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Abstract: The removal of low vegetation is still challenging in UAV photogrammetry. According to the
different topographic features expressed by point-cloud data at different scales, a vegetation-filtering
method based on multiscale elevation-variation coefficients is proposed for terrain modeling. First,
virtual grids are constructed at different scales, and the average elevation values of the corresponding
point clouds are obtained. Second, the amount of elevation change at any two scales in each virtual
grid is calculated to obtain the difference in surface characteristics (degree of elevation change)
at the corresponding two scales. Third, the elevation variation coefficient of the virtual grid that
corresponds to the largest elevation variation degree is calculated, and threshold segmentation is
performed based on the relation that the elevation variation coefficients of vegetated regions are
much larger than those of terrain regions. Finally, the optimal calculation neighborhood radius of
the elevation variation coefficients is analyzed, and the optimal segmentation threshold is discussed.
The experimental results show that the multiscale coefficients of elevation variation method can
accurately remove vegetation points and reserve ground points in low- and densely vegetated areas.
The type I error, type II error, and total error in the study areas range from 1.93 to 9.20%, 5.83 to 5.84%,
and 2.28 to 7.68%, respectively. The total error of the proposed method is 2.43–2.54% lower than that
of the CSF, TIN, and PMF algorithms in the study areas. This study provides a foundation for the
rapid establishment of high-precision DEMs based on UAV photogrammetry.

Keywords: terrain modeling; coefficients of elevation variation; virtual grid; elevation differences; DEM

1. Introduction

Unmanned aerial vehicles (UAVs) play an important role in digital terrain modeling [1–4].
They support fast and accurate terrain modeling in small areas, thus reducing the typical
cost and workload. However, UVA photogrammetry can only provide digital surface models
(DSMs). A digital elevation model (DEM) constructed with terrain modeling requires the
removal of surface features, such as vegetation [5]. The quality and accuracy of a DEM are
determined by the accuracy of surface-feature removal or by the precision of ground-point se-
lection. In nature, most surface features are vegetation. Thus, the accuracy of terrain modeling
is influenced by the accuracy of vegetation removal. Especially in areas with complex topog-
raphy, the continuity and inconsistency of topographic undulations and the inconsistency of
the density and height of vegetation, particularly the presence of low vegetation, increase the
complexity of terrain modeling. Rapid and accurate removal of vegetation areas is a key issue
in DEM construction [6].
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Many point-cloud filtering algorithms have been used for identifying ground points
and nonground points (such as vegetation). These point-cloud filtering algorithms can be
mainly classified as the morphological method [7,8], triangulated irregular network-based
(TIN-based) algorithms [9], machine-learning-based algorithms [10], and mathematical
morphology-based algorithms [11,12].

The morphological method filters off-ground points according to the morphological
characteristics of terrain surface, such as terrain slope [7], curvature [7], and simulation
of a virtual surface [8]. For example, cloth simulation filtering (CSF) filters off-ground
points by simulating a cloth overlaid on terrains [13]. CSF works effectively in flat areas,
but the results are not satisfactory in areas with complex terrain, such as both flat and
steep slopes [14]. The morphological method is generally simple and efficient but does not
perform well in areas with complex terrain, especially in areas with rugged terrain and low
vegetation cover [15]. The TIN-based method gradually approximates the ground surface
by iteratively selecting ground points from seed points and densifies a sparse TIN. Whether
a ground point is selected is determined by its angle and distance from the seed point.
This method yields a better filtering effect in urban areas than other methods do and can
adapt to areas with topographic discontinuity, but the method is ineffective in mountainous
areas with more vegetation cover [16]. The machine-learning-based approach simplifies
the filtering process to a point-cloud binary classification problem. First, a point-cloud
classification model is established, and the model is used to complete the labeling of sample
ground points and nonground points. Although these methods can achieve good accuracy,
the pretraining samples are labor-intensive to label and train, and the generalization
performance is inadequate [13,17]. Mathematical morphology-based algorithms apply
open and closed operations to images [12]. The filtering process is completed based on
changes in image characteristics. The most important aspect of this method is the choice of
the filtering window scale. Large objects cannot be effectively removed when the window
scale is small, and terrain detail is easily missed when it is large.

