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Abstract: The aquaculture of Kappaphycus alvarezii (Kappaphycus hereafter) seaweed has rapidly
expanded among coastal communities in Indonesia due to its relatively simple farming process, low
capital costs and short production cycles. This species is mainly cultivated for its carrageenan content
used as a gelling agent in the food industry. To further assist producers in improving cultivation
management and providing quantitative information about the yield, a novel approach involving
remote sensing techniques was tested. In this study, multispectral images obtained from a drone
(Unoccupied Aerial Vehicle, UAV) were processed to estimate the fresh and carrageenan weights
of Kappaphycus at a cultivation site in South Sulawesi. The UAV imagery was geometrically and
radiometrically corrected, and the resulting orthomosaics were used for detecting and classifying
Kappaphycus using a random forest algorithm. The classification results were combined with in
situ measurements of Kappaphycus fresh weight and carrageenan content using empirical relations
between the area and weight of fresh seaweed/carrageenan. This approach allowed quantifying
seaweed biometry and biochemistry at single cultivation lines and cultivation plot scales. Fresh
seaweed and carrageenan weights were estimated for different dates within three distinct cultivation
cycles, and the daily growth rate for each cycle was derived. Data were upscaled to a small family-
scale farm and a large-scale leader farm and compared with previous estimations. To our knowledge,
this study provides, for the first time, an estimation of yield at the scale of cultivation lines by
exploiting the very high spatial resolution of drone data. Overall, the use of UAV remote sensing
proved to be a promising approach for seaweed monitoring, opening the way to precision aquaculture
of Kappaphycus.

Keywords: aquaculture; carrageenan; drone; Kappaphycus; multispectral; seaweed; UAV

1. Introduction

Indonesia is the world’s second-largest producer of seaweed after China, and the lead-
ing producer of red seaweed, notably the group of eucheumatoids, which refer to the two
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genera Kappaphycus and Eucheuma [1]. Eucheumatoids are commercially farmed seaweed
harvested for various applications, including food products, cosmetics and pharmaceuticals.
Seaweed farming is one of the priorities for development in the country due to the increas-
ing global demand for raw and processed seaweed, especially red seaweed [2,3]. Indonesia
has considerable potential to increase marine aquaculture [4], estimated at 12 million ha [5].
The southern part of Sulawesi Island is the largest of Indonesia’s red seaweed-producing
regions, where artisanal farming is mainly practiced in the close vicinity of the coastline in
shallow areas [6]. Kappaphycus alvarezii ((Doty) Doty ex P.C.Silva, 1996) is the main species
cultivated in this region (Kappaphycus hereafter). Its widespread aquaculture in coastal
communities is attributable to the ease of cultivation, harvesting and drying techniques,
and the short production cycle of approximately 35–45 days [2]. It is a red seaweed from
the class of Florideophyceae, but has many phenotypes with various shapes and colors,
from red to green [7,8]. This species is mainly cultivated for its carrageenan content, which
is used as a gelling agent for food processing in the industry [9,10].

In South Sulawesi, the most popular method of cultivating Kappaphycus is the simple
and cost-effective long line technique [11]. It involves suspending a series of lines (i.e., ropes)
in the water column, using plastic bottles as floats, and attaching small propagules of
Kappaphycus to the lines, tied at ca. 20 cm intervals along the lines. The propagule grows
on the lines and is harvested after ca. 40 days of cultivation [12]. These propagules
are obtained by taking small fragments of existing thalli that will grow by vegetative
propagation. Seaweed cultivation plots generally occupy large areas (at least several
100 s m2) and production can be influenced by a number of factors. Most importantly, the
aquaculture of Kappaphycus is susceptible to diseases such as ice-ice disease, which can
cause significant crop damage and economic losses for farmers [13]. In addition, seasonality
of environmental stressors, such as temperature, salinity and water quality, can negatively
impact the growth and survival of this species, resulting in reduced yields [14–16]. Careful
monitoring of seaweed cultivation parameters (i.e., biomass, growth rate, water parameters)
means that cultivation management can be adapted, therefore it is required to better control
biomass production and carrageenan content [2,7]. Many studies that measured the growth
and production of Kappaphycus were based on sampling a limited number of individual
thalli (e.g., [14]), while more rarely measurements have been taken from long lines [7].
Generally, the main challenges in seaweed aquaculture monitoring include: (a) laborious
and time-consuming in situ measurements [14], (b) large-scale, remote, heterogeneous
cultivation areas that need to be surveyed [17,18], and (c) mixed sampling techniques that
often produce inconsistent results among different areas [7]. Consequently, in order to tackle
these challenges, a novel remote sensing application is investigated in the present study.

Remote sensing techniques—including satellite and aerial imaging—have been ap-
plied to various aquatic (either marine or freshwater) vegetation and benthic cover map-
ping studies during the last few decades [19–21]. Nevertheless, an increasing number of
emerging, remote sensing applications rely on drone technology for identifying aquatic
vegetation types. Notably, several recent studies have utilized drone-based multispec-
tral imagery for mapping seaweed and macroalgae [22,23], kelps [24–26] and intertidal
reefs [27,28]. Drones with multispectral sensors provide an affordable tool for collecting
centimeter-resolution imagery at frequent/on-demand time intervals and preferentially
when environmental conditions are optimal. In addition, these multispectral sensors record
narrow-band images in the visible and infrared ranges corresponding to the wavelengths
of vegetation spectra, allowing for identifying floating seaweed [25,29], and thus, being a
promising tool in seaweed aquaculture mapping. Additionally, drone multispectral sensors
share similar wavelength bands with satellite sensors, such as the Sentinel-2, allowing for
inter-comparisons and data upscaling [30,31]. However, drone imagery tends to yield a
relatively low signal-to-noise ratio due to the high resolution of imaging geometry. When
collecting data above water surfaces, the most common noise sources include sun glint and
water turbidity. Thus, image acquisition should occur under favorable optical conditions,
or image pre-processing and filtering should be applied before any analysis. Modern
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technological advances in drone and sensor equipment have resulted in the development
of a new sector, that of ‘precision aquaculture’, and a growing demand for automated
procedures in aquaculture production [32–34]. For example, [32] estimated the canopy area
of offshore-farmed kelp species using drone imagery, while [35] applied drone imagery
to monitor green macroalgae cultivation in the Yellow Sea. The application of drones in
aquaculture appears to have strong potential due to their flexibility in data acquisition and
the high resolution of resulting imagery. To our knowledge, there has been no synoptic
mapping yet of Kappaphycus aquaculture at a relevant spatial resolution that would allow
the detection of seaweed attached to the cultivation lines. This is in striking contrast to
agriculture, where drones have been increasingly used to monitor crops, gather data and
make better decisions about managing the fields [36,37].

