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Abstract: The effective representation of land surface hydrological models strongly relies on spatially
varying parameters that require calibration. Well-calibrated physical models can effectively propagate
observed information to unobserved variables, but traditional calibration methods often result in
nonunique solutions. In this paper, we propose a hydrological parameter calibration training frame-
work consisting of a transformer-based parameter learning model (ParaFormer) and a surrogate model
based on LSTM. On the one hand, ParaFormer utilizes self-attention mechanisms to learn a global
mapping from observed data to the parameters to be calibrated, which captures spatial correlations.
On the other hand, the surrogate model takes the calibrated parameters as inputs and simulates
the observable variables, such as soil moisture, overcoming the challenges of directly combining
complex hydrological models with a deep learning (DL) platform in a hybrid training scheme. Using
the variable infiltration capacity model as the reference, we test the performance of ParaFormer
on datasets of different resolutions. The results demonstrate that, in predicting soil moisture and
transferring calibrated parameters in the task of evapotranspiration prediction, ParaFormer learns
more effective and robust parameter mapping patterns compared to traditional and state-of-the-art
DL-based parameter calibration methods.

Keywords: parameters calibration; transformer; SMAP observation; soil moisture prediction; deep
learning; MODIS evapotranspiration data

1. Introduction

Parameter calibration is a necessary step in the simulation process of Earth scientific
models, including non-dynamical system models, such as radiative transfer models [1], as
well as dynamical system models, such as land surface hydrological models, that simulate
soil moisture, evapotranspiration, runoff, and groundwater recharge [2,3]. A central issue
with process-based geoscience models is that their behavior and performance are signifi-
cantly influenced by unobservable and underdetermined parameters. The uncertainties of
these parameters, such as the infiltration curve indices closely related to flow production in
land surface hydrologic process-based models, severely impact the simulation results, such
as simulated soil moisture.

In the last decades, parameter calibration techniques have been continuously developed
and applied to hydrological process-based models (PBM) in the geosciences. Calibration
algorithms aim to adjust the values of the unobserved parameters (θ) at each location (grid
point or site) so that the simulated results are as close as possible to the measured data [4]. A
model contains a unique set of parameters for the parameterization of a particular process,
which are difficult to measure directly. For instance, almost all rainfall-runoff processes
involve unobservable parameters that need to be calibrated. There are two types of hydro-
logical model parameter calibration methods: manual calibration (trial-and-error method)
and automatic calibration, with the latter having become the mainstream approach in hy-
drological parameter optimization. Global parameter optimization methods represented
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by the evolutionary algorithm (EA) have been applied to hydrological parameter calibra-
tion [5–7], such as the shuffling complex evolutionary (SCE-UA) method [8,9]. SCE-UA
integrates a genetic algorithm and the ideas of the downhill simplex algorithm for global
optimization of model parameters, which has been used in traditional hydrological model
parameter calibration.

However, complex physical distributed hydrological models often have a large number
of tunable parameters. The traditional optimization algorithms usually require tens of thou-
sands of physical model runs to find the global optimum solution [10]. Moreover, since the
calibration parameters are very sensitive to changes in spatiotemporal scales, other model pa-
rameters, model structure, and input data, these optimization algorithms constantly require
re-optimization of the parameters. As a result, the optimization requires a very large number
of repeated physical model simulations. In recent years, researchers have proposed the use
of mathematical models to replace the original physical models for automatic calibration,
i.e., applying simplified mathematical models with similar functionalities to the original
models, making the parameter calibration of the complex PBM highly efficient [11,12]. Cur-
rently, many surrogate models based on deep learning have been applied in the field of
hydrology [11,13,14]. For example, long short-term memory (LSTM) neural networks have
successfully predicted soil moisture [15,16], runoff [17–19], and evapotranspiration [20]. By
leveraging the capabilities of deep learning models, the surrogate models that integrate hy-
drological calibration parameters provide an alternative approach to calibrating hydrological
parameters. They are capable of learning complex relationships between inputs and outputs,
capturing non-linear patterns, and handling high-dimensional parameter spaces.

In land surface hydrological processes, the parameters to be calibrated share commonal-
ities in similar spatial areas [21,22]. However, traditional calibration procedures are usually
applied separately to each site, which tends to produce different and spatially discontinuous
parameters for adjacent and geographically similar areas [3]; in other words, they do not
utilize the common knowledge learned at one location and share it with other locations. On
the other hand, most studies assume that the parameters are independent of each other and
ignore the correlations among them. As a result, it is difficult to find the optimal parameters
as different parameter sets produce similar simulation results. A potential solution is to
apply data-driven modeling methods to learn a complex mapping with global constraints
that covers all locations, which may also capture the spatial correlation characteristics of
the parameters. While deep learning has been used for traditional parameter calibration,
its typical superficial role is that of an efficient agent model that emulates PBM to reduce
the computation time during calibration. In this paradigm, parameter calibration is still
treated independently for each site, transitioning from “EA + PBM” to “EA + DL-based sur-
rogates”. Tsai [23] utilized feed-forward fully connected neural networks (FFN) and LSTM
to replace the EA algorithm and then fed the resulting optimal calibration parameters into
the surrogate model. However, the limitations of FFN and LSTM in capturing long-range
dependencies in the data may restrict their ability to effectively model complex relationships
and patterns in hydrological data.