Different point-cloud filtering algorithms have distinct advantages and disadvantages
for different terrain features and areas [18]. However, these methods are mainly based
on the morphological characteristics of terrain surfaces at a unique scale [19,20]. The
characteristics of the ground and nonground points at different spatial scales are distinctly
different [21–23]. Only considering the morphological characteristics of terrain surfaces at
a unique scale makes it difficult to achieve high accuracy. In recent years, researchers have
proposed various improved filtering methods to address this inadequacy [24]. A parameter-
free progressive TIN densification algorithm was developed to make the selection of
thresholds in progressive TIN densification more flexible and adaptive to fit complex terrain
features [8]. Additionally, an improved simple morphological filter was established using a
linearly increasing window and simple slope thresholding to address morphological filter
inadequacies at a single scale [25,26]. However, these improved multiscale filtering methods
generally extract morphological characteristics at different scales and then combine them
to identify ground points [27]. The differences in surface features at different scales are not
directly considered.

If point-cloud data are integrated at different scales through a virtual grid (VG), the
elevation values produced will be associated with a range of variations. This degree of
variation reflects the surface characteristics (e.g., vegetation and topography) that are reflected
in the point cloud at different scales. If the degree of elevation variation in point-cloud data at
different scales can be quantified, a new approach to terrain modeling could be developed.
The elevation variation coefficient (EVC) is an important topographic factor in digital terrain
analysis [28,29]. Notably, it can be used to quantify the degree of elevation variation within
neighborhood units. Therefore, this paper aims to develop a terrain modeling framework
based on multiscale elevation-variation coefficients in low-vegetation areas.
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2. Materials and Methods
2.1. Overview

The terrain features in point-cloud data at different scales vary significantly. For
example, point-cloud data with a high spatial resolution (average sampling interval) can
not only accurately express the terrain, but can also encompass other features, such as low
vegetation, while low-spatial-resolution point-cloud data can only represent large-scale
topographic relief. If the original high-precision point-cloud data are used to generate
virtual grids (VGs) at different scales, a series of changes (variations) will occur in the
elevation values of the VGs, especially in vegetated areas, with elevation variations that
may be inaccurate. However, ground points and vegetation points can potentially be
differentiated by quantifying the degree of elevation variation at different scales. The
methodological flowchart of the approach proposed in this study is shown in Figure 1.
First, a multiscale VG was established. The average elevation value of all points in the
VG was calculated to assign an elevation attribute value to the VG. Second, the elevation
changes of VGs were obtained based on difference operations. Then, the window shape
and focal information were used to calculate the standard deviation and mean, the ratio of
which was the elevation variation coefficient (EVC) of each grid. Finally, a threshold was
selected to discriminate between ground points and vegetation points.
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2.2. Multiscale Virtual Grid Generation

To improve the accuracy of ground-point selection, multiscale VGs are introduced
in this paper. Regular VGs are composed of multiple cubes of equal length and width
(Figure 2). First, three-dimensional regular VGs were generated, and the point clouds
were included in the corresponding cube according to their coordinates (Figure 2a). Then,
the point clouds were segmented with a grid approach, and each grid contained several
elevation points. The different scales of the VGs were represented by different colors
(Figure 2b). The elevation of each VG was determined according to the average of the
points’ elevation. The large-scale VGs played a role in smoothing the terrain and obtaining
elevation values. The elevation values obtained by the small-scale VGs were similar to the
actual elevation of the ground surface.
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2.3. Elevation Differences

The spatial scale of a VG directly impacts the corresponding data volume and repre-
sentation accuracy, as well as the calculation of topographic factors such as the elevation
variation coefficient, slope, and slope direction. Different spatial scales of VGs encompass
different topographic and geomorphological features. As the spatial scale of a VG increases,
the accuracy of the description of surface details is gradually smoothed, and the features
are gradually integrated. In contrast, as the spatial scale of the VG becomes finer, the
description of surface details gradually increases, and the smaller the spatial scale is, the
more accurately and realistically the detailed features of the surface within the region
are reflected. Therefore, calculating the elevation differences of VGs at different spatial
scales can reflect discrepancies in the surface features contained in VGs at different scales
(e.g., vegetation). As shown in Figure 3, the black points represent the ground points,
and the green points represent the vegetation points. A high-precision topographic model
generated from a small-scale VG provides high precision for describing surface details. A
low-precision topographic model generated with a large-scale VG provides a rough repre-
sentation of surface details, and surface features tend to be flat. The elevation difference
among VGs at different spatial scales can be calculated, and significant fluctuations often
appear at the edges of vegetation points. Because of the different sizes of VGs, an output
standard is required when calculating the differences between two VGs. We chose a small
VG as the output standard. To obtain the optimal parameters, VG thresholds ranging from
0.1 to 3.2 m were considered.
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2.4. Multiscale Coefficients of Elevation Variation

