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Abstract: Representation learning-based hyperspectral target detection (HTD) methods generally
follow a learning paradigm of single-layer or one-step representation residual learning and the target
detection on original full spectral bands, which, in some cases, cannot accurately distinguish the
target pixels from variable background pixels via one-round of the detection process. To alleviate
the problem and make full use of the latent discriminate characteristics in different spectral bands
and the representation residual, this paper proposes a level-wise band-partition-based hierarchical
representation residual feature (LBHRF) learning method for HTD with a parallel and cascaded
hybrid structure. Specifically, the LBHRR method proposes to partition and fuse different levels of sub-
band spectra combinations, and take full advantages of the discriminate information in representation
residuals from different levels of band-partition. The highlights of this work include three aspects.
First, the original full spectral bands are partitioned in a parallel level-wise manner to obtain the
augmented representation residual feature through level-wise band-partition-based representation
residual learning, such that the global spectral integrity and contextual information of local adjacent
sub-bands are flexibly fused. Second, the SoftMax transformation, pooling operation, and augmented
representation residual feature reuse among different layers are equipped in cascade to enhance the
learning ability of the nonlinear and discriminant hierarchical representation residual features of
the method. Third, a hierarchical representation residual feature-based HTD method is developed
in an efficient stepwise learning manner instead of back-propagation optimization. Experimental
results on several HSI datasets demonstrate that the proposed model can yield promising detection
performance in comparison to some state-of-the-art counterparts.

Keywords: hyperspectral image; target detection; residual feature; representation learning; hierarchical
learning

1. Introduction

Hyperspectral remote sensing systems combine imaging and spectral perception
technologies to simultaneously obtain abundant spatial and spectral information of the
ground objects [1–5]. In practice, the hyperspectral image (HSI) is imaged with 10 s to
100 s of continuous and narrow spectral bands, such as the ultraviolet, visible, and near-
infrared bands, which can provide abundant discriminate information for distinguishing
ground objects of different materials [6–11]. Hyperspectral target detection (HTD) refers
to the process of identifying the target pixels from the complex and variable non-target
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background pixels based on subtle spectral or spatial–spectral combined information [12].
Due to its characteristics, numerous HTD approaches have been developed and have
achieved significant performance in many civil and military applications, such as mineral
exploration and camouflaged military target detection [13].

The HTD approaches can be generally divided into structured and unstructured
background-based approaches. The representative methods for the former category usu-
ally characterize HSI with a linear mixture model (LMM) [14], which assumes that each
pixel can be approximately represented as a linear combination of several spectral end-
members with different fractional abundances. The typical methods include the probability
density-based, subspace-based, and linear spectral mixing-based methods, the most classi-
cal method of which is the linear mixing-based model [14], such as the constrained energy
minimization (CEM) [15,16] and orthogonal subspace projection (OSP) [15]. Different from
the structured background-based detection methods, the unstructured background-based
detectors characterize the background with a statistical model, such as the multivariate
Gaussian distribution, and then build a target detector using binary hypothesis testing.
Some representative methods include generalized likelihood ratio test (GLRT) [17], the
adaptive coherence/cosine estimator (ACE) [18], and adaptive matched filter (AMF) [19].

To characterize the complex variations of target and background spectra, some
representation-based target detection methods have been widely studied. For example, the
sparse representation-based target detector (SRD) proposes to represent a testing pixel as
a sparse linear combination of limited samples from the target and background spectra
combined dictionary [20]. Whether the testing pixel is a target pixel or not is examined
through comparing the representation residuals yielded by the target and background
sub-dictionaries. Some variations of SRD have also been developed, such as the binary-class
collaborative representation-based target detector (BCRD) [21], and the sparse and dense
hybrid representation-based target detector (SDRD) [22]. By comparison, the collaborative
representation-based methods, which finds a minimum l2-norm regularized representation
coefficient solution, have lower computational efficiency due to the existence of closed-
form analytical solution, while the spare representation learning is solved as a l0-norm
regularized minimization problem with complex computation.

Existing representation learning-based HTD methods, such as collaborative or sparse
representation-based methods, are rooted in the linear subspace theory, which is flexible to
characterize and model the variability of HSI spectra [23–25]. Therefore, the representation
residual contains some key discriminate information to indicate the label of a query pixel.
However, these methods all perform in a learning paradigm of single-layer or one-step
detection on the original full spectral bands, and the subtle discriminant information in the
representation residual might not be fully discovered through such a one-round shallow
learning strategy, which will restrict the detection performance. Recently, hierarchical
learning has achieved great success in HSI applications. A key reason is that hierarchical
models can allow the layered nonlinear transformation of data to reveal the potential subtle
and discriminate features therein. Useful discriminate information that is beneficial for the
final learning purposes will be successively discovered and accumulated through such a
hierarchical learning strategy [26–28]. Inspired by the core ideas of multi-layer hierarchical
learning and representation residual learning-based HTD methods, this paper proposes to
discover and augment the discriminate target detection information from multiple levels
and layers of representation residuals for hierarchical representation residual feature learn-
ing. Accordingly, a level-wise band-partition-based hierarchical representation residual
feature (LBHRF) learning method is developed in this paper for HTD, and two key modules
are carefully devised, including the augmented representation residual feature based on
level-wise band-partition (ARRFLB) and the augmented representation residual feature
reuse and relearning (ARRFRR). Figure 1 illustrates the diagram of the proposed LBHRF
learning method with L levels of band-partition and K layers of hierarchical representa-
tion residual feature for HTD. The augmented representation residual feature of a test
pixel is first obtained using the ARRFLB module from Level 0 to Level L. Then, several
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ARRFRR modules are incorporated in cascade to obtain the re-augmented representation
residual features from Layer 1 to Layer K, and the residual discrimination information
will be successively enhanced via representation residual feature reuse and relearning. In
this way, the re-augmented representation of the residual feature in the last layer is fed
into the terminal representation-based target detector (RTD) to calculate the hierarchical
representation residual and detection value to determine whether the test pixel is a target
or not. The implementation details for ARRFLB, ARRFRR, and RTD will be introduced in
the following sections. Different from the existing representation-based HTD approaches,
the main contributions of this paper are summarized as follows.
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Figure 1. Illustration for the structure of the proposed level-wise band-partition-based hierarchical
representation residual feature (LBHRF) learning method with L levels of band-partition and K layers
for HTD. Different color means different spectral band.