The purpose of this paper is to design a deep learning model that can effectively
calibrate hydrological parameters, replacing traditional optimization algorithms. However,
deep learning allows us to predict variables with sufficient observed data for supervised
learning. For unobserved variables, such as evaporation and groundwater recharge, we
still rely on PBMs that have been calibrated. Since the calibrated hydrological parameters
are unobservable targets, supervised learning cannot be carried out directly. Therefore, it is
also necessary to design a solution to integrate a deep learning framework and hydrological
model to achieve an end-to-end parameter calibration architecture.

In this work, we employ the variable infiltration capacity (VIC) model [24–26] as the
PBM simulation model, which is a large-scale distributed land surface hydrological model.
We built a transformer-based deep learning architecture (ParaFormer) to generate the hydro-
logical parameters, which are fed into an LSTM-based surrogate model of a VIC model to
output the observable target variables. The hybrid architecture uses the surrogate model
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to backpropagate information from observed to unobserved hydrological parameters. The
weights of the surrogate model are frozen because they have been pretrained in advance
and are not updated in ParaFormer training, but only pass the gradient information. To
adapt to various situations, we designed ParaFormerA and ParaFormerZ to generate the
hydrological parameters, respectively. ParaFormerA consists of an encoder for the trans-
former, which takes static attributes (A), such as soil, vegetation, and topography, as input
data and is suitable for locations with missing or incomplete spatio-temporally driven data.
ParaFormerZ learns a global mapping from meteorological forcing (X), target observations
(Z), and static attributes data for parameters (A, X, Z → θ), incorporating dynamic features
of historical time-series data (response pairs (X, Z)) using a cross-attention mechanism.

ParaFormer extracts data features using a multi-head self-attention mechanism, defin-
ing loss functions over the entire training dataset to obtain a global constrained model,
which differs from traditional algorithms where the parameters at each location are derived
only from features at that location. We also incorporate empirical knowledge to the loss
function by adding the range boundary loss of the generated parameters. In summary, the
main contributions of this paper are listed as follows:

• This paper proposes an end-to-end, transformer-based deep learning architecture for
hydrological model parameter calibration, named ParaFormer, for two different cases
to efficiently generate optimal hydrological parameter combinations.

• We deploy an LSTM-based surrogate model that incorporates PBM parameters as train-
ing input to process the calibration parameters generated by ParaFormer. A transformer
model with a multi-head self-attention mechanism is also deployed to learn the global
spatiotemporal mapping of hydrological observation data to unobserved parameters.

• We conduct two experiments to evaluate our approach; the results demonstrate that
the calibrated parameters by ParaFormer improve the performance of the hydrological
models and reduce the uncertainty in land surface hydrological predictions compared
to other methods.

2. Problem Statement

The primary objective of this paper is to utilize deep learning to generate parameter
values θ in a hydrological model using observed data in order to achieve an approximate
match between the simulated values of the model hydrological variables and the observed
values of the real hydrological system. To accomplish this, we consider a hydrological
region R with n measurement locations (e.g., grid points, stations, or basins), represented
by the set B = {b1, b2, . . . , bn}. For each location bi, we use its input time feature series
X1:T

i =
{

x(1)i , x(2)i , . . . , x(T)i

}
, which comprises meteorological forcing data x(t)i at time

t, such as precipitation and temperature. The input data also include k observable at-
tributes ϕi = {ϕ1, ϕ2, . . . , ϕk}, a vector specific to position i. Additionally, there are p
unobserved parameters θi =

{
θ1, θ2, . . . , θp

}
for which we need to estimate their optimal

values. These parameters may be unobservable, too expensive, or difficult to observe with
the desired accuracy, resolution, or coverage. The output is represented by the time series
Y1:T

i =
{

y(1)
i , y(2)

i , . . . , y(T)
i

}
. At a forecast time T, the process-based hydrological model

(M) at a particular location i can generally be described as

Y (1:T)
i =M

(
X(1:T)

i ;ϕi; θi

)
(1)

Suppose, given the observation Z1:T
i =

{
z(1)i , z(2)i , . . . , z(T)i

}
, with z(t)i = H

(
yt

i
)
+ ε

(t)
i ,

where H is the observation operator and the prediction error ε =
{

ε
(1)
i , ε

(2)
i , . . . , ε

(T)
i

}
.

Our task is to train a deep neural network model F for the region R, implementing a
mapping from historical forcing inputs (X), attributes (A) and historical observations (Z)
to a suitable set of parameters (θ) such thatM or its surrogate model(M̂) output the best



Remote Sens. 2023, 15, 3536 4 of 18

fit with the observations Z for all stations in the region. Assuming that the training time is
Ttrain ∈ T and the training sites are Btrain ∈ B, our proposed model is represented as

θ̂i = F
(

x(t)i , Ai, z(t)i , W
)

, t ∈ Ttrain, i ∈ Btrain (2)

where W is the weight parameters of our transformer-based model, which will be obtained
through deep learning training.