The elevation variation coefficient (EVC) is an important terrain factor in digital terrain
analysis. As a variable that reflects the dispersion degree of the average elevation, it is
the ratio of the standard deviation and average of the elevations at different points, which
can reflect differences in terrain characteristics. The corresponding calculation is shown in
Formula (1). The EVC can directly represent the variations in elevation in different-scale
VGs and minimize the effect of noise.

EVC = Hstd/Hmean (1)

where EVC is the elevation variation coefficient of a VG in the analysis area, which objec-
tively reflects differences in elevation in the analysis area. Hstd is the standard deviation
of elevation in the VG statistical window, and Hmean is the mean elevation in the VG
statistical window.

To calculate the standard deviation and mean of elevation in each VG statistical
window, elevation differences are determined in neighborhoods, and the result for a
neighborhood grid is used as the new value of the central grid. The multiscale VG statistical
windows are shown in Figure 4. To obtain the optimal parameters, thresholds of 1–6 grid
were considered.
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2.5. Accuracy Assessment

We manually classified the ground and vegetation points as reference data. The results
of the proposed method were then compared with the reference data. To evaluate the
accuracy of terrain modeling, we used the method recommended by the International
Society for Photogrammetry and Remote Sensing (ISPRS) for quantitative analysis [30]. The
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method proposed by the ISPRS in 2003 is shown in Table 1. The precision of the vegetation
removal results was quantified and evaluated based on type I error, type II error, and
total error.

Table 1. Table method.

Reference
Result

Sum
Ground Points Vegetation Points

Ground points a b e = a + b
Vegetation points c d f = c + d

Sum g = a + c h = b + d n = a + b + c + d

In Table 1, a represents the number of ground points correctly classified as ground
points. b represents the number of ground points incorrectly classified as vegetation points
(affecting type I error). c represents the number of vegetation points incorrectly classified
as ground points (affecting type II error). d represents the number of vegetation points
correctly classified as vegetation points. Additionally, e represents the number of ground
points in the reference dataset used for visual interpretation classification. f represents
the number of vegetation points in the reference dataset used for visual interpretation
classification. g represents the number of ground points used in terrain modeling. h
represents the number of feature points used in terrain modeling. n represents the total
number of point clouds.

Three indices were calculated for accuracy assessment. Type I error represents the
proportion of ground points that were incorrectly classified as vegetation points, also
known as truth-rejection errors. Type II error represents the proportion of vegetation points
that were incorrectly classified as ground points, also known as false-tolerance errors. Total
error represents the overall error proportion, which reflects the inconsistency between
terrain modeling results and actual values. The corresponding formulas are as follows.

Type I error =
b
e
× 100% (2)

Type II error =
c
f
× 100% (3)

Total error =
b + c

n
× 100% (4)

2.6. Study Areas and Data

Two study areas (T1 and T2) were used to validate the proposed method. The T1 area
was located in Xining city, Qinghai Province, China. A Da-Jiang Inspire1 UAV equipped
with a 20 mm fixed-focus lens and PIX4Dmapper 4.7.5 software were used to perform
image matching, aerial triangulation, and dense point-cloud matching. The study area
was flanked by steep cliffs to the south, and the quality of the point cloud was poor in this
area. Therefore, the study area was cropped using the main southern road as the boundary.
The study area covered 23,439.46 square meters. The point density was 189 points/m2. In
addition to ground points, the study area contained a large amount of vegetation and a
small number of man-made ground objects. The vegetation mainly included two types of
dense low vegetation, which were connected in strips in some areas and isolated in others.
The orthophoto image and reference cloud points for T1 are shown in Figure 5. The T2 area
was located in Yulin city, Shaanxi Province, China. UAVs were used to collect data and
produce aerial images of Madigou. The study area covered 28,881.2 square meters. The
point density was 27 points/m2. This area contained a large amount of vegetation. The
vegetation was mainly isolated as single points, with a small amount of densely aggregated
vegetation. The orthophoto image and reference cloud points for T2 are shown in Figure 6.
Field research and expert visual interpretation were used to select the reference data.
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3. Results
3.1. Optimal Scale of the Virtual Grid