(1) A Level-wise band-partition-based hierarchical representation residual feature (LBHRF)
learning method for HTD is devised in a stepwise training manner without the need
for back-propagation optimization. The SoftMax transformation, pooling operation,
and augmented representation residual feature reuse and relearning among differ-
ent layers are incorporated with cycle accumulation to enhance the nonlinear and
discriminate feature learning capability of the method;

(2) To flexibly integrate the global spectral integrity as well as the local contextual in-
formation of adjacent sub-bands, the original full spectral bands are partitioned into
different levels with bands overlapping, and the augmented representation residual
feature is then obtained by concatenating different levels of representation residual
features;

(3) Due to computational efficiency, the collaborative representation with the minimiza-
tion of the l2-norm regularized representation coefficient is used in the experiments,
and the results on several HSI target detection tasks show that the proposed method
can yield overall superior detection performance.

The rest of this paper is structured as follows. Section 2 describes related work on
HTD. Our LBHRF model for HTD is presented in Section 3, including the key modules
ARRFLB, ARRFRR, and RTD. The effectiveness of the proposed method is demonstrated
by experimental results presented in Section 4. Conclusions are made in Section 5.

2. Related Work

Consider a hyperspectral image having N pixels with B spectral bands, and all the
spectra of an HSI are arranged in a B×N matrix as X = [xi, x2, . . . , xN ] ∈ RB×N containing
the targets of interest for detection. The combined dictionary with known target and
background pixels is denoted as A = [At, Ab], where At indicates the prior target spectra,
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and Ab is the estimated background spectra. The purpose of HTD is to distinguish a label-
unknown test pixel y ∈ RB as a target pixel or not, with the help of target and background
dictionary A. With the idea of linear spectral mixing, it is assumed that the test pixel y can
be represented as a linear combination of the pixels in the target and background dictionary
A with representation coefficient vector α = [αt, αb] as follows.

y = Atαt + Abαb (1)

The prestigious sparse representation-based target detector (SRD) seeks a spare repre-
sentation coefficient vector α, which means the test pixel y is approximately represented by
very few pixels from the combined dictionary A, and the recovered representation residuals
can be used for detection. The mathematical formulation for SRD is expressed as follows,

α∗ = argmin ‖α‖0 s.t. y = Aα (2)

where ‖·‖0 means the l0-norm defined as the number of nonzero entries of a vector. The
nonzero entries of α can help reveal the category of a test pixel y. The l0-norm minimiz-
ing problem (2) is NP-hard, and can be approximately solved by some greedy pursuit
algorithms such as orthogonal matching pursuit (OMP) or subspace pursuit (SP) [22].
If the solution is sufficiently sparse, the NP-hard problem can be relaxed into a linear
programming one by replacing the l0-norm with l1-norm, which can be solved by convex
programming techniques. Considering the existence of noise in data, the equality constraint
in (2) is relaxed to the following inequality one.

argmin
α
‖α‖0 s.t. ‖Aα− y‖2 ≤ θ (3)

where θ is the upper bound for representation error. The above problem can also be
formulated as the minimization of the representation error under a certain sparsity level.

argmin
α
‖Aα− y‖2 s.t. ‖α‖0 ≤ K0 (4)

where K0 is a given upper bound on the sparsity level. After solving (3) or (4), the optimal
representation α = [αt, αb] will be obtained. Then, the background pixels Ab and target
pixels At in dictionary A are used to reconstruct the test pixel by combining their corre-
sponding sub-coefficients αt and αb, by which the representation residuals can be obtained
as follows:

rb(x) = ‖y−Abαb‖2 (5)

rt(x) = ‖y−Atαt‖2 (6)

The smaller the representation residuals under each category of sub-dictionary, the
more likely that the test pixel belongs to this category. Therefore, the difference between
these two residuals under the two sub-dictionaries is used to calculate the detection value.

DSRD(y) = rb(y)− rt(y) (7)

Whether the pixel belongs to the background class or target class is determined
according to the relationship between the detection value with specific threshold value.
If the detection value DSRD(y) is greater than specific threshold value, the test pixel will
be claimed as target, otherwise it is more likely to be background. The core idea behind
the optimization problem (4) is that the test pixel will be represented by limited pixels
similar to it under the constraint of representation error tolerance and sparsity. However, it
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is argued that it is the collaborative representation mechanism, but not the sparsity, that
plays the essential role, as formulated below.

argmin
α
‖α‖2 s.t. ‖Aα− y‖2 ≤ δ (8)

In addition, the l2-norm regularized collaborative representation mechanism has
significantly lower computational complexity. Many variants of SRD based on collaborative
representation mechanism have been studied, such as SDRD [22] and sparse representation-
with binary hypothesis detector (SRBBH) [23].

