for pixels affected by
the change, and consequently, such pixels will not be present in MOLCA dataset. Hence,
MOLCA’s temporal representativeness falls between the most recent and the least recent
baseline year of the input HRLCs.

By combining FROM-GLC, GL30, WSF, GSW, FNF, GHS BU S1NODSM, Mapiomas
(Amazon only), CCI Africa Prototype (Africa only), and ESA DUE GlobPermafrost (Siberia
only) MOLCA’s legend resulted in Bareland, Built-up, Cropland, Forest, Grassland, Shrub-
land, Water, and Wetland classes in all regions, plus the Permanent ice and snow class in
Siberia. MOLCA legend and its correspondence to the Food and Agriculture Organization
(FAO) Land Cover Classification System (LCCS) is displayed in Table 4. The MOLCA leg-
end aligns with the second out of three levels of the dichotomous phase of the FAO LCCS.
In the first level of FAO LCCS, classes are distinguished based on the presence of vegetation,
categorized as (A) primarily vegetated and (B)primarily non-vegetated. The second level
further discriminates based on the presence of water, distinguishing between (1) terrestrial
and (2) aquatic. The third level considers the artificiality of LC. In MOLCA, the vegetation
classes are not fully differentiated as per the third level of FAO LCCS, i.e., most classes are
not discriminated by artificiality. This drawback hampers the effectiveness of MOLCA,
as FAO LCCS is currently the solely available system that facilitates the interoperability of
legends of different LC datasets through a hierarchical approach. However, the inherent
nature of MOLCA restricts the control over the legend. Despite this, it is worth noting that
the legend remains compatible with the majority of existing HRLCs, which is a de facto
standard legend.

Since not all classes are derived from the same HRLCs (e.g., water is present in five
input HRLCs, while Grassland is present in three of them), the temporal representatives of
each class vary. Nonetheless, MOLCA provides an approximate but reliable representation
of land cover during the timeframe of 2016–2020, as explained above. Details about
temporal representatives of each class in each region are included in Appendix B (see
Tables A2–A4).

MOLCA statistics (see Table 2) show that the Forest class emerges as the most abundant
class within MOLCA. Among the HRLCs employed, the Built-up and Water classes have
the highest representation with five HRLCs, followed by the Forest class with four HRLCs.
Other classes primarily rely on three HRLCs, except for Cropland and Permanent ice and
snow in Siberia.

Accuracy results (see Table 3) indicate a general high accuracy given that that the OA
of MOLCA is 96%, Kappa index is 95%, and FDR is 4%. Regarding the classes, UA and
PA scores exceed 85%, except for the Cropland class. Cropland has a UA of 73%; thus, it
exhibits moderate overestimation. Unfortunately, no confident samples were available for
the Wetland class, making it impossible to estimate its accuracy. It should be noted that the
Bareland class had only three samples, which may not accurately reflect its classification
accuracy. F1 score is very high for the majority of classes (>90%), which indicates high
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accuracy of classes, and a good balance between UA and PA. Being derived from UA and
PA, the F1 score is slightly lower for the Cropland class (i.e., 80%) than for other classes,
and equal to 0% in the case of Bareland class, for the above-mentioned reasons.

One limitation of MOLCA is the lack of pixels of Permanent ice and snow in Africa. It
is present in high mountain peaks, but it is not identified in MOLCA. There are two possible
reasons for this issue. Firstly, the area of the class is extremely small in the African region
of interest; it significantly reduced the possibility of existing HRLCs having a consensus on
such a narrow area. Secondly, it could be that the class is not detected by one of the input
HRLCs, and consequently, consensus among HRLCs was not possible.

Table 4. Legend of MOLCA and its correspondence to FAO LCCS.