This study aims to apply drone technology for high-precision monitoring of fresh
weight and carrageenan weight of Kappaphycus seaweed during three cultivation cycles
in South Sulawesi (Indonesia). A multispectral sensor was used for acquiring very high
spatial resolution images of seaweed attached to long lines at regular intervals during
each cycle. Additional in situ measurements of individual seaweed fresh weight, biometry
and carrageenan content were used to obtain scaled-up relationships to drone images.
Abiotic variables were also collected for each date within a cultivation cycle to describe the
environmental conditions. An extensive set of multispectral drone images was processed,
combining geospatial and machine learning techniques, to propose a workflow using a
random forest algorithm for image classification and subsequent geospatial analyses. This
workflow was used to produce spatial distribution maps of Kappaphycus fresh weight and
carrageenan weight and to analyze their changes within a cultivation plot during three,
forty-day cultivation cycles.

2. Materials and Methods

The study was located in Punaga village (5◦35′2.257′′S, 119◦25′52.058′′E), Mangarom-
bang District, Takalar Regency, South Sulawesi, Indonesia (Figure 1C). Field data collections
were conducted from March to September 2022 and consisted of (1) seaweed biometric
and biochemical measurements (fresh weight, length, width and carrageenan content),
(2) UAV data collection and (3) water quality measurements. The cultivation cycles were
ca. 40 days but farmers could harvest their crops earlier. Two cycles covered the transition
period from the rainy to the dry season (cycle 1: March–April and cycle 2: April–May).
Another cycle was followed during the dry season (cycle 3: June–July). For each cycle,
measurements were planned at five time intervals every ten days: t0, t10, t20, t30 and t40.
This 10-day interval was sometimes shorter or longer depending on field accessibility and
farmer practices.

2.1. Cultivation, Biometry and Carrageenan Content

The farming system used in South Sulawesi is the long line method (Figure 1D). At
the farming site, a typical cultivation plot consists of several nylon lines of 20 m or 25 m
in length and 0.5 m apart. These contain individual thalli of Kappaphycus with an initial
weight between 20–30 g each at the start of the cultivation cycle. The thalli were attached
at ca. 20–25 cm intervals, giving a maximum of 125 seaweed thalli for a 25 m long line.
Plastic bottles used as floats were attached at every 5 m of the line (Figure 1D), and anchors
were used to secure the infrastructure at the extremities of the line. For each cycle, five lines
were randomly chosen inside a cultivation plot and identified with red buoys. For each
line, three replicates of Kappaphycus were identified and repeatedly measured for each time
interval of ca. 10 days over the three cycles. Fifteen individual samples were monitored per
date (Figure 1B). The length and width were used to assess the seaweed area that would
be observed from the drone sensor. The drone sensor can capture the seaweed even from
the first cultivation day when the sea state is relatively calm and water clarity is good.
The fresh weight was obtained with a field scale after leaving the sample draining for ten
minutes on soft tissue. The dry weight was obtained in the laboratory after drying the
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samples for 3 days at 60 ◦C in an oven. Fresh weight was used to calculate the individual
Specific Growth Rate (SGR) expressed as the daily growth rate (%·day−1) [38]; 216 samples
were used to obtain a relationship between seaweed surface (cm2) and fresh weight (g).
For each cycle and time interval within a cycle, a minimum of five additional samples
were randomly collected for carrageenan content and characterized for their biometry
(fresh weight, surface area). Carrageenan was measured according to the Indonesian
National Standard (SNI 01-4498-1998) and expressed as the percentage of the dry weight of
samples. Fresh seaweed was cleaned and washed with freshwater, cut into small pieces
and then soaked in water for 24 h to remove salt and sediment. It was then dried as
previously indicated. The analysis used sodium hydroxide extraction (NaOH) followed
by precipitation with ethanol. Precipitated carrageenan were dried at 70 ◦C for 4 h. Dried
carrageenan powder was weighed and compared to the dry weight of the seaweed. More
details can be found in [39]. Carrageenan content (%) was calculated as:

Carrageenan content (%) = weight of carrageenan (g) × 100/dry weight of sample (g)Remote Sens. 2023, 15, 3674 4 of 22 
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Figure 1. (A) Indonesian archipelago with the red rectangle indicating South West Sulawesi; the
sub-district of Punaga with the black rectangle showing the study area. (B) Individual thalli of
the green variant of Kappaphycus alvarezii cultivated in Punaga. (C) False color orthomosaic of the
farming area showing cultivation plots (=parcels) with a variable number of long lines. (D) Close-up
corresponding to the black rectangle in C; ca. 32 lines with Kappaphycus can be seen. Plastic bottles
used as floats appear white.
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2.2. UAV Data Acquisition