Figure 7 shows the digital surface model generated for the study area at different VG
scales. The surface features vary at different scales. In the small-scale VG, the surface details
are obvious, and low vegetation can be clearly expressed. In the 6.4 m VG, only abrupt
surface features such as gullies and steep slopes can be observed, and the surface vegetation
features are basically smoothed. In VGs with a scale greater than 6.4 m, small-scale surface
features can no longer be observed.
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for T1; (b) diagram of the VG at the 0.4 m scale for T1; (c) diagram of the VG at the 1.6 m scale for
T1; (d) diagram of the VG at the 6.4 m scale for T1; (e) diagram of the VG at the 0.1 m scale for
T2; (f) diagram of the VG at the 0.4 m scale for T2; (g) diagram of the VG at the 1.6 m scale for T2;
(h) diagram of the VG at the 6.4 m scale for T2.

Figure 8 shows the results of the elevation variations in VGs at different scales in the
study area. The scale of the output result is equal to that of the small-scale grid when
calculating the elevation change. The VGs can no longer express the surface features with
scales larger than 6.4 m, so scales larger than 6.4 m were not considered when selecting the
VG scale.
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Figure 8. Results of elevation variation for VGs at different scales: (a) elevation variation for a
3.2–1.6 m VG of T1; (b) elevation variation for a 3.2–0.2 m VG of T1; (c) elevation variation for a
1.6–0.8 m VG of T1; (d) elevation variation for a 1.6–0.2 m VG of T1; (e) elevation variation for a
0.8–0.4 m VG of T1; (f) elevation variation for a 0.8–0.2 m VG of T1; (g) elevation variation for a
3.2–1.6 m VG of T2; (h) elevation variation for a 3.2–0.2 m VG of T2; (i) elevation variation for a
1.6–0.8 m VG of T2; (j) elevation variation for a 1.6–0.2 m VG of T2; (k) elevation variation for a
0.8–0.4 m VG of T2; (l) elevation variation for a 0.8–0.2 m VG of T2.

The elevation variations between pairs of VG scales highlight the areas with abrupt
changes in the surface in the sample area. To obtain the best VG scale, quantitative
comparisons and analyses were performed based on the terrain modeling error results
for the different elevation variations shown above. In the process of terrain modeling, the
neighborhood radius and segmentation threshold were selected as constants in all cases.
The neighborhood radius was selected as a pixel unit, and the segmentation threshold was
determined using the natural breakpoint method. The thresholds of point-cloud filtering
are shown in Table 2. The ground feature points included the vegetation area and vegetation
boundaries. The threshold value of the vegetation area was (−∞,0], the threshold value
of vegetation boundaries was (1.5,+∞), and the threshold value of ground points was
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(0,1.5]. After threshold segmentation, the attributes of ground points and vegetation points
were assigned to the point cloud in the corresponding virtual grid to remove the surface
vegetation and improve the accuracy of terrain modeling. A comparison of error results is
shown in Figure 9.

Table 2. Thresholds of point-cloud filtering.