Therefore, the goal of our training optimization is

arg min
F

∑
t∈Ttrain ,i∈Btrain

∥∥∥H
(
M
(

x(t)i , ϕi, θ̂i

))
− z(t)i

∥∥∥2
(3)

3. Method
3.1. Framework Description for Parameter Calibration

The general process of hydrological PBM parameter calibration is shown in Figure 1a.
First, the preset parameters, the number of iterations, the convergence criteria, and the
likelihood function of the evolutionary algorithm (EA) are established. Next, according to
the characteristics of the study location and the measured data, the method of moments
is used to estimate the PBM parameters during the calibrated period. The calibrated
parameters are fed into the PBM for forecasting and then the loss is calculated by likelihood
function to adjust the generated parameters by EA. These steps are repeated iteratively until
the convergence criteria of the optimization algorithm are met or the maximum number of
iterations is reached as preset.

LSTM LSTM LSTM

ParaFormer

Input data Parameters (θ)

···

··· ··· ··· ··· ··· ···

Frozen LSTM model for surrogate of PBM

Output

···
Process-based model

(PBM) 

Evolutionary 
algorithms

Time

O
ut

Priori 
Knowledge

Ground 
truth

···
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Actual 
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Ground 
truth (z)

···
Input data

observation

(a)

LSTM LSTM LSTM
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···

··· ··· ··· ··· ··· ···

Frozen LSTM model for surrogate of PBM

Output

···
Process-based model

(PBM) 
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Time

O
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···
Input data
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Figure 1. Overview of the framework for parameter calibration. (a) are traditional evolutionary meth-
ods, and (b) is the architecture of transformer-based parameter learning for parameter calibration.

We replace traditional optimization algorithms with transformer-based deep learning
for hydrological PBM parameter calibration, as shown in Figure 1b. In this work, we employ
the VIC land surface hydrological model as the simulation model. Due to the complexity
of the VIC hydrological model, it is difficult to implement on a deep learning platform for
training. Here, we pretrained one LSTM-based model to reproduce the behavior of VIC as
closely as possible while also allowing for gradient tracking. Similar to the VIC simulation,
the input of this surrogate model also includes the calibration parameters. During the
training process of updating weights by backpropagation of ParaFormer, the weights of
LSTM are frozen while only the gradient is propagated without updating its weights. As
for the testing stage, the optimal parameters θ that are generated by ParaFormer will be
fed to the VIC model to realize an approximate match between the hydrological variables
simulation and their observation.
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3.2. ParaFormer Network

As shown in Figure 2, we designed a transformer-based neural network for calibrating
the parameters of land surface hydrological models. We present two ParaFormer models
that can adapt to different input data: ParaformarA and ParaformarZ. At the core of
ParaFormerA lies a transformer encoder, which is described in the original transformer
work by Vaswani et al. [27]. However, we did not use the decoder part of the architecture,
using multi-layer perceptual networks instead. ParaFormerA receives the static attribute
data (A) of the location as its input. By contrast, the input of ParaFormerZ includes temporal
data: meteorological forcing data and observed values (ground-truth) of the hydrological
prediction variables, which make up the encoder part of the forcing-response pair (X, Z)
that is fed into the transformer. The input for the decoder part of ParaformarZ is the same
as for ParaFormerA with observable attributes A alone.

N x

Multi-Head 
Self-Attention

Input Embedding

Add & Norm

Feed Forward 

Add & Norm

K V Q

N x

ParaformerA

Linear Mapping

Multi-Head 
Self-Attention

Input Embedding

Add & Norm

Feed Forward 

Add & Norm

K V Q

Linear Mapping

N x

Multi-Head 
Cross-Attention

Add & Norm

Feed Forward 

Add & Norm

K V Q

ParaformerZ

Positional 
Encoding

Multi-Head 
Self-Attention

Input Embedding

Add & Norm

K V Q
+

[X, Z]
Input: [A]

Input: [A]

Parameters (θ)

Parameters (θ)

(a)

N x

Multi-Head 
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Input Embedding

Add & Norm

Feed Forward 

Add & Norm

K V Q

N x

ParaformerA

Linear Mapping

Multi-Head 
Self-Attention

Input Embedding

Add & Norm

Feed Forward 

Add & Norm

K V Q
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N x

Multi-Head 
Cross-Attention

Add & Norm

Feed Forward 

Add & Norm

K V Q
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Positional 
Encoding

Multi-Head 
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Input Embedding

Add & Norm

K V Q
+

[X, Z]
Input: [A]

Input: [A]

Parameters (θ)

Parameters (θ)

(b)

Figure 2. The architecture of ParaFormer. (a) ParaFormerA, (b) ParaFormerZ.

ParaFormerA is well-suited for locations where dynamic observation data is either
missing or incomplete, allowing us to train a mapping from raw data A to the parameter (θ̂i)
at selected locations. where A may include, but is not limited to, attributes in the ϕi used in
PBM M (or VIC). ParaFormerZ is designed for locations with available observational data,
enabling us to add the observed values Zt

i of certain hydrological variables as an extra input.
ParaFormerA Model. As shown in Figure 2a, ParaFormerA has essentially the same

encoder structure as transformer, consisting of a stack of N identical layers. Each layer in-
cludes two main components: the multi-head self-attention layer and the feed-forward net-
work, both of which adopt residual connection and normalization. ParaFormerA takes the
data A ∈ RLA as input and passes it through the embedding layer to obtain H ∈ RLA×dmodel ,
as shown in Equation (4), Wem ∈ RLA×dmodel . The multi-head self-attention sub-layer trans-
forms the input H into m distinct query, key, and value matrices through linear projection,
as shown in Equation (5), where W Q

m , WK
m ∈ Rdmodel×dk and WV

m ∈ Rdmodel×dv are learnable
parameters, and dk = dmodel/m is a non-zero natural number. Each head then performs a
sequence of score computations called scaled dot-product attention, resulting in a set of
scores αm; the output of the m-th head Om is shown in Equation (6).
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H = Embedding(A) = AWem (4)