It is not difficult to draw the conclusion that the above HTD methods can be summa-
rized as class-specific representation residuals learning and comparison, by using different
representation learning strategies. The derived representation residuals contain valuable
discriminate information for HTD. However, these methods all perform one-round of
representation learning and representation residuals calculation on the original full spectral
bands. As a result, it is unable to make full use of the identification ability of different
spectral bands for different materials, and the discriminant information implied in the
representation residual cannot be sufficiently explored.

3. Level-Wise Band-Partition-Based Hierarchical Representation Residual Feature
Learning for HTD
3.1. Parallel Level-Wise Band-Partition

In practice, HSI is obtained by a spectrometer in response to the electromagnetic
wave reflected or emitted from the ground object material surface. Different materials
have their unique responses to the electromagnetic wave. As a result, using the same full
spectral bands to detect targets of different materials cannot make full use of discriminate
information of different spectral bands and inevitably suffer from spectral redundancy. To
alleviate the problem, this paper proposes to jointly use sub-band combinations based on
level-wise band-partition together with the original full bands. For the l-th (l = 0, 1, 2, . . . , L)
level, a total of 2l sub-band combinations will be obtained. For example, the 2-th level
of band-partition will have 22 = 4 sub-band combinations. Level 0 band-partition is the
original full spectral bands themselves. For a test pixel y, the 1-th level band-partitions
are denoted as y1 =

[
y1

1, y1
2
]
, and similarly the l-th band partitions are illustrated as

yl =
[
yl

1, yl
2, . . . , yl

2l

]
. yi

j means the j-the sub-band combination of y in i-th level. As for

the target and background dictionary, Ai
j collects the j-the sub-band combinations of A in

the i-th level. Accordingly, the level l band-partition for the k-th sample of A is denoted
as a(k)l =

[
a(k)l

1 , a(k)l
2 , . . . , a(k)l

2l

]
. Figure 2 shows an example process of Level 1 double-

partition of a HSI pixel. For this level of band partition, all the pixels are partitioned into
two parts with several bands overlapping, and all the pixels are partitioned in the same
way to construct the band-partitioned target and background dictionaries.
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3.2. Augmented Representation Residual Feature Based on Level-Wise Band-Partition (ARRFLB)

All the pixels in the target and background dictionary A and the test pixel y are first
band-partitioned in the same way. Afterwards, for the j-th band-partition combinations of
the i-th level, the corresponding band-partitioned test pixel yi

j is represented using Ai
j by

solving the following problem.

β∗ = argmin
β

∥∥∥Ai
jβ− yi

j

∥∥∥2

2
+ λ1‖β‖p (9)

where ‖·‖p is the p-norm used to regularize the representation coefficient β, and p = 0, 1, or
2 is usually adopted for l0, l1, or l2-norm minimization. λ1 > 0 is used to balance two terms
in the objective function. After solving (9), the target and background sub-dictionaries Ai

b·j
and Ai

t·j are used to calculate the representation residuals of yi
j as below.

ri
b·j =

∥∥∥yi
j −Ai

b·jβb

∥∥∥
2

(10)

ri
t·j =

∥∥∥yi
j −Ai

t·jβt

∥∥∥
2

(11)

Afterwards, the above two representation residual values are concatenated as a 2-
dimensional representation residual feature, and used to encode the test pixel yi

j in the j-th
band-partition of the i-th level as in (12).
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be 0, 1, or 2 for l0, l1, or l2-norm minimization. Different value of p will lead to different 

optimization problem. For example, when p = 2, a closed-form solution can be achieved, 

as follows. 

𝝓(0) = ((𝓐(0))
−𝟏

𝓐(0) + 𝜆2𝐈)
−𝟏

(𝔂(0))
−𝟏

𝔂(0) (18) 

After solving (16), the target and background sub-dictionaries 𝓐𝑡
(0)

  and 𝓐𝑏
(0)

  are 

used to calculate the representation residuals of 𝔂(0) as below. 

R𝑡
(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
 (19) 

R𝑏
(0)

= ‖𝓐𝑏
(0)

𝝓𝑏
(0)

− 𝔂(0)‖
2
 (20) 

i
j =

[
ri

b·j; ri
t·j

]
(12)

To strengthen the discrimination of representation residual feature, the SoftMax opera-
tion is used to recompute a 2-dimensional representation residual feature as follows:
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used to calculate the representation residuals of 𝔂(0) as below. 

R𝑡
(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
 (19) 

R𝑏
(0)

= ‖𝓐𝑏
(0)

𝝓𝑏
(0)

− 𝔂(0)‖
2
 (20) 

i
j =

 e−ri
b·j

e−ri
b·j + e−ri

t·j
;

e−ri
t·j

e−ri
b·j + e−ri

t·j

 (13)

For the l-th level band-partition, 2l representation residual feature with SoftMax, i.e.,
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After solving (16), the target and background sub-dictionaries 𝓐𝑡
(0)

  and 𝓐𝑏
(0)

  are 

used to calculate the representation residuals of 𝔂(0) as below. 

R𝑡
(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
 (19) 

R𝑏
(0)

= ‖𝓐𝑏
(0)

𝝓𝑏
(0)

− 𝔂(0)‖
2
 (20) 

l
j

(
j = 1, 2, . . . , 2l

)
, will be obtained, which is then transformed into one representation

residual feature using the max pooling operation.
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(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
 (19) 
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(0)
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 (20) 

l = max
{

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 3. Illustration for the augmented representation residual feature based on level-wise band-

partition (ARRFLB) with 0, 1, and 2 levels. Through the processing, each pixel is encoded as a 6-

dimensionl augmented representation residual feature. If L (≥0) levels of band-partition are adopted, 

an augmented representation residual feature with 2(L + 1) dimensions will be obtained. 