Ground Points Vegetation Points

Threshold ( 0, 1.5]
Vegetation area Vegetation boundary

(−∞, 0] (1.5,+∞)
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As shown in Figures 8 and 9, the contrast between ground points and vegetation points
is gradually enhanced with increasing grid-scale difference. The larger the scale difference
is, the more prominent the vegetation characteristics are. Vegetation tends to be difficult
to identify in areas with considerable elevation variation. The smaller the scale difference
is, the higher the similarity between the top of vegetation and the ground. The variation
trends for the type I error, type II error, and total error were different at different scales. As
the VG scale gap increased, the three kinds of errors generally displayed downward trends.
The error in the elevation variation results obtained at the 3.2 m and 1.6 m scales was the
largest because the output scale at 1.6 m could not express terrain features well, resulting in
a large number of errors. The error decreased when 0.2 m was used as the small-scale VG.
Figure 9a indicates that type I error was the smallest among the error results for elevation
variations between the 3.2 m and 0.2 m scales, followed by that between the 2.8 m and
0.2 m scales. The final terrain modeling result based on the difference between grids at
3.2 m and 0.2 m scales was associated with the smallest type II error, followed by that
between the results at the 3.0 m and 0.2 m scales. The total error was lowest based on the
difference between the 3.2 m and 0.2 m scales, followed by that between 3.0 m and 0.2 m.
Based on the three types of errors, 0.2 m was the VG scale that yielded the smallest error
for T1. Figure 9b indicates that type I error was the smallest among the error results for
elevation variations between the 1.8 m and 0.2 m scales, followed by that between the 2.2 m
and 0.2 m scales. The final terrain modeling result based on the difference between grids
at 2.0 m and 0.2 m scales was associated with the smallest type II error, followed by that
between the results at the 0.8 m and 0.4 m scales. The total error was lowest based on the
difference between the 2.0 m and 0.2 m scales, followed by that between 1.8 m and 0.2 m.
Based on the three types of errors, 0.2 m was the VG scale that yielded the smallest error
for T2. The results indicate that it is possible to not only avoid misjudgments caused by a
low output resolution, but also to avoid the increased noise associated with a high output
resolution. Finally, the 3.2 m and 0.2 m scales of VGs of T1 and the 2.0 m and 0.2 m scales
of VGs of T2 were selected to continue the multiscale neighborhood calculation of EVCs to
determine the best-scaled neighborhoods.

3.2. Optimal Neighborhood Radius

Figure 10 shows the results of EVCs obtained under different neighborhood radii for
3.2 m and 0.2 m elevation variations for T1 and 2.0 m and 0.2 m elevation variations for
T2. The ground points displayed obvious false negatives after the neighborhood radius
reached 6 VG radius. Therefore, only the EVCs in a neighborhood radius of 1–6 VGs
were analyzed.

Figure 10 shows that the areas with negative values correspond to vegetation, and
the boundaries around vegetation are highlighted. The vegetation boundaries become
more prominent and the contrast between ground and vegetation becomes more prominent
with increasing neighborhood radius. However, the vegetation areas display obvious
false negatives inside boundaries in some cases, and low and small vegetation areas also
correspond to false negatives.

The error results for terrain modeling with different-scale EVCs were quantitatively
compared and analyzed. The same threshold was selected for segmentation in the process
of terrain modeling. The trends of the type I error and total error are the same in the
quantitative error comparison in Figure 11. The error increased with increasing scale. The
error decreased with increasing scale for the type II error in T1 in Figure 11a, but the range
of change was small. The error increased with increasing scale for the type II error in
T1 in Figure 11b. Based on the results in Figures 10 and 11, it can be concluded that the
filtering result obtained by calculating the EVC in a one-neighborhood radius was the
most accurate.
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Figure 10. Multiscale EVC results. (a) EVC for a 1-VG neighborhood radius of T1; (b) EVC for a
3-VG neighborhood radius of T1; (c) EVC for a 6-VG neighborhood radius of T1; (d) EVC for a
1-VG neighborhood radius of T2; (e) EVC for a 3-VG neighborhood radius of T2; (f) EVC for a 6-VG
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3.3. Optimal Segmentation Threshold

The optimal threshold value was selected based on the results of the optimal scale
elevation-variation coefficient. The error at different thresholds was analyzed and quantita-
tively assessed by comparing the terrain modeling results for the 3.2 m and 0.2 m EVCs
in one-pixel neighborhoods. The values in vegetation areas were mostly negative after
calculating the elevation variation in the VGs at different scales, and the corresponding
EVCs were also negative. The selection of the threshold was mainly affected by vegetation
boundaries. A comparison of the filtering error results is shown in Figure 12.
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It is obvious from the quantitative error comparison in Figure 12 that the variation
in the error was related to the selection of threshold. The trends of the type I error and
total error were roughly the same. As the segmentation threshold decreased from 1.0
to 1.5, minimum error was observed at 1.5. Then, as the threshold increased from 1.5
to 2.0, the error continually increased. The overall variation trend was the same for the
type II error, with a minimum error at a threshold of 1.4, followed by 1.6 and 1.5. After
comprehensive consideration, the terrain modeling accuracy was the highest when the
segmentation threshold was 1.5. In the experiment, it was found that the segmentation
threshold displayed a certain relationship with the vegetation height in the sample area.
The abrupt changes in vegetation edges were the most obvious, and the EVC increased
with increasing vegetation height.
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3.4. Accuracy Analysis

The terrain-modeling method based on the EVC was applied in two research areas to
evaluate the accuracy of the method. The specific parameter selection scheme was analyzed
in detail using the T1 area as an example, and the same approach was used for T2. Table 3
shows the parameters used in the experiment in the two study areas.