Qm = HW Q
m ; Km = HWK

m ; Vm = HWV
m (5)

Om = αmVm = so f tmax

(
QmK>m√

dk

)
Vm (6)

MultiHead(Q, K, V) = Concat(O1, O2, . . . , Om)WO (7)

The output of the multi-head attention layer is the linear projection of the concatenation
of the m metric Om, as shown in Equation (7), where WO ∈ Rm×dv×dmodel . The feed-
forward layer consists of two linear projections with a ReLU activation function. i.e.,
FFN(O) = max(0, OW1 + b1)W2 + b2, where W1 and W2 are learnable weights and b1,
b2 are biases. The entire architecture employs layer normalization technology, which is
a key part of ParaFormerA stable training and faster convergence. Therefore, our task
representation for the calibration of the hydrological parameters is as follows:

θ̂i = ParaFormerA(A) = Linear(FFN(MultiHead(Q, K, V) + H) + O) (8)

ParaFormerZ Model. The architecture of the ParaFormerZ is designed to capture the
characteristics of dynamic time-series observation data, which goes beyond the capabilities
of ParaFormerA. The advantage of ParaFormerZ is that the incorporation of dynamic
features may improve the generalization of the generated parameters for calibration and
reduce their uncertainty. As shown in Figure 2b, ParaFormerZ receives the time-series input
[X, Z] ∈ RLZ and processes it through the embedding layer to produce HZ ∈ RLZ×dmodel , as
shown in Equation (9); Epos is the sequential position encoding that is implemented by sine
and cosine functions of the different frequencies [27]. The encoder stage of ParaFormerZ
involves extracting features from the input time-series data (X, Z), which outputs the key
(KZ) and value (VZ) matrices. These matrices, KZ and VZ, are then combined with the
query matrix QA, which is produced by multi-head self-attention like ParaFormerA, using
multi-head cross-attention for feature fusion, as shown in Equation (11).

HZ = EmbeddingZ(Z) = ZW Z
em + Epos (9)

QA = MultiHead(HA)W
Q
A (10)

OZ = CrossAttention(QA, KZ, VZ) (11)

where W Z
em ∈ RLZ×dmodel .

Therefore, our task representation for the calibration of the hydrological parameters
by ParaFormerZ is as follows:

θ̂i = ParaFormerZ(A, Z) = Linear(FFN(OZ + QA) + OZ + QA) (12)

4. Experiments
4.1. Data Description

SMAP data (https://nsidc.org/data/spl3smp_e/versions/5, accessed on 11 July 2023).
The target soil moisture observations for VIC are obtained from the SMAP-enhanced level-3
(L3) 9 km resolution surface soil moisture product generated by the Soil Moisture Active-
Passive (SMAP) remote sensing satellite from NASA. Since 2015, the SMAP Level 3 data
have provided irregular and discontinuous time-series data at 2–3 day intervals, which
require filling in missing data. To accomplish this, we employ a deep-learning scheme of data
assimilation based on LSTM networks [16,28], which can fill the time gaps between SMAP
observations and provide seamless time-series data. For the internal difference between the
VIC simulated soil moisture and SMAP, we use the data assimilation method to scale the VIC
simulated soil moisture through a linear function for comparison with SMAP [23,29].

https://nsidc.org/data/spl3smp_e/versions/5


Remote Sens. 2023, 15, 3536 7 of 18

NLDAS data (https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_002/summary,
accessed on 11 July 2023). This data includes the main meteorological forcing data of the
North American Land Data Assimilation System (NLDAS-2).

MODIS data (https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/
products/MOD16A2, accessed on 11 July 2023). The data are an 8-day synthetic evapotran-
spiration product based on the Penman–Monteith equation at 500 m resolution. We did not
use the ET from the MODIS data as a target to train our model. Since they are completely
independent of the SMAP observations, these data are only used here to validate whether
our method for parameter calibration can better describe the dynamics of the land surface
hydrological model, i.e., the generalization of calibrated hydrological parameters in ET
prediction tasks.

4.2. Experimental Setup

We applied the ParaFormer network to the widely used VIC land surface hydrological
model. Firstly, ParaFormer generates parameters that allow VIC to best fit the surface soil
moisture (SM) observations from SMAP. VIC is usually used to simulate evapotranspiration
(ET) and SM, and its inputs from NLDAS data include daily meteorological forecasts, non-
meteorological data, and the parameters to be determined. The meteorological forcing data
include the time-series of precipitation, air temperature, wind speed, atmospheric pressure,
vapor pressure, and long-wave and short-wave radiation. We compared the performance
of different models using training data at two sampling densities from the SMAP and
NLDAS data for selected regions: 1/42 density sampling (sampling one gridcell from each
4× 4 block) and 1/82 density sampling, which we call DAS-S4 and DAS-S8. After data
processing, we obtained 4783 grid points for DAS-S4 and 1206 grid points for DAS-S8.
Secondly, we sampled neighboring grid points outside of DAS-S8 to obtain the new dataset
called DAS-S8NG, which we used to test the performance of the model trained on DAS-S8
at untrained locations. Finally, we also evaluated the uncalibrated variable ET from MODIS
data with the aim of assessing the performance of the VIC parameters generated by the
model in the SM task when applied to the ET simulation.