3.3. Augmented Representation Residual Feature Reuse and Relearning (ARRFRR) 

After parallel L levels of band-partition, all the pixels in the target and background 

dictionary A and the test pixel y are represented as a 2(L + 1)-dimensional augmented 

representation residual feature, which are formulated as 𝔸 ∈ ℜ2(𝐿+1)×𝑁  and 𝕪 ∈

ℜ2(𝐿+1)×1, respectively. It is known that the test pixel can be categorized as the class with 

minimum representation residual in a sparse representation-based target detector. In 

other words, the representation residuals contain significant discrimination information 

to distinguish targets from the background. However, the subtle discriminant information 

in representation residual might not be sufficiently exploited via such a one-round shallow 

learning strategy. In the following section, an augmented representation residual feature 

reuse and relearning (ARRFRR) method will be developed to serve as a key module for 

learning re-augmented representation residual feature.  

In Layer 1, the input augmented representation residual feature is acquired as 𝓐(0) =

𝔸 and 𝔂(0) = 𝕪. The representation coefficient learning of 𝔂(0) on 𝓐(0) is formulated as 

follows: 

𝑚𝑖𝑛 ‖𝓐(0)𝝓(0) − 𝔂(0)‖
2

2
+ 𝜆2‖𝝓(0)‖

𝑝
 (17) 

where ‖∙‖𝑝 is the p-norm used to regularize the corresponding representation, and p can 

be 0, 1, or 2 for l0, l1, or l2-norm minimization. Different value of p will lead to different 

optimization problem. For example, when p = 2, a closed-form solution can be achieved, 

as follows. 

𝝓(0) = ((𝓐(0))
−𝟏

𝓐(0) + 𝜆2𝐈)
−𝟏

(𝔂(0))
−𝟏

𝔂(0) (18) 

After solving (16), the target and background sub-dictionaries 𝓐𝑡
(0)

  and 𝓐𝑏
(0)

  are 

used to calculate the representation residuals of 𝔂(0) as below. 

R𝑡
(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
 (19) 

R𝑏
(0)

= ‖𝓐𝑏
(0)

𝝓𝑏
(0)

− 𝔂(0)‖
2
 (20) 

l
1;

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 3. Illustration for the augmented representation residual feature based on level-wise band-

partition (ARRFLB) with 0, 1, and 2 levels. Through the processing, each pixel is encoded as a 6-

dimensionl augmented representation residual feature. If L (≥0) levels of band-partition are adopted, 

an augmented representation residual feature with 2(L + 1) dimensions will be obtained. 

3.3. Augmented Representation Residual Feature Reuse and Relearning (ARRFRR) 

After parallel L levels of band-partition, all the pixels in the target and background 

dictionary A and the test pixel y are represented as a 2(L + 1)-dimensional augmented 

representation residual feature, which are formulated as 𝔸 ∈ ℜ2(𝐿+1)×𝑁  and 𝕪 ∈

ℜ2(𝐿+1)×1, respectively. It is known that the test pixel can be categorized as the class with 

minimum representation residual in a sparse representation-based target detector. In 

other words, the representation residuals contain significant discrimination information 

to distinguish targets from the background. However, the subtle discriminant information 

in representation residual might not be sufficiently exploited via such a one-round shallow 

learning strategy. In the following section, an augmented representation residual feature 

reuse and relearning (ARRFRR) method will be developed to serve as a key module for 

learning re-augmented representation residual feature.  

In Layer 1, the input augmented representation residual feature is acquired as 𝓐(0) =

𝔸 and 𝔂(0) = 𝕪. The representation coefficient learning of 𝔂(0) on 𝓐(0) is formulated as 

follows: 

𝑚𝑖𝑛 ‖𝓐(0)𝝓(0) − 𝔂(0)‖
2

2
+ 𝜆2‖𝝓(0)‖

𝑝
 (17) 

where ‖∙‖𝑝 is the p-norm used to regularize the corresponding representation, and p can 

be 0, 1, or 2 for l0, l1, or l2-norm minimization. Different value of p will lead to different 

optimization problem. For example, when p = 2, a closed-form solution can be achieved, 

as follows. 

𝝓(0) = ((𝓐(0))
−𝟏

𝓐(0) + 𝜆2𝐈)
−𝟏

(𝔂(0))
−𝟏

𝔂(0) (18) 

After solving (16), the target and background sub-dictionaries 𝓐𝑡
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l
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𝓐(0) + 𝜆2𝐈)
−𝟏

(𝔂(0))
−𝟏
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After solving (16), the target and background sub-dictionaries 𝓐𝑡
(0)

  and 𝓐𝑏
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  are 
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R𝑡
(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
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R𝑏
(0)

= ‖𝓐𝑏
(0)

𝝓𝑏
(0)
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l
2l

}
(14)

Alternatively, the average pooling operation can be adopted to fuse the information
from the 2l band-partitions in l-th level.
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(0)
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− 𝔂(0)‖
2
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l = average
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After solving (16), the target and background sub-dictionaries 𝓐𝑡
(0)

  and 𝓐𝑏
(0)

  are 

used to calculate the representation residuals of 𝔂(0) as below. 