UAV images were obtained using a DJI Phantom 4 with a Real-Time Kinematic Differ-
ential GPS (RTK D-GPS). During each cultivation cycle, images were acquired at a 10-day
interval from the beginning of the cycle (t0) to the last day of harvest (t40) along with in
situ measurements of Kappaphycus. The DJI Phantom 4 multispectral camera is a global
shutter sensor of six separate lenses and CMOS comprising five spectral bands and one
RGB sensor at 2.12 MP resolution. It is equipped with a 5.27 mm fixed focal lens (equivalent
in 35 mm format to a 40 mm focal lens), mounted on gimbals stabilized on three axes.
The multispectral bands are monochrome sensors with a spectral range including blue
(450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge (730 ± 16 nm) and
near-infrared (840 ± 26 nm) wavelengths. The camera system includes a sun incident light
sensor on the top of the UAV that is combined with the UAV’s internal GPS receivers. The
flight plans were designed using the DJI Ground Station Professional application and by
taking into account the specifications of the multispectral camera. The flight height was
30 m with a Ground Size Dimension (GSD) image pixel of 1.6 cm. The camera orientation
was set to obtain nadir photographs with a frontal overlap of 90% and a lateral overlap of
80%. To minimize the sun glint contamination, the flight paths were oriented perpendic-
ular to the sun early in the morning. The shooting interval was set to two seconds. The
radiometric calibration of the camera was computed in post-processing from UAV EXIF file
settings written into image metadata and sunlight sensor records.

2.3. UAV Image Processing

Aerial imagery was processed with proprietary software Pix4D 4.5© and was further
analyzed using SAGA 8.0 GIS software [40]. The overall workflow is presented in the
diagram in Figure 2. Initially, the positions of cameras were reconstructed using structure-
from-motion (SFM) processing and camera-specific geometric corrections were applied.
Following this, bundle adjustment and georeferencing of orthomosaics were performed
using the navigation metadata of imagery. The final orthomosaics from each band were
radiometrically corrected using the EXIF metadata regarding sun angle and incoming
solar radiance. After processing, the orthomosaics were imported to SAGA GIS for image
analysis. An additional raster was created by calculating the ratio of the Blue over the
Red-Edge band. Not all temporal datasets were suitable for processing; thus, only selected
days from each cultivation cycle were processed and further analyzed.

2.4. Image Classification
2.4.1. Algorithm Introduction

The random forest (RF) classification algorithm [41] was applied for discriminating
Kappaphycus from background bottom and plastic flotation objects. The concept of the RF
algorithm is based on an ensemble procedure of multiple random subsets (classification
trees) of the explanatory variables (predictors) for generating a classification model de-
scribing the variability of the dependent variable (classes). Thus, a set of training data is
mandatory in the RF process, and it should capture as much of the data variability for each
class in the study area. During the model building (i.e., training), the RF reserves randomly
selected parts of the training data for internal cross-validation of the results (out-of-bag
sample). One explanatory variable is neglected at each iteration, and its importance score
is calculated by assessing the prediction error. The variable importance calculation assists
further with interpretations about which predictors show the most significant influence in
identifying each class. The RF was preferred for its high accuracy, insensitivity to overfitting
and availability in many standard software [42]. It has been successfully applied in several
studies in marine habitat mapping and seafloor characterization studies [43–47].
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2.4.2. Training/Validation Data

Initially, one training set was created for each temporal dataset of each cultivation
cycle. Training polygons (Figure 3A) were digitized in SAGA GIS based on the visual
interpretation of RGB composites (compiled from individual orthomosaics). Apart from
the five spectral bands of the drone camera, the band ratio between the Blue and the
Red-Edge bands was calculated. These bands were selected since they show a strong
reflectance contrast in the Kappaphycus in situ spectrum and the blue reflectance dominates
the bottom areas in general. Consequently, this band ratio was applied for enhancing the
differentiation between the floating Kappaphycus from background bottom types. A similar
band ratio (Blue/Red) has also been proposed for floating kelp canopy detection by [25].
Data exploration was performed to identify how well each class (bottom, Kappaphycus
and plastic) was separated by the six predictor variables (See Appendix A Figure A1
for a typical example of the class separation between the three classes and the relative
reflectance orthomosaics).

2.4.3. Random Forest Implementation

The ViGrA library was used to implement the RF in SAGA GIS [48] using: (a) 1000 trees
for training the model, (b) subsampling with replacement and (c) using a number of
variables per node split equal with the square root of the total variables. The classification
maps were validated using a separate set of single pixels resulting from a visual examination
of the RGB composites. A few hundred pixels were extracted from the boundaries of the
classified objects by applying a quasi-regular type of sampling (Figure 3B). Selecting
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polygons with several pixels assists in having a robust training set; however, selecting
polygons for validation would lead to an underestimation of misclassifications in this
study. Therefore, by selecting single pixels, the objectivity of the validation procedure
was increased and spurious results could be effectively captured. The ratio between
training/validation pixels is approximately 75/25.
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2.4.4. Classification Accuracy Assessment

Validation of RF class predictions was assessed by calculating the confusion matrix
and the kappa coefficient (Equation (1)) of the agreement for each temporal dataset.

K = Po − Pe/1 − Pe (1)

where, Po is the probability of agreement and Pe is the probability of random agreement.
After classification, the Kappaphycus class was extracted from each temporal dataset

for further quantitative mapping of fresh weight and carrageenan weight. Although the
orthomosaics captured a large area, cultivation lines can be modified/relocated by farmers
during a cultivation cycle. Thus, a subset of lines was preserved for monitoring purposes
and identified with buoys within a selected cultivation plot (Figure 1D).