Baseline Approaches. We compared the performance of ParaFormer with the SCE-UA
algorithm [8,9], FFNA and LSTMZ models [23]. The SCE-UA is the mainstream method
for optimization of the land surface hydrological parameters [8,30], which has been widely
applied in the VIC model. To compare the performance of various deep learning models
for the parameter calibration task of the VIC model, we evaluated a fully connected feed-
forward neural network, denoted as FFNA, that generates the calibrated parameter θ by
taking A as inputs (FFNA : A → θ). We also compared this approach to an LSTM-based
model called LSTMZ, which accepts time-series data as input and can be written as the
mapping (LSTMZ : (A, X, Z)→ θ).

Implementation Details. We performed the experiments on a server with PyTorch
1.2 on Tesla V100 16 GB GPU under a Linux environment. The deep learning models were
optimized using the AdaDelta optimizer, with a scaling coefficient of 0.5 applied to delta;
a coefficient of 0.95 was used to compute a running average of squared gradients, with a
weight decay of 0.00001. The maximum number of epochs was set to 3000.

For all models, we used two years of data (1 April 2015 to 31 March 2017) as the
training set, and one year of data (1 April 2017 to 31 March 2018) as the test set. We trained
models on the sub-datasets DAS-S4 and DAS-S8 separately, and tuned the hidden size and
batch size, respectively. For the FFNA and LSTMZ models, we used a hidden size of 1280
for training on DAS-S4, and 256 for DAS-S8. We set the batch size to 300, and, in the LSTMZ
model, the length of the training instance was 240 days. The program randomly selects
gridcells and time periods from the training dataset with a duration of 240 days to create a
mini-batch for training. The initial learning rate was set to 0.001 and the dropout was set
to 0.5. We found that all the parameters used in the above model were superior choices
compared to other parameter settings. We normalized the inputs and outputs through their
Conterminous United States (CONUS)-wide standard deviation.

https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_002/summary
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD16A2
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD16A2
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For ParaFormerA, the final hidden size was 128, the number of multi-head attention
was 4, and the number of encoders N = 2. As for the model ParaFormerZ, the training
instances had a time-series length of 240 days, a hidden size of 256, 8 multi-head attention,
and N = 2. The training batch sizes for training the ParaFormer model on DAS-S4 and
DAS-S8 were 3600 and 2000, respectively.

Loss Function for Training. An objective function is required for training the network.
In this study, the overall architecture (Figure 1b) is used to perform regression tasks targeting
SM and ET, typically using root mean square error (RMSE) to calculate the loss between
the predicted and ground-truth. However, our task for hydrological parameter calibration
is to generate the optimal hydrological model parameters θ̂i at the i-th site, which are
unobservable (lacking true values). To further constrain the generated parameters within
an appropriate range, we incorporate expert knowledge and the range of parameter values
obtained from calibration experience to calculate the range boundary loss (RBL), as shown in
Equation (13). Our loss function Ltotal is jointly determined by RBL and RMSE to constrain
the calibrated parameters within the specified range during training. The loss function is
as follows:

RBL =
α1 ∑

p
j=1 ReLu(θ̂i − θUb)

ε + ∑
p
j=1 Bool(θ̂i > θUb)

+
α2 ∑

p
j=1 ReLu(θLb − θ̂i)

ε + ∑
p
j=1 Bool(θ̂i < θLb)

(13)

Ltotal = RMSE + RBL =

√
∑n

i=1(y
obs
i − ysim

i )2

n
+ RBL (14)

where θUb and θLb are the upper and lower range boundary matrices of the p parameters to
be calibrated, respectively, as shown in Table 1. ReLu(x) = max(0, x) is the linear rectification
function, and Bool(·) is the Boolean function whose value is in {0, 1}. The constant factors are
set as α1 = α2 = p here, and ε is a constant term to the denominator (ε = 0.01). Specifically,
when the calibration parameters θ̂i are all within the range boundary, RBL = 0.

Table 1. VIC parameters to be calibrated in this paper.

Parameters Details Range

ds Fraction of maximum base flow velocity
where non-linear base flow begins.

[0, 7.6]

dsmax Maximum base flow velocity. [0, 10.8]
expt1 variation of saturated hydraulic conductivity with soil moisture. [0, 4.6]
infilt The variable infiltration curve index. [0, 1]
ws fraction of maximum soil moisture content above

which non-linear baseflow occurs.
[0, 1]

Evaluation Metrics. To test the performance of various algorithms, we used the root
mean squared error (RMSE), the Pearson correlation coefficient (PCC), and the Nash–
Sutcliffe model efficiency coefficient (NSE) as evaluation metrics [15,23]. Three criteria were
calculated as follows:

RMSE =

√
∑n

i=1(y
obs
i − ysim

i )2

n
(15)

PCC =
∑n

i=1[(y
sim
i − ȳsim)(yobs

i − ȳobs)]√
∑n

i=1(y
sim
i − ȳsim)2

√
∑n

i=1(y
obs
i − ȳobs)2

(16)

NSE = 1− ∑n
i=1(y

obs
i − ysim

i )2

∑n
i=1(y

obs
i − ȳobs)2

(17)

where yobs
i is the observed variables of the i-th time steps, ysim

i is the predicted variables
of the i-th time steps obtained by the models, ȳobs is the average observed value of all
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pixels, and n is the sample size. The range of RMSE is [0,+∞) (the smaller the better), and
PCC ∈ [−1, 1] assesses if a model captures the seasonality of the observation as well; the
higher the absolute value of PCC, the better the performance. NSE ∈ (−∞, 1] considers
the bias and 1 indicates a perfect score but can be negative for no skill models.