R𝑡
(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
 (19) 

R𝑏
(0)

= ‖𝓐𝑏
(0)

𝝓𝑏
(0)

− 𝔂(0)‖
2
 (20) 

l
2l

}
(15)

Afterwards, all the representation residual features processed by the SoftMax, and
pooling operations from all the L levels of band-partitions are augmented and concate-
nated together to obtain a 2(L + 1)-dimensional augmented representation residual feature
as follows.
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L
]
∈ R2(L+1)×1 (16)

In addition to encoding the test pixel y and get its augmented representation residual
feature
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based on band-partitioned target and background dictionary as above, all the
pixels of target and background dictionary are also encoded on the target and background
dictionary itself to get their corresponding augmented representation residual features.
Figure 3 shows an example for encoding augmented representation residual feature based
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on three levels of band-partition, all the pixels are encoded as a 6-dimensional repre-
sentation residual feature using three levels (L = 2) of target and background dictionary.
Therefore, the subtle discriminate information from different sub-band combinations and
representation residuals is fused by the 6-dimensionl augmented representation residual
feature.
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Figure 3. Illustration for the augmented representation residual feature based on level-wise band-
partition (ARRFLB) with 0, 1, and 2 levels. Through the processing, each pixel is encoded as a
6-dimensionl augmented representation residual feature. If L (≥0) levels of band-partition are
adopted, an augmented representation residual feature with 2(L + 1) dimensions will be obtained.

3.3. Augmented Representation Residual Feature Reuse and Relearning (ARRFRR)

After parallel L levels of band-partition, all the pixels in the target and background
dictionary A and the test pixel y are represented as a 2(L + 1)-dimensional augmented
representation residual feature, which are formulated as A ∈ R2(L+1)×N and
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After solving (16), the target and background sub-dictionaries 𝓐𝑡
(0)
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used to calculate the representation residuals of 𝔂(0) as below. 
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∈ R2(L+1)×1,
respectively. It is known that the test pixel can be categorized as the class with minimum
representation residual in a sparse representation-based target detector. In other words, the
representation residuals contain significant discrimination information to distinguish tar-
gets from the background. However, the subtle discriminant information in representation
residual might not be sufficiently exploited via such a one-round shallow learning strategy.
In the following section, an augmented representation residual feature reuse and relearning
(ARRFRR) method will be developed to serve as a key module for learning re-augmented
representation residual feature.

In Layer 1, the input augmented representation residual feature is acquired asA(0) = A
and
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(0) on A(0) is formulated as
follows:

min
∥∥∥A(0)φ(0) −
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(0)
∥∥∥2

2
+ λ2

∥∥∥φ(0)
∥∥∥

p
(17)

where ‖·‖p is the p-norm used to regularize the corresponding representation, and p can
be 0, 1, or 2 for l0, l1, or l2-norm minimization. Different value of p will lead to different
optimization problem. For example, when p = 2, a closed-form solution can be achieved, as
follows.

φ(0) =

((
A(0)

)−1
A(0) + λ2I

)−1(
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After solving (16), the target and background sub-dictionariesA(0)
t andA(0)

b are used

to calculate the representation residuals of
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R(0)
t =

∥∥∥A(0)
t φ

(0)
t −
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The corresponding representation residual feature with SoftMax is calculated as follows:

∫ (1)
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 e−R(0)
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e−R(0)
b + eR(0)

t

;
eR(0)

t

e−R(0)
b + eR(0)

t

 (21)

Then the original augmented representation feature and the above SoftMax vector
are concatenated to obtain the re-augmented representation residual feature in Layer 1 as
follows:
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− 𝔂(0)‖
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(0)

]
(22)

According to the procedures presented in Equations (17)–(21), all the augmented
representation residual features in A are re-augmented and updated. As shown in Figure 4,
with level-wise band-partition, all the pixels are processed to obtain the corresponding re-
augmented representation residual features, and construct the re-augmented representation
residual feature dictionary. Afterwards, as shown in 1©, each augmented representation
residual feature is further represented using the representation residual feature dictionary
to relearn the representation residual feature. The relearned representation residual feature
is recomputed with SoftMax and concatenated with the original augmented representation
residual feature by identity map, as shown in 2©. Finally, the re-augmented representa-
tion residual feature is used to update the re-augmented representation residual feature
dictionary as in 3©.
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Figure 4. Augmented representation residual feature reuse and relearning module to calculate the
corresponding re-augmented representation residual feature.

The procedures shown in Figure 4 execute in cycle for K layers to derive the final K-th
layer re-augmented representation residual feature dictionaryA(K) =

[
A(0); ∫ (1)A ; . . . ; ∫ (K)A

]
∈ R(2(L+1)+2K)×N and
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L = 0, 1, 2 . . . as the levels of band-partition and K = 0, 1, 2 . . . as the layers for aug-
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mented representation residual feature reuse and relearning, which are further fed into the
representation-based target detector (RTD) as follows.

min
φ(K)

∥∥∥A(K)φ(K) −
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be 0, 1, or 2 for l0, l1, or l2-norm minimization. Different value of p will lead to different 

optimization problem. For example, when p = 2, a closed-form solution can be achieved, 

as follows. 

𝝓(0) = ((𝓐(0))
−𝟏

𝓐(0) + 𝜆2𝐈)
−𝟏

(𝔂(0))
−𝟏

𝔂(0) (18) 

After solving (16), the target and background sub-dictionaries 𝓐𝑡
(0)

  and 𝓐𝑏
(0)

  are 

used to calculate the representation residuals of 𝔂(0) as below. 