The error results based on the test data are shown in Table 4. The type I error, type
II error, and total error in the T1 area were 9.20%, 5.83%, and 7.68%, respectively. The
type I error, type II error, and total error in the T2 area were 1.93%, 5.84%, and 2.28%,
respectively. The type I error was larger than the type II error, which was due to the large
amount of vegetation-covered areas in the study area. The purpose of point-cloud filtering
is to accurately extract ground points and ensure terrain accuracy. Therefore, type II errors



Remote Sens. 2023, 15, 3569 15 of 20

should be controlled first. Some type I errors could be sacrificed to ensure that the filtered
data do not contain areas of vegetation.

Table 3. Parameters of our method in the study areas.

Study Areas T1 T2

Large-scale VG 3.2 m 2.0 m
Small-scale VG 0.2 m 0.2 m

Neighborhood radius 1 grid 1 grid
Threshold 1.5 1.5

Table 4. Error results based on the test data.

Reference
Result

Sum Error (%)
Ground Points Vegetation Points

T1
Ground points 2,215,181 224,442 2,439,623 Type I: 9.20

Vegetation points 117,420 1,896,071 2,013,491 Type II: 5.83
Sum 2,332,601 2,120,513 4,453,114 Total: 7.68

T2
Ground points 705,636 13,893 719,529 Type I: 1.93

Vegetation points 4130 66,601 70,731 Type II: 5.84
Sum 709,766 80,494 790,260 Total: 2.28

4. Discussion

The accuracy of terrain modeling based on UAVs is significantly affected by surface
vegetation [31]. Therefore, vegetation removal is an important step in terrain modeling.
Accurate vegetation removal is the key to ensuring the accuracy of terrain models. The
current methods have shortcomings in areas with complex terrain and low vegetation,
and they mainly identify and remove vegetation based on specific scales [32]. However,
the characteristics of terrain and ground features at different spatial scales are obviously
different, and it is difficult to accurately distinguish vegetation by only considering the
characteristics of a single scale [33]. Some scholars have improved modeling methods from
the perspective of multiscale progression [26,34,35], but individual features are extracted.

In recent years, point-cloud filtering methods based on deep learning have gradually
increased in popularity [36,37]. In these methods, the point clouds of training samples are
usually labeled with different categories. Not only ground points and vegetation points,
but also multiple classes of objects such as trees, roads, and buildings can be detected.
These methods represent a new research direction. However, the implementation of these
methods requires a large number of samples to be labeled and trained in advance. The
characteristics of training samples and the accuracy of labeling have a considerable impact
on the final results.

In this approach, a series of variations in elevation values after scale synthesis based
on VGs reflect the characteristics of the terrain at different scales. Therefore, a UAV terrain-
modeling method based on multiscale EVCs in low-vegetation areas is proposed using
elevation variability coefficients to quantify and extract differences in topographic features
at different scales.

To measure the final terrain-modeling accuracy of this method, cloth simulation filter-
ing (CSF), triangulated irregular network (TIN) filtering, and progressive morphological
filtering (PMF) were used to model the terrain in the two study areas. The parameter
settings of the three methods referred to the references [6,8,38] to optimize their filtering
results and, thus, the comparison with our method is reasonable. These three methods were
implemented in the software packages CloudCompare, Photoscan, and PCL, respectively.
The point cloud after vegetation removal with our method is shown in Figure 13a. The
parameters of compared methods were set as follows. In the CSF method, the scene was set
to steep slope, the cloth resolution was set to 0.3, the maximum number of iterations was
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set to 500, the classification threshold was set to 0.2, and the slope preprocessing condition
was set to off. The point cloud after vegetation removal with the CSF method is shown in
Figure 13b. Notably, vegetation removal was most effective in areas of dense vegetation
cover, but less effective in gully areas with complex topography. In the TIN method, the
max angle was set to 10, the max distance was set to 0.5, and the cell size was set to five.
The point cloud after vegetation removal with the TIN method is shown in Figure 13c.
Topographic features were preserved in gully areas, but the method performed poorly in
areas of dense vegetation cover. In the PMF method, the max window size was set to five,
the terrain slope was set to 0.5 f, the initial elevation threshold was set to 0.5 f, and the
max elevation threshold was set to 0.5 f. The point cloud after vegetation removal with the
PMF method is shown in Figure 13d. The method was effective in filtering and removing
vegetation in flat areas, but performed poorly in areas of dense vegetation cover and areas
with gullies. The DEM obtained by interpolating the point-cloud data after vegetation
removal with our method for the T1 area is shown in Figure 13f.
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Figure 13. Results for T1: (a) the point cloud after vegetation removal with our method for T1; (b) the
point cloud after vegetation removal with the CSF method for T1; (c) the point cloud after vegetation
removal with the TIN method for T1; (d) the point cloud after vegetation removal with the PMF
method for T1; (e) the DSM of T1; (f) the DEM obtained by interpolating the point-cloud data after
vegetation removal with our method for T1.