5. Results
5.1. Optimization Performance

We compared our model with traditional and deep-learning-based (DL-based) param-
eter calibration methods, including SCE-UA, FFN, and LSTM. For a calibration study of SM
prediction using SMAP as the training target, our results (Table 2, Figures 3 and 4) show
that ParaFormer provides better performance metrics than the evolutionary algorithm
SCE-UA across the entire CONUS. Table 2 shows the results of the RMSE, PCC and NSE
evaluations of the five parameter calibration methods on different datasets, which are
averaged over four replicate experiments (random seeds).

Table 2. Results of soil moisture (SM) prediction under calibrated parameters of five models on three
datasets. The DAS-S8NG is only used for testing, with input from the parameters generated by the
model trained on DAS-S8.

DAS-S4 DAS-S8 DAS-S8NG

RMSE PCC NSE RMSE PCC NSE RMSE PCC NSE

SCE-UA 0.048 0.523 0.150 0.047 0.559 0.104 0.089 0.589 −1.665
FFNA 0.046 0.574 0.192 0.046 0.591 0.172 0.055 0.591 −0.014
LSTMZ 0.044 0.618 0.211 0.046 0.600 0.169 0.049 0.600 0.158
ParaFomerA 0.035 0.616 0.203 0.043 0.648 0.216 0.055 0.640 −0.003
ParaFormerZ 0.033 0.668 0.263 0.038 0.653 0.258 0.048 0.649 0.276
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Figure 3. The NSE and PCC cumulative density functions (CDF) of five models for SM prediction
on three datasets. CDF describes the distribution of NSE or PCC for all the grid cells in one dataset;
the performance of the CDF curve below is better than that above it in one metric. (a) DAS-S4 NSE,
(b) DAS-S8 NSE, (c) DAS-S8NG NSE, (d) DAS-S4 PCC, (e) DAS-S8 PCC, (f) DAS-S8NG PCC.
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Figure 4. Scatter distribution for SM prediction on DAS-S8 (a–e) and DAS-S8NG (f–j). The abscissa is
the predicted value output under the calibrated parameters, and SMAP is the observed value of SM.

First, ParaFormerZ outperforms other comparison models on almost all performance
metrics. For ParaFormerA, in both DAS-S4 and DAS-S8, its RMSE values of 0.035 and 0.043,
respectively, are smaller than LSTMZ’s 0.044 and 0.046, despite LSTMZ incorporating the
(X, Z) response input while ParaFormerA does not. In DAS-S8, ParaFormerA achieves
higher PCC and NSE scores of 0.648 and 0.216, respectively, compared to LSTMZ’s values
of 0.600 and 0.161. When compared to FFNA, ParaFormerA exhibits better performance,
even though they receive the same input. Thus, the transformer-based model may serve
better as the transfer function from input A to θ.

Second, DL-based models incorporating the (X, Z) response pair as input, such as
ParaFormerZ (or LSTMZ), outperform ParaFormerA (or FFNA) that solely relies on input A.
This indicates that incorporating dynamic temporal features can enhance overall calibration
performance. Although the NSE metric for LSTMZ is slightly lower than FFNA in the DAS-
S8 dataset, LSTMZ achieves an NSE of 0.211 in DAS-S4, whereas FFNA achieves an NSE of
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0.192. This difference may be attributed to the fact that DAS-S4 contains approximately four
times the number of grid cells compared to DAS-S8, suggesting that the smaller dataset
may have affected the performance of LSTMZ.

Third, for the DAS-S8NG dataset, ParaFormerZ achieves an NSE value of 0.276, out-
performing the other three comparison models with NSE values of 0.158, −0.014, and
−1.665, respectively, and ParaFormerA performs better than FFNA and SCE-UA. In other
words, when the VIC hydrological model parameters calibrated in DAS-S8 are applied to
their neighboring uncalibrated grid cells, ParaFormerZ demonstrates better SM prediction
performance. Therefore, the transformer-based model incorporating the (X, Z) response
pair as input exhibits better spatial generalization in parameter calibration, indicating that
ParaFormerZ has learned a more robust parameter mapping.

According to Table 2, ParaFormerZ achieves better performance metrics results in
DAS-S4, with RMSE, PCC, and NSE values of 0.033, 0.668, and 0.263, respectively, while
the corresponding values for DAS-S8 are 0.038, 0.653, and 0.258. This indicates that a larger
training dataset improves the parameter calibration performance of ParaFormerZ, as shown
in Figure 3a–e. In the DAS-S8NG dataset, DL-based models show significantly higher NSE
scores compared to SCE-UA (Figure 3c), and ParaFormerZ outperforms LSTMZ in predicting
SM. It is noteworthy that the NSE distribution curves for ParaFormerA and FFNA show that,
within the NSE < 0 range, FFNA performs better than ParaFormerA. However, within the
NSE > 0 range, ParaFormerA performs better and even approaches LSTMZ. This may result
from potential overfitting during the transformer training, resulting in poorer generalization
performance within the NSE < 0 range (more challenging to predict grid cells).