R𝑡
(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
 (19) 

R𝑏
(0)

= ‖𝓐𝑏
(0)

𝝓𝑏
(0)

− 𝔂(0)‖
2
 (20) 

(K)
∥∥∥2

2
+ λ2

∥∥∥φ(K)
∥∥∥

p
(23)

With the optimal representation coefficient φ(K) in K-th layer, the final hierarchical
detection value (HDV) in the output of the K-th layer is calculated as shown below.

HDV(K) =
∥∥∥A(K)

b φ
(K)
b −
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∥∥∥

2
(24)

If the detection value is bigger than a predefined threshold, the original test pixel y
will be labeled as a target pixel; otherwise, the test pixel is a background pixel. The details
for hyperspectral target detection using LBHRF are summarized in Algorithm 1.

Algorithm 1: The proposed LBHRF learning method for hyperspectral target detection.

Input: Test pixel y. Target prior spectra and background dictionaries A. The band-partition level
L. The layer K.
1: Learn the L levels augmented representation residual feature for all the target and background
pixels A and test pixel
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via ARRFLB presented in Equations (8)–(14);
2: Initialize k = 1;
3: Repeat;
4: Learn the k-th layer re-augmented representation residual featuresA(k) and
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(k) for the target
and background dictionary pixels and the test pixel based on the augmented representation
residual feature A and
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by ARRFRR presented in Equations (17)–(22);
5: k = k + 1;
6: Until k > K;
7: Calculate the hierarchical detection value by RTD as presented in Equations (23) and (24).
Output: The hierarchical detection value HDV(K) for target detection.

4. Experimental Results and Analysis
4.1. Hyperspectral Data Set

The first data set was collected by the HYDICE sensor [21] with a spatial resolution of
2 m and 210 spectral bands. After removing the low SNR, water absorption and bad bands
(1–4, 76, 87, 101–111, 136–153, and 198–210), 162 bands remained. The HYDICE data set
and its ground-truth information are shown in Figure 5, which has 150 × 150 pixels, and
the vehicles were selected as the targets to detect, which have 21 pixels.
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The second and third data sets are collected by the AVIRIS from San Diego with
a spatial resolution of 3.5 m. After removing the low SNR, water absorption, and bad
bands (1–6, 33–35, 97, 107–113, 153–166, and 221–224), 189 bands were remained. The
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AVIRIS I data set and AVIRIS II data set and their ground-truth information are shown in
Figures 6 and 7, which are 60 × 60 pixels and 100 × 100 pixels in size, respectively.
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The proposed LBHRF HTD method is evaluated in comparison to the several ad-
vanced HSI target detectors, including constrained energy minimization (CEM) [15], sparse
representation-based target detector (SRD) [20], sparse representation-with binary hy-
pothesis detector (SRBBH) [23], binary-class collaborative representation-based detector
(BCRD) [21], sparse and dense hybrid representation-based detector (SDRD) [22], and
single-spectrum-driven binary-class sparse representation target detector (SSBRTD) [29].
In summary, the comparing methods include classic target methods, i.e., CEM and the
state-of-the-art representation learning based methods, i.e., SRD, SRBBH, BCRD, SDRD,
and SSBRTD. For a fair comparison between different detectors, the widely used dual
concentric window strategy is adopted to estimate the background characteristic around
each test pixel. For our LBHRF HTD method, the l2-norm is used to regularize the rep-
resentation coefficient in the two basic residual feature learning modules, i.e., p = 2 in
Equations (9) and (10).

To evaluate the performance of different detection methods, the probability of false
alarm (PF), and probability of detection (PD) under different threshold variables τ are
calculated [30]. In addition, the ROC curves w.r.t. (PF, PD) and (τ, PF) are used to re-
veal the target detectability and background suppression of each detection method. The
area under curve (AUC) corresponding to the two ROC curves are used to quantitatively
evaluate the performance of different detection methods. A detection method with a
higher AUC(PF,PD) approaching 1 (→1) and a lower AUC(τ,PF)

close to 0 (→0) is judged
to have better performance for target detection as well as background suppression [30].
Without good background suppression ability, a HSI detector cannot guarantee a suffi-
ciently low false alarm rate. Additionally, the ratio between the two AUC values, i.e.,
AUC(ratio) = AUC(PF,PD)

/AUC(τ,PF)
, can be calculated to comprehensively consider the

balance ability of a detector in both target detectability and background suppression [30].
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4.2. Experimental Results

First, the qualitative detection results of different detection methods are demonstrated.
The 2D visualization detection results of different HSI target detectors on the three data
sets are shown in Table 1. From the qualitative visualization results, one can observe that
LBHRF method can generate a more conspicuous target distribution when comparing with
the ground-truth and detection results of the comparing counterparts. In detail, the targets
detected by the proposed LBHRF method have a clearer shape with a purer background,
which means a better ability for both target detection and non-target background suppres-
sion. By contrast, the detection results of the comparing methods cannot clearly distinguish
the targets, and the background component has strong interference in the detection results.

It is generally known that for a HTD task, a high-performance detector should have
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Table 1. Visualization of detection results of different HTD methods on the three datasets.

Data Sets
The Comparing HSI Detectors

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-Truth

HYDICE

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

AVIRIS I

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  

  

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Experimental Results 
First, the qualitative detection results of different detection methods are demon-

strated. The 2D visualization detection results of different HSI target detectors on the three 
data sets are shown in Table 1. From the qualitative visualization results, one can observe 
that LBHRF method can generate a more conspicuous target distribution when comparing 
with the ground-truth and detection results of the comparing counterparts. In detail, the 
targets detected by the proposed LBHRF method have a clearer shape with a purer back-
ground, which means a better ability for both target detection and non-target background 
suppression. By contrast, the detection results of the comparing methods cannot clearly 
distinguish the targets, and the background component has strong interference in the de-
tection results.  