MOLCA Code MOLCA Class LCCS Code LCCS Description

8 Cropland A11 Primarily non-vegetated, Terrestrial, Bare areas

20 Forest A12, A11 Primarily vegetated, Terrestrial, Cultivated and managed areas

7 Grassland A12, A11 Primarily vegetated, Terrestrial, Semi-natural vegetation,
and Cultivated and managed areas

5 Shrubland A12, A11 Primarily vegetated, Terrestrial, Semi-natural vegetation,
and Cultivated and managed areas

9 Wetland A24, A22 Primarily non-vegetated, Terrestrial, Artificial surfaces

13 Built-up B15 Primarily vegetated, Terrestrial, Semi-natural vegetation,
and Cultivated and managed areas

12 Bareland B16 Primarily non-vegetated, Aquatic or regularly flooded, Natural
waterbodies, snow and ice, and Artificial waterbodies, snow and ice

16 Permanent ice and snow B28, B27 Primarily non-vegetated, Aquatic or regularly flooded, Natural
waterbodies, snow and ice, and Artificial waterbodies, snow and ice

15 Water B28, B27 Primarily vegetated, Aquatic or regularly flooded, Semi-natural
vegetation, and Cultivated and managed areas

5. Conclusions and Outlook

The overall objective of MOLCA is to establish a benchmark framework for deriving
training datasets from existing HRLC datasets. The HRLCs are combined by the intersection
method which ensures that only regions where all datasets align in terms of classes are
retained, while conflicting areas are eliminated. Such a manyfold agreement increases
the probability that MOLCA retained only correct portions of input HRLCs. Currently,
MOLCA covers three macro-regions of the world, two of which are in Siberia and Africa
which are rarely included in existing training benchmark datasets [17,42–49]. Another
advantage of MOLCA is that it provides 117 billion of 10-m pixels, or 43% of coverage of
the region of interest, which is, to our best knowledge, significantly more compared to
any other existing training benchmark datasets. Such a large number of pixels is suitable
to support deep learning techniques that are gaining popularity and require extensive
training datasets. Nevertheless, it can also support traditional ML approaches.

The results of the accuracy evaluation demonstrated an OA of 96%, Kappa index
equals to 95%, and low FDR (i.e., 4%), all of which indicate very high accuracy. Among the
seven categories evaluated, four of them exhibited an accuracy rate surpassing 90% for
both UA and PA. The Grassland category demonstrated UA and PA values nearing 90%.
On the other hand, UA for the Cropland category implies a potential overestimation of
the Cropland class. The F1 score for each class was in line with UA and PA results. While
MOLCA may not achieve perfect accuracy for certain classes, a study by Rolnick et al. [64]
shows that the noisy training samples do not significantly affect the performance of deep
neural networks as long as the training dataset is sufficiently large. Moreover, some of the
currently available HRLCs were based on other LC products, and in some cases without
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taking into account that each LC product contains some degree of error. Therefore, we argue
that MOLCA might be more suitable for training data than an individual HRLC dataset.

The MOLCA legend is similar to most of the worldwide HRLCs and consists of
different types of LC such as Bareland, Built-up, Cropland, Forest, Grassland, Shrubland,
Water, Wetland, and Permanent ice and snow (in Siberia only). Although it does not fully
align with FAO LCCS, it shows promise in aiding HRLC production if the current legend
trend continues.

As a future development of this work, we plan to incorporate other recently published
global HRLCs into the MOLCA derivation procedure, since they were not available at the
time of generation of this version. On one hand, this would be useful for further refining
MOLCA and increasing its accuracy, and on the other hand, it would allow the exploration
of a suitable combination of existing HRLCs to ensure the representation of extremely small
classes in MOLCA that currently are an issue (e.g., Permanent ice and snow in Africa).
Furthermore, we also plan to expand MOLCA availability to other regions of the world.
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FROM-GLC Finer Resolution Observation and Monitoring of Global Land Cover
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GHS BU Global Human Settlements—Built-Up
GHS BU S1NODSM Global Human Settlements—Built-Up Sentinel-1-derived
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GSW Global Surface Water
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LRLC Low-Resolution Land Cover
ML Machine Learning
MOLCA Map Of Land Cover Agreement
MRLC Medium-Resolution Land Cover
NGCC National Geomatics Center of China
OA Overall Accuracy
PA Producer’s Accuracy
UA User’s Accuracy
UTM Universal Transverse Mercator
WGS84 World Geodetic System 1984
WSF World Settlement Footprint

Appendix A

MOLCA legend was based on the classes that consistently showed up in various
datasets used for MOLCA creation. One of the initial steps in MOLCA creation was to find
matching classes across different datasets. It resulted in a correspondence table that shows
the resulting MOLCA legend, and how classes of other HRLCs correspond to this legend
(see Table A1).
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Table A1. Table of correspondence of legends of different HRLCs.