Figure 4a,e,f,j show scatterplots of SM predictions on the DAS-S8 and DAS-S8NG
datasets, respectively, with SMAP as the observed truth, where each point represents the
average value over a year. SM, also referred to as soil water content, is generally a non-
negative quantity. We can see that SCE-UA and FFNA have 4 and 1 SM prediction values
less than 0, respectively. The SM predictions of LSTMZ and ParaFormer seem to be roughly
comparable, but those of ParaFormerZ are slightly better. SCE-UA demonstrates notably
poor performance (site-by-site calibration), while ParaFormerZ performs the best. Although
ParaFormerA performs worse overall than LSTMZ, all its prediction values lie in the positive
range and are better than those of FFNA.

5.2. Spatial Patterns of Calibrated Parameters

Figure 5 illustrates the spatial distribution of the VIC parameters from the DAS-S8
dataset, with NLDAS-2 parameters often used as the benchmark for evaluation due to
their extensive usage in previous studies. We calibrated a total of five VIC parameters
simultaneously, as shown in Table 1. We present the spatial distribution of parameter in f ilt
from each calibrated parameter method. The parameter in f ilt controls the shape of the
variable infiltration curve in the VIC model, effectively indicating the partitioning of rainfall
into infiltration and surface runoff, and has a significant influence on SM variations. A
smaller in f ilt results in an increase in the infiltration capacity; humid regions typically have
a higher in f ilt, while arid regions have a lower in f ilt.

Compared with SCE-UA (Figure 5b), DL-based parameter calibration methods
(Figure 5c,d) provide better spatial generalization, showing continuity and stronger con-
straints in the calibrated parameters. For instance, in the vicinity of Michigan, similar
terrain, climate, and soil characteristics suggest that the parameters will not vary signifi-
cantly, and both LSTMZ and ParaFormerZ show good spatial consistency. However, on the
one hand, across the entire CONUS, the parameters range calibrated by LSTMZ is approxi-
mately [0, 0.105], while those calibrated by NLDAS-2 and SCE-UA are [0, 0.3] and [0, 0.41],
respectively. The parameters range of ParaFormerZ is [0, 0.35], which is evidently closer to
the reference range than LSTMZ. On the other hand, precipitation decreases from east to
west until it reaches the Rocky Mountains. The high humidity in the Midwest Plains, Great
Lakes region, and the central and northern parts of the United States results in a higher
value of parameter in f ilt, while the dry climate and higher temperature in the southern
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and southwestern regions of the United States lead to a lower value of parameter in f ilt.
The parameters calibrated by ParaFormerZ better conform to these climatic characteristics.
Finally, in comparison with the regions where the parameter values are higher and lower
in NLDAS-2, the ParaFormerZ calibrated parameters are more consistent, such as in the
vicinity of the Great Lakes region in the United States, where ParaFormerZ may performs
better than LSTMZ.
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Figure 5. Distribution of the calibrated parameter in f ilt. It is noteworthy that the parameters inferred
by ParaFormerZ have continuous and spatially consistent patterns, especially compared to the discontin-
uous and random occurrence of parameters inferred by SCE-UA with site-by-site calibration. Both were
trained on the DAS-S8 dataset. (a) NLDAS-2, (b) SCE-UA, (c) LSTMZ, (d) ParaFormerZ.

To facilitate further comparison, in contrast to the distribution shown in Figure 5,
Figure 6 employs a unified colorbar to represent the parameter distributions generated
by different methods. Here, we present the parameter distributions calibrated by SCE-
UA and ParaFormerZ. Remarkably, the ranges of parameters outputted by these two
methods are highly similar, indicating that our deep transformer-based spatial calibration
approach may possess the strengths of the traditional point-wise calibration method, SCE-
UA. Moreover, ParaFormerZ, incorporating self-attention learning on spatiotemporal data,
exhibits the capability of parameter regionalization, manifested by the smooth distribution
of the calibrated parameters (Figure 6b). Furthermore, Figure 7 illustrates the residual
distributions of LSTMZ and ParaFormerZ with respect to the parameter distribution of
NLDAS-2 (Figure 5a), focusing solely on the sites with residuals greater than or equal to
zero. Notably, particular attention should be given to the distinct color-emphasized regions
in Figure 5a, which correspond to the solid red circles in Figure 7b. It is evident that LSTMZ
and ParaFormerZ demonstrate consistent learned parameter spatial patterns (positive or
negative) in these relevant regions. This observation implies that, compared to NLDAS-2,
ParaFormerZ achieves similar spatial patterns in calibrated parameter distributions within
specific regions.
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Figure 6. Comparison of calibration parameters in f ilt generated by SCE-UA and ParaFormerZ using
the same colorbar. (a) SCE-UA, (b) ParaFormerZ.
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Figure 7. The residual distributions of parameter in f ilt (only showing sites greater than or equal to
0). (a) LSTMZ - NLDAS, (b) ParaFormerZ - NLDAS.

Undoubtedly, comparing only the distribution of the calibrated parameters is in-
sufficient, as the parameters are uncertain and unobservable. In contrast, SCE-UA ex-
hibits discontinuous parameters, indicating the influence of randomness and parameter
non-uniqueness, which explains its poorer performance in spatial generalization testing.
Nonetheless, the parameters discovered by ParaFormer seem to align better with the known
physical relationships.