Table 1. Visualization of detection results of different HTD methods on the three datasets. 

Data 
Sets 

The Comparing HSI Detectors 

CEM [15] SRD [20] SRBBH [23] BCRD [21] SDRD [22] SSBRTD [29] LBHRF Ground-
Truth 

HYDICE 

        

AVIRIS I 

        

AVIRIS 
II 

        

It is generally known that for a HTD task, a high-performance detector should have 
significantly strong responses for the target pixels and simultaneously possesses strong 
inhibition ability for non-target background pixels, which can lead to a higher probability 
of detection rate by preserving lower false alarm rate. For a quantitative evaluation, the 
ROC curves w.r.t. (PF, PD) and (τ, PF) are drawn and shown in Figures 8 and 9 to further 
demonstrate the target detectability and background inhibition characteristics of different 
detectors. In addition, the AUC values, i.e., AUC(PF, PD) and AUC(τ, PF) that correspond 
to the two kinds of ROC curves are reported in Tables 2 and 3, where the best results are 
indicated in bold and the second-best results are underlined.  
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Table 2. AUC(PF, PD)value comparison of different HTD methods on the three HSI datasets. The
best result is in bold with the second-best result underlined.

Methods
Data Sets

HYDICE AVIRIS I AVIRIS II

CEM [15] 0.9139 0.6549 0.6983

SRD [20] 0.9840 0.9561 0.9331

SRBBH [23] 0.8909 0.8913 0.7224

BCRD [21] 0.9175 0.9805 0.9899

SDRD [22] 0.9973 0.9583 0.9921

SSBRTD [29] 0.9597 0.9051 0.9689

LBHRF 0.9978 0.9844 0.9987

Table 3. AUC(τ, PF) comparison of different HTD methods on the three HSI datasets. The best result
is in bold with the second-best result underlined.

Methods
Data Sets

HYDICE AVIRIS I AVIRIS II

CEM [15] 0.3218 0.3236 0.4573

SRD [20] 0.4459 0.1876 0.3421

SRBBH [23] 0.1234 0.0936 0.2558

BCRD [21] 0.7926 0.8888 0.8635

SDRD [22] 0.4488 0.3812 0.3028

SSBRTD [29] 0.5106 0.4287 0.7326

LBHRF 0.0310 0.0388 0.0037

As Figure 8 shows, the ROC curve of the proposed LBHRF method w.r.t. (PF, PD) is
closer to the upper left part of each figure when comparing with the other methods. The
corresponding quantitative AUC(PF, PD) value given in Table 2 also validates this point,
and the proposed method can generally achieve a higher AUC(PF, PD) value, which means
a better overall detection performance. Moreover, the ROC curves of the proposed LBHRF
method w.r.t. (τ, PF) shown in Figure 9 approach nearer to the lower left part of each figure
than that of the other methods. Similarly, the AUC(τ, PF) values listed in Figure 9 corre-
spond to Figure 9 also indicate that the proposed LBHRF can yield lower AUC(τ, PF) values.
When comprehensively considering the balance between AUC(PF, PD) and AUC(τ, PF), i.e.,
the AUC(ratio) reported in Table 4, our LBHRF method presents an incomparable obvious
advantage over the other methods. In general, the benefits of the LBHRF method can be
attributed to the multi-level and multi-layer residual feature learning and augmentation,
and the discriminate information is accumulated in the obtained augmented representation
residual feature for improved overall detection performance.

4.3. Parameters Sensitivity Analysis

In Section 3.2, the augmented representation residual feature learning based on level-
wise band-partition is presented, and there is an adjustable trade-off parameter λ1 in
Equation (9). In the experiments, λ1 is set and remain unchanged for all the different
band-partition combinations under different levels. In addition to λ1, trade-off parameter
λ2 in Equations (17) and (22) also needs to be set for augmented representation residual
feature reuse and relearning. For simplicity, λ2 is also assigned and remains unchanged for
different layers of residual feature learning. As a result, this section will study the influences
of λ1 and λ2 on the final detection performance. Specifically, the AVIRIS I HSI data set
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is used as an example, and λ1 and λ2 are both selected from the parameter candidate set{
10−5, 10−3, 10−1, 1, 10, 103, 105} when L = 0, 1, 2 with varying K.

Table 4. AUC (ratio) comparison of different HTD methods on the three HSI datasets. The best result
is in bold and the second-best result is in underline.

Methods
Data Sets

HYDICE AVIRIS I AVIRIS II

CEM [15] 2.8400 2.0238 1.5270

SRD [20] 2.2068 5.0965 2.7276

SRBBH [23] 7.2196 9.5224 2.8241

BCRD [21] 1.1576 1.1032 1.1464

SDRD [22] 2.2221 2.5139 3.2764

SSBRTD [29] 1.8796 2.1113 1.3225

LBHRF 32.1871 25.3711 269.9189

In Section 3.3, the final re-augmented representation residual feature for target and
background dictionary and test pixel, i.e., the resultingA(K) ∈ R(2(L+1)+2K)×N and
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where ‖∙‖𝑝 is the p-norm used to regularize the corresponding representation, and p can 

be 0, 1, or 2 for l0, l1, or l2-norm minimization. Different value of p will lead to different 

optimization problem. For example, when p = 2, a closed-form solution can be achieved, 

as follows. 