2.5. Geospatial Analyses

An assessment of Kappaphycus fresh weight per line was performed by calculating the
number of Kappaphycus class pixels on a neighborhood corresponding to the width of each
cultivation line. This technique allows for visualizing the natural, along-line variations of
seaweed growth and uses a sufficiently small analysis window so that only pixels from
each line are used for producing the spatial distribution maps. The sum of those pixels was
then converted to the area of the Kappaphycus surface, which was subsequently converted
to fresh weight using the empirical relationship obtained from in situ data (Equation (2)).
Fresh weight was converted to carrageenan weight, using the carrageenan content and
the fresh weight/dry weight ratio of in situ samples collected during each cycle. Using
Kappaphycus fresh weight per line at the beginning and the end of a cultivation cycle, the
SGR (%) was calculated and compared with SGR derived from in situ samples. Production
per line was similarly estimated as the difference in fresh weight between t0 and t40 and
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expressed in g·m−1 per cycle [7]. Kappaphycus fresh weight and carrageenan weight were
expressed in g·m−2 to display their spatial distribution along lines but were converted per
linear meter of line (g·m−1), a common unit in the literature [7]. Between four and eight
monitoring lines were analyzed to estimate growth and biomass metrics.

2.6. Statistical Analysis

After checking normality with the Shapiro-Wilk test, the comparison of SGR and car-
rageenan content between the three cycles was tested with a Kruskal-Wallis non-parametric
test. All univariate tests were performed using PAST 3.25 [49] and R [50]. A power model
was adjusted between fresh weight and seaweed area. The goodness of fit of this empirical
relationship was assessed with the coefficient of determination r2, the Root Mean Square
Error (RMSE) and the Mean Absolute Error (MAE).

3. Results
3.1. Biometry and Carrageenan Content

For each of the three cycles, the fresh weight of individual Kappaphycus thalli had
increased by approximately ten at the end of the forty days of cultivation. From initial
mean weights ranging from 24.0 to 30.7 g, final average weights from 268 g to ca. 300 g
were obtained (Table 1). The SGR significantly decreased from 6.9%·d−1 for cycle 1 to
5.4%·d−1 for cycle 3 (Kruskal-Wallis, p < 0.01, Table 1). The average carrageenan content
increased within cultivation cycles 1 and 3 from the start (t0) to the last date (t40) (Table 1).
The carrageenan content (quoted values are standard deviation) at harvest (t40) significantly
increased gradually from cycle 1 with 54.9 ± 2.8%, to cycle 2 with 55.7 ± 4.5% and cycle 3
with 61.6 ± 2.3% (Kruskal-Wallis, p < 0.01, Table 1). These in situ measurements were used
to calculate an empirical relationship (Equation (2)) relating fresh weight (FW) to seaweed
area (A) (Figure 4):

FW = 0.014 × A1.65 (2)

This power model, characterized by an r2 = 0.81, an RMSE = 44 g and an MAE = 34 g,
was subsequently used to convert Kappaphycus pixels area to fresh weight.

Table 1. Dates of the three cultivation cycles of Kappaphycus monitored in 2022 in Punaga (South
Sulawesi) and corresponding in situ measurements. FW = Fresh Weight (average of individual thalli
n = 15), SGR = Specific Growth Rate (n = 15), Carrageenan (n = 5). Mean ± standard deviation.

Cycle Date FW SGR Carrageenan

(g) (%) (%)

1 10/03 24.0 ± 2.1 48.8 ± 4.3
1 29/03 103.0 ± 24.7 48.4 ± 2.4
1 10/04 229.3 ± 50.9 57.3 ± 4.8
1 16/04 299.3 ± 51.4 6.9 ± 0.7 54.9 ± 2.8
2 19/04 24.0 ± 2.0 61.2 ± 1.5
2 28/04 50.7 ± 11.6 56.6 ± 4.2
2 10/05 104.7 ± 23.5 54.1 ± 4.9
2 20/05 180.7 ± 41.1 -
2 30/05 268.0 ± 60.7 5.8 ± 0.7 55.7 ± 4.5
3 08/06 30.7 ± 6.2 53.6 ± 1.2
3 17/06 68.3 ± 11.9 55.4 ± 4.5
3 27/06 120.0 ± 37.6 55.6 ± 2.6
3 08/07 201.3 ± 68.5 60.8 ± 2.7
3 19/07 301.4 ± 77.0 5.4 ± 0.8 61.6 ± 2.3

3.2. Random Forest Classification

Predictive mapping of three major classes (Kappaphycus, bottom and plastic buoys) of
drone imagery was separately performed for each date and cultivation cycle. Accuracy
assessment was applied for each prediction map, resulting in an equal number of confusion
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matrices. The confusion matrices for each cycle were summarized and presented in Table 2.
Most prediction accuracies were more than 87%, with kappa agreement values greater
than 0.77. Particularly, in cycle 1 and cycle 3 classifications, Kappaphycus achieved high
user accuracy (~88%), while in cycle 2, it was mapped with the highest user accuracy of
92%. The most common misclassification of Kappaphycus was with plastic bottles. This is
probably because seaweed and semi-submerged plastic buoys similarly reflect in Red-Edge
and NIR wavelengths. The random forest algorithm reported the importance scores of each
predictor variable (i.e., orthomosaics) on classification performance. The ranking of each
variable (based on the Gini decrease score) from all classification runs was summarized,
and the average ranking of each predictor was calculated. The overall ranking of predictors
suggests that the blue/red-edge ratio was the most important predictor, followed by the
Red-Edge band (Figure 5). These results confirm the data exploration outputs (Figure A1,
Appendix A) where the three classes appeared to be optimally separated by the Blue/Red-
edge ratio and the Red-Edge orthomosaics.
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Figure 4. Relationship between Kappaphycus area (cm2) and fresh weight (g) obtained from in situ
samples (dots) collected during three cultivation cycles in Punaga (South Sulawesi). The power
model (red line) is represented with its 95% confidence intervals (blue lines).