The point cloud after vegetation removal with our method is shown in Figure 14a. The
parameters of the compared methods were set as follows. In the CSF method, the scene was
set to steep slope, the cloth resolution was set to 0.3, the maximum number of iterations was
set to 500, the classification threshold was set to 0.3, and the slope preprocessing condition
was set to on. The point cloud after vegetation removal with the CSF method is shown in
Figure 14b. In the TIN method, the max angle was set to 0.3, the max distance was set to
0.5, and the cell size was set to one. The point cloud after vegetation removal with the TIN
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method is shown in Figure 14c. In the PMF method, the max window size was set to three,
the terrain slope was set to 0.5 f, the initial elevation threshold was set to 0.5 f, and the max
elevation threshold was set to 0.5 f. The point cloud after vegetation removal with the PMF
method is shown in Figure 14d. The DEM obtained by interpolating the point cloud after
vegetation removal with our method for the T2 area is shown in Figure 14f.
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with the other methods, it can better deal with areas with low vegetation coverage and 
preserve the details of terrain. A comparison of Figures 13f and 14f with Figures 13e and 
14e indicates that compared with the DSM, the DEM retains the topographic features of 
the region and effectively eliminates vegetation points. A comparison of Figures 13a–d 
and 14a–d indicates that CSF can be used to remove most of the vegetation, but the effect 

Figure 14. Results for T2. (a) The point cloud after vegetation removal with our method for T2; (b) the
point cloud after vegetation removal with the CSF method for T2; (c) the point cloud after vegetation
removal with the TIN method for T2; (d) the point cloud after vegetation removal with the PMF
method for T2; (e) the DSM for T2; (f) the DEM obtained by interpolating the point-cloud data after
vegetation removal with our method for T2.

Figures 13a and 14a show that the proposed filtering algorithm can effectively filter the
ground points and effectively remove a large amount of vegetation cover. Compared with
the other methods, it can better deal with areas with low vegetation coverage and preserve
the details of terrain. A comparison of Figures 13f and 14f with Figures 13e and 14e indicates
that compared with the DSM, the DEM retains the topographic features of the region and
effectively eliminates vegetation points. A comparison of Figures 13a–d and 14a–d indicates
that CSF can be used to remove most of the vegetation, but the effect is poor for low vegetation
distributed in patches, and the terrain boundaries are eliminated where the slope changes
greatly. The TIN method preserves the boundaries of terrain, but the effect of vegetation
removal is poor in areas with large terrain gradients. The PMF method works well in flat-
terrain areas, but it does not work well in some areas with large topographic relief, and the
algorithm has many parameters that are difficult to set. We quantitatively analyzed the results
of the different methods, and an error comparison is shown in Table 5.

The results in Table 5 show that the method based on the multiscale EVC is superior
to the CSF, TIN, and PMF methods in terms of the type I error, type II error, and total error
based on the terrain-modeling results for the T1 and T2 study areas. In general, the filtering
algorithm proposed in this study is more suitable for areas with low and dense vegetation.
Notably, low vegetation is filtered, and the ground points are accurately retrained, thus
meeting the requirements for generating high-precision DEMs.
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Table 5. Filtering error comparison for the three methods.