𝝓(0) = ((𝓐(0))
−𝟏

𝓐(0) + 𝜆2𝐈)
−𝟏

(𝔂(0))
−𝟏

𝔂(0) (18) 

After solving (16), the target and background sub-dictionaries 𝓐𝑡
(0)

  and 𝓐𝑏
(0)

  are 

used to calculate the representation residuals of 𝔂(0) as below. 

R𝑡
(0)

= ‖𝓐𝑡
(0)

𝝓𝑡
(0)

− 𝔂(0)‖
2
 (19) 

R𝑏
(0)

= ‖𝓐𝑏
(0)

𝝓𝑏
(0)

− 𝔂(0)‖
2
 (20) 

(K) ∈
R(2(L+1)+2K)×N are fed into the RTD for HDV calculation and target detection as in
Equations (22) and (23). Therein, L means the levels of band-partition and K indicates
the layers for augmented representation residual feature reuse and relearning. The target
detectability and background suppressible in terms of the ROC curves w.r.t. (PF, PD) and
(τ, PF) of our LBHRF detector are studied under different settings of L and K. To be specific,
L = 0, 1, 2 is considered when K varies from 0 to the deepest layer of 30. It is worth noting
that L = 0 means that only the original full spectral bands are utilized without band-partition
for LBHRF detector construction. Also, K = 0 means that the augmented representation
residual feature with 2(L + 1) dimensions obtained from the L levels of band-partition is
directly fed into the ultimate RTD for category judgement of a test pixel.

Figure 10 shows the AUC(ratio) performance variation of the proposed LBHRF method
in terms of varying λ1 and λ2 when band-partition level L = 0, 1, 2. For each individual
figure, when λ1 and λ2 fall in the scopes of

[
10−5, 1

]
and

[
10−5, 10−3], respectively, the

proposed LBHRF method tends to achieve a better and more stable AUC(ratio) performance.
In addition, when L increases from 0 to 2, our LBHRF method can gradually yield better
AUC(ratio) performance, which shows the band-partition strategy used for the residual
feature learning and augmentation helps to improve the target detection and background
suppression performance.

In addition, the changes for the AUC(PF,PD)
, AUC(τ,PF)

, and AUC(ratio) performance
of the proposed LBHRF method when L = 0 and K varies from 0 to 30 are displayed in
Figure 11. From the figures, it is not difficult to conclude that AUC(PF,PD),AUC(τ,PF), and
AUC(ratio) values of the proposed LBHRF method show a similar change trend with
varying band-partition level L. Specifically, the overall performance indicator AUC(PF,PD)

is inclined to decrease when K increases from 0 to 30, and at the same time the AUC(τ,PF)
values also tend to decrease. In addition, it is noteworthy that the decreasing ratios of
AUC(τ,PF)

values are larger than that of AUC(PF,PD)
values. For example, when L = 0, the

AUC(PF,PD)
value decreases from about 0.975 to around 0.96 with a decreasing ratio of

1.53%. Meanwhile, the AUC(τ,PF)
value decreases from about 0.06 to around 0.03, and the

decreasing ratio reaches about 50%. The results demonstrate that when the residual feature
learning and augmentation layer goes deeper, the overall target detectability decrease
slightly and the background inhibition ability improves significantly, which can lead to
a better overall AUC(ratio) performance, as demonstrated in Figure 11. In practice, a
smaller layer K can be set when a higher overall target detectability is preferred. When a
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stronger background suppression ability is desired, a larger layer K will be preferred for
parameter setting.
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4.4. Discussion

When designing a target detector for HSI, there are two key characteristics that should
be generally considered, i.e., the target detection ability as well as the background sup-
pression capacity. A fine target detector should ensure a high true positive rate as well
as a strong background suppression ability, which can reduce the false positive rate. The
experimental results show that the existing representation learning-based HTD methods
with original full spectral bands underperform comparatively on the three HSI target
detection tasks. The reason of which is that the one-round residual feature learning strategy
cannot make full use of the rich spectral information to detect target from background.

By comparison, the proposed LBHRF method aims to sufficiently utilize the global
full spectra as well as the contextual information of adjacent local sub-band combinations.
In addition, the SoftMax transformation, pooling operation, and representation residual
feature reuse and re-augmentation are equipped in cascade to enhance the nonlinear
learning ability of the LBHRF method. With the learning methodology, our LBHRF method
can progressively discover and converge the underlying discriminant information in both
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global full bands and the local sub-bands combinations, and the finally obtained augmented
representation residual feature with RTD can well distinguish the highly-mixed target and
background pixels by highlighting target and inhibiting background, which are verified by
the above qualitative and quantitative analysis.

5. Conclusions

This paper revisits the prestigious representation learning-based HTD methods, and
finds that the detection performance of which will be restricted by the one-round shallow
residual feature learning on the original full spectral bands. To alleviate the problem,
this paper proposes to divide and congregate different levels of sub-band spectral bands
combinations for multi-level and multi-layer residual feature learning and augmentation,
and thus the discriminate information that are beneficial for distinguishing targets from
background can be accumulated in the obtained augmented residual feature. Experimental
results on different HSI target detection tasks show that the proposed LBHRF method can
not only achieve an leading overall target detection performance, i.e., a higher AUC(PF,
PD) value, but also obtain a significant improvement in background suppression ability,
i.e., a lower AUC(τ, PF) value, in comparison to some representative state-of-the-art rep-
resentation learning-based HTD methods. Future work will consider introducing spatial
information into our method for further improvement. In addition, the construction of a
more efficient universal background dictionary will be studied in future.
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