3.3. Spatial Distribution of Fresh Weight and Carrageenan

Classification of drone imagery combined with the empirical relationships allowed for
capturing the spatial distributions of Kappaphycus fresh weight and carrageenan weight
at the level of individual lines within a cultivation plot (Figure 6). From the false-color
composite mosaic of a cultivation plot (Figure 6A), the RF classification discerned three
classes: Kappaphycus, plastic bottles and bottom (Figure 6B). The Kappaphycus class was
then converted to fresh weight (Figure 6C) and weight of carrageenan (Figure 6D). The
within-line variability of the spatial distribution of fresh weight and carrageenan showed
that the largest values were observed towards the center of the lines (Figure 6C,D). In
addition, it was possible to estimate the fresh weight and carrageenan weight per meter of
the cultivation line (g·m−1; quoted values are standard deviations) for comparison with the
literature data (Table 3 and Figure A2, Appendix A). By subsampling several lines within
the cultivation plot that were retained for monitoring, it was possible to estimate the growth
rate of seaweed at the scale of a line. For cycle 1, cultivation started with an average fresh
weight of 550± 128 g·m−1 at t0, leading to a final average fresh weight of 1912± 356 g·m−1

at t40 (Table 3). For cycle 2, the initial (t0) fresh weight was 344 ± 157 g·m−1 on average,
showing a rapid growth until t10 with an average fresh weight of 1019 ± 343 g·m−1 to
reach a final yield of 2151 ± 227 g·m−1 at t40. Cycle 3 was characterized by an initial fresh
weight of 456 ± 141 g·m−1 but reached a lower yield at t40 of 1435 ± 388 g·m−1. There
was an increase in carrageenan weight between t0 and t40 for four individual lines within a
cultivation plot (Figure 7). The total weight of carrageenan per meter of cultivation line
varied between 570 and 970 g at the start of the cultivation, and the final weight at the end
of the cultivation cycle was from 2720 to 3580 g (Figure 7). The carrageenan per cultivation
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line increased from 27 to 105 g·m−1 for cycle 1, from 21 to 120 g·m−1 for cycle 2 and from
24 to 88 g·m−1 for cycle 3. The SGR estimated with drone data from individual lines was
lower than the SGR estimated from individual Kappaphycus samples ranging from 3.6%·d−1

for cycle 3 to 4.9%·d−1 for cycle 2 (Table 3). However, cycle 3 SGR was lower than cycles 1
and 2, as observed with individual thalli. The fresh weight net production ranged from
903 ± 314 g·m−1 to 1807 ± 296 g·m−1.

Table 2. Random Forest classification confusion matrices for each cultivation cycle. Each matrix is
composed by adding and averaging the results of individual matrices corresponding to temporal
drone datasets. Numbers in bold are true positives.

Cycle-1

CLASS Kappaphycus Bottom Plastic Sum User User accuracy% (mean)
Kappaphycus 170 0 17 187 88.5

Bottom 11 281 6 298 94.5
Plastic 0 0 76 76 100.0

Sum Producer 181 281 99
Producer accuracy% (mean) 90.5 100.0 76.7

Cycle-2

CLASS Kappaphycus Bottom Plastic Sum User User accuracy% (mean)
Kappaphycus 482 5 32 519 92.0

Bottom 41 442 12 495 90.6
Plastic 0 0 139 139 100.0

Sum Producer 523 447 183
Producer accuracy% (mean) 91.0 97.6 74.8

Cycle-3

CLASS Kappaphycus Bottom Plastic Sum User User accuracy% (mean)
Kappaphycus 238 7 25 270 87.9

Bottom 19 112 25 156 78.8
Plastic 0 0 70 70 100.0

Sum Producer 257 119 120
Producer accuracy% (mean) 93.8 94.8 59.1

OVERALL

Cycle-1 Cycle-2 Cycle-3
Accuracy% (mean) 94.0 91.1 85.9

Kappa (mean) 0.9 0.85 0.77
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Table 3. Drone-derived biomass metrics with corresponding dates of in situ measurements for
three cultivation cycles in Punaga (South Sulawesi) in 2022. Averaged values were calculated from
individual lines (n varied from four to eight lines). FW = Fresh Weight; BNP = Biomass Net Production;
SGR = Specific Growth Rate. Mean ± standard deviation.

Cycle Date FW Drone Carrageenan Drone BNP Drone SGR Drone

(g·m−1) (g·m−1) (g·m−1) (%)

1 15/03 550 ± 128 27 ± 6
1 29/03 - -
1 10/04 - -
1 16/04 1912 ± 356 105 ± 19 1516 ± 225 4.7 ± 0.4
2 19/04 344 ± 157 21 ± 10
2 28/04 1019 ± 343 58 ± 19
2 10/05 - -
2 20/05 1945 ± 266 97 ± 15
2 30/05 2151 ± 227 120 ± 13 1807 ± 296 4.9 ± 1.0
3 08/06 456 ± 141 24 ± 8
3 17/06 810 ± 159 45 ± 9
3 27/06 - -
3 08/07 - -
3 19/07 1435 ± 388 88 ± 24 903 ± 314 3.6 ± 0.5Remote Sens. 2023, 15, 3674 12 of 22 
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Figure 6. Mapping of a Kappaphycus cultivation plot. The cultivation plot has 32 lines of 25 m; an
isolated line can be seen on the right part of each image. (A) False-color mosaic of the first date
(t0) of cycle 1. (B) Random forest classification of the scene, (C) Spatial distribution of fresh weight
per unit area, (D) Spatial distribution of carrageenan weight per unit area. The area is defined by a
neighborhood of a 20 cm radius around each pixel.
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Figure 7. Comparison of four monitored lines of 25 m illustrating the increase in carrageenan between
the start (t0) and the end of a cultivation cycle (t40). Carrageenan is expressed in weight per unit area
(g·m−2). The area is defined by a neighborhood of a 20 cm radius around each pixel. The values at
the bottom of each line indicate the total weight of carrageenan produced by the corresponding line.