MOLCA FROM-GLC GL30 GHS BU
S1-NODSM WSF GSW FNF CCI Africa

Prototype
ESA DUE
GlobPermafrost MapBiomas

Bareland Bare land Bare land Bare areas

Sparse vegetation
(without shrubs),
mostly sandy soil,
flood plains, recent
landslides, also
within fire scars;
Barren, rare
vegetation
(petrophytes and
psammophytes)

Salt flat; Rocky
outcrop; Beach;
Dune and sand spot;
Mining; Other non
vegetated areas

Cropland Cropland Cultivated land Cropland
Agriculture;
Temporary crop;
Mosaic of uses

Forest Forest Forest Forest Trees cover areas

Tall shrubs,
deciduous forest;
Coniferous (partially
mixed) forest

Forest formation;
Forest plantation

Grassland Grass Grassland Grassland Meadows, grass and
herb-dominated Grassland; Pasture

Built-up Impervious Artificial surfaces Built-up Settlements Built up areas Urban area

Shrubland Shrub Shrubland Shrubs cover areas

Graminoid, prostrate
dwarf shrub,
patterned ground,
partially bare; Dry to
moist prostrate to
erect dwarf shrub
tundra; Moist to wet
graminoid prostrate
to erect dwarf shrub
tundra; Wet to
waterlogged
graminoid prostrate
to low shrub tundra;
Moist low dense
shrubs

Savanna formation
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Table A1. Cont.

MOLCA FROM-GLC GL30 GHS BU
S1-NODSM WSF GSW FNF CCI Africa Prototype ESA DUE

GlobPermafrost MapBiomas

Permanent ice
and snow Snow/Ice Permanent snow

and ice Snow and/or ice

Water Water Water bodies Seasonal water;
Permanent water Open water

Floodplain, mostly
fluvial; Seasonally
inundated, Water
(shallow or high
sediment yield);
Water (medium depth
or medium sediment
yield); Water (low
sediment yield)

River; Lake and
ocean; Aquaculture

Wetland Wetland Wetland Vegetation aquatic or
regularly flooded

Floodplain, mostly
lacustrine Mangrove; Wetland
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Appendix B

Table A2 is an L-shaped diagram that displays the relationship between the HRLC
datasets (rows) and the unique LC classes (columns) represented in those datasets. If a
particular HRLC dataset includes a particular LC class, the corresponding cell in the table
is highlighted. The table also includes information about the baseline year for each HRLC
dataset in Siberia. The MOLCA represents the LC in a specific time period, which is
determined by the minimum and maximum baseline years of the datasets used to create
it. The period of representativeness for each class may vary because the classes are not
derived from the same datasets.

For the MOLCA in Siberia, the Cropland, Permanent ice and snow, and Shrubland
classes are representative of the LC in 2017, while the Bareland, Forest, Grassland, and Wet-
land classes are representative of the period between 2016 and 2017. The Built-up and
Water classes are representative of the period between 2016 and 2019.

Table A2. L-diagram of existing HRLCs (rows) and their classes (columns) in Siberia.
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The L-shaped diagram for the Amazon region of interest is displayed in Table A3,
and the one for Africa in Table A4. For the MOLCA in Amazon, classes Bareland, Crop-
land, Forest, Grassland, Shrubland, Water, and Wetland are representative for 2017–2019,
and class Built-up for the period 2016–2019. In the case of Africa, classes Bareland, Cropland,
Forest, Grassland, Shrubland, and Wetland are representative for the period 2016–2017,
and classes Water and Built-up for the period 2016–2019.

Table A3. L-diagram of existing HRLCs (rows) and their classes (columns) in the Amazon.

Existing HRLCs in Amazon
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Table A4. L-diagram of existing HRLCs (rows) and their classes (columns) in Africa.

Existing HRLCs in Africa
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