Sample Error Our Method CSF TIN PMF

Xining
Type I (%) 9.20 8.66 22.32 1.64
Type II (%) 5.83 17.41 7.72 12.70
Total (%) 7.68 12.62 15.72 6.64

Yulin
Type I (%) 1.93 3.01 2.46 2.57
Type II (%) 5.84 10.45 27.62 27.73
Total (%) 2.28 5.97 4.71 4.82

The point-cloud densities in the two study areas differ significantly at 189 points/m2

and 27 points/m2, respectively. However, the parameter settings for the two study areas
are almost identical, except for the large-scale VG. The point-cloud density may affect the
results. If the point cloud is too sparse, the optimal scale may be difficult to determine be-
cause the sparse point cloud will not include all the vegetation or terrain relief information.
However, in this study, the point-cloud densities were all sufficiently high, so the result
varied little with the selected threshold. In addition, although the point-cloud density
varied, the vegetation type (low-rise vegetation), and topography in the two plots were
similar, and, thus, the threshold values were also similar. This indicates that the effect of
vegetation type may be greater than that of the point-cloud density. In addition, the optimal
size of the small-scale VG in both study areas was 0.2 m. The size of the small-scale VG
determined the size of the output elevation difference. The size of 0.2 m not only ensures
the precision of vegetation removal but also avoids misjudgments regarding areas of low
topographic relief. The optimal value of the neighborhood radius for both sample areas
was one grid. Increasing the neighborhood radius does not have a significant effect on
the type II error and mainly causes rapid increases in the type I error and the total error
(the proportion of ground points misclassified as vegetation points increases). To ensure
accuracy, the optimal solution for the neighborhood radius should be re-explored based
on the study area. The vegetation in both study areas was characterized by low-growing
vegetation. The optimal solution for the splitting threshold in both study areas was 1.5. This
value ensures that the vast majority of low vegetation in both study areas can be identified.
The optimal size of the large-scale VG varied in the two study areas. The optimal value for
T1 was 3.2 m, but the optimal value for T2 was 2.0 m. The vegetation in T1 was densely
distributed, and the vegetation in T2 was characterized by a mostly isolated distribution.
Vegetation distribution patterns may be related to the appropriate selection of the size of the
large-scale VG. In future work, the applicability of the methods in this paper can be verified
in areas with high vegetation coverage or containing artificial features. However, the choice
of parameters may not yield the same results. Future improvements to this method in
terms of the adaptive selection of parameters should be considered. Furthermore, UVA
photogrammetry can obtain optical images of the test areas, and the normalized difference
vegetation index (NDVI) can be used to identify vegetated areas. Notably, the NDVI could
be introduced in follow-up research to improve the filtering accuracy.

5. Conclusions

This paper addresses the issue of vegetation removal during terrain modeling. Ac-
cording to the different topographic features expressed by point-cloud data at different
scales, a terrain-modeling method based on multiscale EVCs was proposed in this paper.
The amount of elevation change between any two different scales of VGs was calculated
and the EVC of the VG that yielded the largest elevation variation was determined. The
optimal parameters were analyzed and discussed. The experimental results show that
the multiscale EVC method can accurately remove vegetation points and reserve ground
points in low and dense vegetation-covered areas. The error results were better than those
of the CSF, TIN, and PMF methods. The type I error, type II error, and total error in the
study areas ranged from 1.93 to 9.20%, 5.83 to 5.84%, and 2.28 to 7.68%, respectively. The
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total error of the proposed method was 2.43–2.54% lower than that of the CSF, TIN, and
PMF algorithms in the study areas.

The parameters of the proposed method are easier to set than those of other methods.
The parameters minimally changed between the two study areas. The optimal small-scale
VG, neighborhood radius, and threshold in the two study areas were the same (0.2 m for
the small-scale VG, 1 grid for the optimal neighborhood radius, and 1.5 for the threshold),
thus highlighting the robustness of the proposed method. Only the large-scale VG changed
in the two study areas. The larger the scale difference is, the more prominent the vegetation
characteristics are. The optimal large-scale VG size was 3.2 m in the T1 and 2.0 m at T2,
which is only a minor difference. The optimal scale of VGs may differ in different areas,
and this scale is related to vegetation distribution patterns. In general, we recommend
2.0–3.0 m as the large-scale VG size. The proposed method provides a foundation for the
rapid establishment of high-precision DEMs based on UAV photogrammetry.
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