4. Discussion
4.1. Drone-Based Detection of Kappaphycus at the Scale of Cultivation Lines

Drone multispectral imagery provided a valuable dataset for detecting and analyzing
Kappaphycus biomass and biochemistry on floating long lines. These variables were esti-
mated at the scale of single cultivation lines. The spatial distribution maps produced in
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this study also enabled quantifying changes in Kappaphycus fresh weight and carrageenan
weight, at regular time intervals within each cultivation cycle. Upscaling of in situ mea-
surements of fresh weight and carrageenan weight allowed for an overview of the spatial
distribution of Kappaphycus fresh weight and carrageenan weight within a cultivation
plot. The fusion of drone and in situ data via empirical models was used for extracting
information at a scale that cannot be achieved with satellite images. Nevertheless, the
values of remotely sensed Kappaphycus biomass metrics obtained in this study were co-
herent with measurements reported in similar studies based on satellite imagery [17,18].
These previous studies used high spatial resolution satellite images of 1.8 m pixel size
from GeoEye-1 [17] or 4.8 m from PlanetLabs [18], but these resolutions did not permit
to identify individual long lines within a cultivation plot. To our knowledge, this study
is providing, for the first time, an estimation of biomass and yield at the scale of lines by
exploiting the very high spatial resolution of drone data with a pixel size of 1.6 cm. The
drone spectral resolution was also important for classification accuracy, with five spectral
bands, three in the visible and two in the near-infrared. Despite their higher absorption
with water depth compared to visible wavelengths, the Red-Edge band at 717 nm and
the near-infrared band at 842 nm were highly important for identifying floating seaweed
with the machine learning algorithm. Indeed, Kappaphycus long lines often float in the
sub-surface at a depth varying in their weight and the anchoring system, but seldom
below ca. 30 cm in the cultivation plots of this study. As with all seaweeds, Kappaphycus is
characterized by the absorption of incident light by photosynthetic and accessory pigments
in the visible and a strong reflection in the near-infrared (Nurdin, comm. pers.; [30]). This
spectral feature is detectable in seaweed observed at the spectral resolution of the DJI
Phantom 4 multispectral camera [43]. Using a similar MicaSense RedEdge multispectral
sensor mounted on a drone, ref. [33] applied vegetation indices using near-infrared bands
to map the red macroalgae Pyropia yezoensis aquaculture on semi-floating nets in China. For
satellite data, ocean color indices such as the Floating Algae Index exploit the difference
between the reflectance in the near-infrared and a baseline formed by red and shortwave
infrared bands [29]. In our study, the RF algorithm was trained to detect seaweed using
the five spectral bands of the drone multispectral sensor plus a Blue/Red-Edge ratio. This
band ratio is recommended for increasing the contrast between floating seaweed from the
background seafloor and, thus, improving classification. The capacity of the algorithm to
detect the class of Kappaphycus was good, as estimated by producer accuracies ranging from
90.5 to 93.8%. The algorithm was trained with various environmental and illumination
conditions covering the three cultivation cycles and different vertical positions of the long
lines from the surface to the subsurface.

4.2. Estimation of Biomass, Carrageenan and Production

Comparing the results obtained in this study (fresh weight, SGR, production, car-
rageenan weight), either from in situ data or drone-derived, with previous works should
be cautiously carried out. Data can be collected for different seasons with different en-
vironmental conditions, culture methods, methodologies for carrageenan extraction and
Kappaphycus strains (also called cultivars) with different genetic characteristics [7]. In our
work, the three cultivation cycles spanned the months of March to July, mainly corre-
sponding to East Monsoon conditions [51] with lower rainfall [18]. Water temperature,
salinity, turbidity, pH and nutrients are environmental variables that influence the growth
of Kappaphycus [13,15]. However, most abiotic parameters showed a low variability within
and between cultivation cycles, and no trends were observed during the three cycles span-
ning the months of March to July 2022 (Supplementary Table S1). Globally, the water quality
corresponded to optimal conditions for the aquaculture of Kappaphycus in Indonesia [16].
This is supported by the growth rates estimated from individual thalli ranging from 5.4
to 6.9%·d−1, which correspond to high growth rates [12,17,52–54]. Water turbidity had
the highest variability and can be a limiting factor for Kappaphycus growth by reducing
the downwelling light for photosynthesis. High turbidity levels have also been reported
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to be related to ice-ice disease outbreaks [13]. The drone estimation of fresh weight at
harvest per meter of a line is consistent with the number reported by [18] of 2.24 kg·m−1

used by the Department of Maritime Affairs and Fisheries of South Sulawesi to estimate
farmers’ production. In this study, an average of 2.15 kg·m−1 of fresh weight was estimated
for cycle 2 but lower values were obtained for the two other cycles. The fresh biomass is
subsequently dried by farmers, an important step that can affect the quality and quantity
of the carrageenan yield [55]. The requirement for selling raw dried seaweed to private
companies for carrageenan processing is set by the Indonesian government at a maximum
moisture content of 35% [10,56]. In this study, the fresh samples had an average moisture
content of ca. 90%. The estimation of dry weight (DW) with 35% of moisture content per
kilometer of line ranged from 0.22 tons DW·km−1 for cycle 3 to 0.33 tons DW·km−1 for
cycle 2. If we consider five cycles per year and use the cycle 3 value to provide conser-
vative estimates for cycles 4 and 5, the annual production can be estimated at 1.33 tons
DW·km−1. This result can be compared with the values provided by [10] who synthesized
the production of dried seaweed for different cultivation systems in various countries.
For Indonesia, the production per unit of cultivation line ranged from 0.55 to 1.68 tons
DW·km−1 per year for floating systems (opposed to the off-bottom cultivation technique).
Drone-derived estimations for fresh weight and DW production per unit of cultivation
line are therefore consistent with published values. However, the drone-derived growth
rates (SGR) were slightly lower compared to the SGR estimated from individual thalli.
This could be due to the limited sampling of individual thalli (n = 15) or individual lines
by the drone (n = 4 to 8), but an underestimation of the fresh weight per line due to the
misclassification of Kappaphycus by the algorithm cannot be excluded. In fact, the best
in situ measurement to validate drone fresh weight estimations per line would be for
future experiments to weigh lines and not individual thalli, as carried out by [7]. These
authors reported production in different locations in Indonesia as the difference in fresh
weight between the start and the end of cultivation cycles expressed in g·m−1·cycle−1.
In this study, the drone estimates of production for cycles 1 and 2, respectively 1516 and
1807 g·m−1, are comparable with their reported values for a similar period for the sites
of Pangkep and Bantaeng in South Sulawesi [7]. The carrageenan content measured on
samples collected during each cultivation cycle was consistent with values reported by [12]
for Takalar Regency and corresponded to high levels. However, these values are not com-
parable with other results obtained with different drying techniques such as traditional
sun-drying for 2–3 days and/or different extraction methods [57]. In this study, the samples
were dried in the laboratory for 3 days at 60 ◦C, which explains why the range of values for
carrageenan was higher than reported in studies using the traditional drying method used
by the farmers [7,17]. The drone-derived carrageenan weight at harvest estimated at the
scale of lines varied from 120 g·m−1 for cycle 2 to 88 g·m−1 for cycle 3. Considering five cy-
cles per year and using the cycle 3 value to provide conservative estimates for cycles 4 and
5, the annual carrageenan production per kilometer of cultivation line could be estimated
at 0.5 t·km−1. When upscaled to a cultivation plot, an estimation of the carrageenan weight
per unit area could be obtained (Figure 6D). For cultivation cycles 1 and 2, the carrageenan
production was of ca. 4 t·ha−1·cycle−1, slightly more than twice the values reported by [7].
This difference could be due to the specific cultivation method used by the farmer at our
study site in Takalar and captured by the drone (spacing of cultivars of 25 cm, spacing
between lines of 50 cm).

4.3. Sources of Error and Constraints

Classification accuracy is one factor that is expected to contribute to the uncertainty
of Kappaphycus fresh weight and carrageenan weight estimations from remotely sensed
imagery. Although classification errors were minimal in this study, misclassification of
pixels identified as Kappaphycus may lead to under-estimation of fresh weight, while mis-
classification of other classes as Kappaphycus would produce the opposite result. Therefore,
it was important to consider predictor variables that maximized the separability between
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the different classes. In this study, the Blue/Red-edge band ratio was introduced in order to
enhance the differentiation between Kappaphycus and the background bottom. Selecting an
effective training dataset covering the various illumination conditions was also important
for increasing classification accuracy. Considering the average misclassification error of the
Kappaphycus class, (approximately 10%) it is expected that drone-derived fresh weight esti-
mations may contain a similar percentage of underestimation. The empirical relationship
between seaweed area and FW showed a high and significant coefficient of determination
(R2 = 0.8), but with some variability estimated by the RMSE of 44 g and the MAE of 34 g.
Assuming a final harvest weight of around 300 g, a variability of ca. 10% can be propagated
to the output values. However, this variability can be reduced by improving the method
to estimate the seaweed surface. Instead of using the length and width of the thallus, the
surface should now be digitized from RGB photographs. In this study, the drone images of
five flights could not be exploited due to sun glint and/or poor water surface conditions
with waves that hindered the production of orthomosaics. In order to minimize sun glint,
drone imagery should be acquired early in the morning or late in the afternoon when the
sun is at an angle of less than 30◦ from the horizon. Unfavorable conditions of winds and
waves should be avoided as they may cause changes in the position of the cultivation lines
during the flights, therefore impacting the photogrammetric process. Turbidity strongly
influences water’s optical properties and may alter the detection of Kappaphycus. This de-
pends on the position of seaweed in the water column ranging from almost no effect when
they float at the surface to light being scattered by suspended particles when the lines are ca.
30 cm below the surface. Images should ideally not be acquired during turbid conditions,
with an empirical recommendation to fly ideally when turbidity level is <20 NTU. Another
important factor influencing the detection of Kappaphycus on drone images was the varying
immersion depth of the cultivation lines due to increasing biomass, combined with the
variable efficiency of the anchoring system, and changes due to tidal variation [25]. In fact,
we could not use traditional vegetation indices such as the NDVI [29], in spite of the strong
reflectance of Kappaphycus in the NIR. In this study, NDVI was significantly affected by
variations in seaweed immersion depth and could not be used to determine the coverage
of Kappaphycus per pixel nor to use it as a proxy for fresh weight. NDVI was also reported
to be sensitive to the viewing geometry [29]. It is well known that NIR wavelengths are
strongly attenuated due to the high pure seawater absorption coefficient. This is why a
machine learning approach was chosen and trained with different immersion and back-
ground conditions. Machine learning based on a convolution neural network was similarly
used to detect floating Sargassum [58]. In order to account for changes in immersion depth
a first step could have been to take spectral measurements of water-leaving reflectance
for the different conditions. A radiometric correction could have been applied prior to
image analysis in order to enhance the classification outputs. However, in the perspective
of developing a more generic methodology, we are considering the possibility to apply a
radiative transfer model approach [59,60].

4.4. Implications for Kappaphycus Aquaculture Management

Optimal management of Kappaphycus cultivation requires repetitive and accurate
estimations of yield metrics [9,10,16,18]. This study highlights the effectiveness of drone-
based imagery in Kappaphycus aquaculture monitoring by providing fine-scale, multi-
temporal information on the spatial distribution of fresh weight and carrageenan weight.
Drone-based remote sensing allowed the measuring of the Kappaphycus fresh weight and
carrageenan weight both at the level of cultivation plots and at the level of individual lines.
Analysis of drone imagery assisted in visualizing along-line variability of fresh weight and
carrageenan weight in unprecedented detail. This capability is considered very important
for aquaculture managers as it enables them to monitor the growth of Kappaphycus at a fine
scale and thus increasing the production efficiency and reducing the costs and potential
environmental impacts on the crops [16]. Carrageenan weight estimation is one of the
most important parameters in Kappaphycus aquaculture and drone mapping provides an
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efficient and reliable tool for aquaculture-scale carrageenan estimation by exploiting a
small number of in situ measurements. Drone-derived metrics about fresh weight and
carrageenan weight at the long lines scale, are useful for upscaling overall production
at different spatio-temporal scales. Here, total production and productivity rates were
upscaled from a sample of long lines mapped with the drone to a small family-scale farm
and a large-scale leader farm [10]. According to [57], a family-scale farm in South Sulawesi
may own typically 6 km of long lines covering an area of ca. 0.56 ha while a large-scale farm
consists of 30 km of long lines covering an area of 2.8 ha. In this study, it was found that
with five cultivation cycles throughout a year, a family-scale farm would produce 8 t·yr−1 of
dry weight biomass (dried with 35% of moisture content) with a productivity of 1.3 t·km−1

or 14.3 t·ha−1. A large-scale farm would produce 39.9 t·yr−1 with the same productivity
rates. These numbers are in agreement with the estimations reported by [57]. However,
when total production and productivity rates were upscaled from drone data estimated
from a sample of three cultivation plots (i.e., extracting all biomass from a cultivation plot:
Figure 6), the values were four times higher, with annual productivity of 5.1 t·km−1 or
55.5 t·ha−1 and production of 31.0 and 155.5 t·yr−1 for, respectively, a small and a large farm.
This difference is likely due to the specific cultivation method at our study site (spacing of
cultivars and lines) observed by the drone. It was beyond the objective of this work to do an
analysis of all cultivation plots from Takalar Regency but very high-resolution drone data
provide an effective tool for a fine-scale analysis of farming areas. Drone mapping could be
complementary to satellite remote sensing in helping the implementation of aquaculture
policies [18]. Drone surveys provide imagery at centimeter spatial resolution, unaffected by
cloud cover that can take place on-demand with an affordable off-the-shelf drone. Drones
may help standardize data collection and analysis across farms and regions, improving the
quality and consistency of the production data. Furthermore, this could be interesting for
private companies processing carrageenan [9,10].

5. Conclusions

This study demonstrated the capability of drone imagery consisting of five multispec-
tral bands to analyze the fresh weight and carrageenan weight of Kappaphycus during three
consecutive cultivation cycles at a very high spatial resolution. Supervised classification
using a random forest model was used to detect Kappaphycus on orthomosaics and dis-
criminate it from background bottom and plastic buoys with high overall accuracy (>85%)
across all temporal datasets. In situ measurements were necessary to calibrate classified
pixels to fresh weight and carrageenan weight at the scale of cultivation lines. Growth
metrics obtained from a sample of four to eight individual long lines agreed with previous
studies. The drone estimate of the fresh weight of Kappaphycus at harvest varied from 1435
to 2151 g·m−1, which is consistent with the value of 2240 g·m−1 used by the authorities [18].
In addition, the net production of Kappaphycus was estimated at 1516 and 1807 g·m−1 dur-
ing two cultivation cycles, these values being representative of the average production in
the wider region (South Sulawesi, [7]). An important perspective of drone remote sensing
for Kappaphycus aquaculture is capturing potential temporal variations in seaweed biomass
offering farmers a useful tool as an early warning of crop and yield conditions. By promptly
addressing these issues, farmers can make data-driven decisions about when to harvest, or
adjust cultivation practices and thus reduce the economic and environmental impact of
their operations. Flexible and high spatio-temporal drone acquisitions open the way for
Kappaphycus precision aquaculture.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15143674/s1, Supplementary Table S1. Dates of the
three cultivation cycles of Kappaphycus monitored in 2022 in Punaga (South Sulawesi) and correspond-
ing water quality variables. Temp = Temperature, Sal = Salinity, NTU = Nephelometric Turbidity Unit,
NO3

− = Nitrates, PO4
3− = Phosphates. Standard deviation in brackets. For carrageenan content,

n = 5. NA = not available. Seawater variables were obtained for each cycle and sampling date. Water
temperature was measured in situ using a digital thermometer, along with salinity measurements
carried out using a digital refractometer. Water samples were stored in 1 L bottles and kept in a
cool box during transportation from the field to the laboratory for pH, turbidity, nitrate (NO3

−)
and phosphate (PO4

3−) analysis. Turbidity was measured with a turbidimeter and expressed in
Nephelometric Turbidity Units (NTU). Nutrient concentrations (mg·L−1) were measured using a
DREL 2800 spectrophotometer and processed with the methods described by [61].
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Figure A1. Boxplots resulted from an example training set showing the class separation at each of 

the six predictor orthomosaics (K = Kappaphycus). Crosses indicate outliers. The bottom and top of 

the blue rectangles represent the 25th and 75th percentiles respectively, whereas the red line indi-

cates the median value. The whiskers extend to the minimum and maximum values that are not 

considered outliers (i.e., they are no more than ±2.7σ apart). 

Figure A1. Boxplots resulted from an example training set showing the class separation at each of the
six predictor orthomosaics (K = Kappaphycus). Crosses indicate outliers. The bottom and top of the
blue rectangles represent the 25th and 75th percentiles respectively, whereas the red line indicates the
median value. The whiskers extend to the minimum and maximum values that are not considered
outliers (i.e., they are no more than ±2.7 σ apart).
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Figure A2. Kappaphycus increase in fresh weight (A) and carrageenan weight (B) during three culti-
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expressed per linear meter of cultivation lines. Boxplots resulted from samples of 4–8 individual 
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