We evaluated SM predictions for three randomly selected sites, as indicated in Figure 8a
(or Figure 8b), which are located in different climatic conditions. Figure 8c–e present the
calibrated SM predictions of SCE-UA, LSTMZ, and ParaFormerZ compared to SMAP ob-
servations over a one-year testing period. Furthermore, for each site, we compared the
calibrated predictions during a period of heavy rainfall to assess the models’ performance
in intense precipitation events. The results demonstrate that ParaFormerZ exhibits superior
overall performance in calibrated SM prediction compared to SCE-UA and LSTMZ, with
smaller prediction errors during rainfall events.
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Figure 8. Cont.
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Figure 8. Comparison of soil moisture prediction from three randomly selected sites during the
period from 1 April 2017 to 31 March 2018 on the DAS-S8 dataset. (a,b) are the mean precipitation
and mean air temperature, respectively, and the red triangle marks indicate the locations of the three
sites. (c) Site 47, lat 37.9375, lon −121.9375, (d) Site 810, lat 34.9375, lon −90.9375, (e) Site 1010, lat
50.9375, lon −80.9375.

5.3. Uncalibrated Variables

We further evaluated the performance of different parameter calibration methods by
applying the parameters obtained from the SM calibration to the uncalibrated variable, ET.
It can be argued that if the calibrated parameters can improve the behavior of both the
calibrated and uncalibrated variables prediction, they can better describe the underlying
physical processes. Table 3 presents the evaluation results for predicting ET on DAS-S4 and
DAS-S8, where VIC is simulated using the NLDAS-2 parameters. The NSE scores of SCE-
UA are lower than those of VIC, indicating that the parameters produced by calibrating
the SM with the SCE-UA method failed to improve the simulation of ET. The reason is
that SCE-UA does not place the grid points being calibrated in the context of regional
patterns, and may be able to pursue the optimum for that site at the expense of physical
properties. ParaFormerZ (or LSTMZ) performs better than ParaFormerA (or FFNA), which
suggests that incorporating the (X, Z) responses pair as inputs to the DL-based models can
generate calibration parameters that better align with the underlying physical processes.
For ParaFormerZ, its inputs are (X, Z) and A, which are spatially consistent (autocorrelated),



Remote Sens. 2023, 15, 3536 15 of 18

and, leveraging the self-attention mechanism, the trained model implicitly captures the
mapping of parameter regionalization. As a result, the generated parameter set is also
spatially consistent. Figure 9 shows a scatterplot of the predicted ET on DAS-S8, which
also demonstrates that ParaFormerZ performs best compared to the comparison model.
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Figure 9. Uncalibrated variable (ET) metrics from models trained on the DAS-S8 dataset. Scatterplots of
temporal-mean ET (mm/year) comparing the MODIS product with ET produced by (a) VIC(NLDAS-2),
(b) SCE-UA, (c) FFNA, (d) LSTMZ, (e) ParaFormerA, and (f) ParaFormerA. Green color indicates higher
density of points.

Table 3. Results of ET prediction under calibrated parameters from SM calibration.

DAS-S4 DAS-S8

RMSE PCC NSE RMSE PCC NSE

VIC 169.665 0.621 0.395 152.989 0.741 0.440
SCE-UA 167.263 0.695 0.371 164.055 0.687 0.360
FFNA 161.859 0.641 0.336 146.572 0.732 0.501
LSTMZ 151.178 0.721 0.486 138.997 0.754 0.551
ParaFomerA 152.536 0.682 0.391 140.965 0.734 0.548
ParaFormerZ 147.589 0.797 0.510 127.020 0.793 0.615
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6. Discussion

This study presents a transformer-based framework for hydrological parameter cali-
bration, consisting of two components: land surface variable prediction, such as SM, and
parameter generation.

Currently, DL-based surrogate models provide a universal, adaptive, and efficient
solution for a wide range of models in Earth science and other fields. Their greatest advan-
tage lies in their differentiability, similar to process-based physical models, which enables
seamless integration with other tasks for iterative optimization. In traditional parameter
calibration methods, for complex models like VIC, the cost of repetitive runs for parameter
calibration is prohibitive. Surrogate models can serve as a bridge between these models and
deep learning. However, several challenges need to be addressed. Firstly, the performance
of surrogate models significantly affects the effectiveness of parameter calibration. A well-
performing surrogate model is the first step in the calibration process, requiring iterative
training and evaluation. Secondly, surrogate models need to be customized for different
tasks. In the case of hydrological parameter calibration in this study, a trained surrogate
model with VIC parameter inputs cannot be directly applied to other hydrological models.
Lastly, the target variables that surrogate models can predict are also a consideration. This
study focuses on single-objective parameter calibration, but for multi-objective calibra-
tion, such as simultaneously calibrating SM and ET, the surrogate model needs to predict
both variables.

The transformer-based parameter calibration model aims to find the optimal combina-
tion of hydrological parameters. For spatiotemporal hydrological data, we compare FFN
and LSTM models, as few deep learning models have been applied to parameter calibration
in this direction. The transformer model, based on the multi-head self-attention mechanism,
acquires mapping for ParaFormerA by learning self-attention among the static attributes of
each site. It also fuses dynamic and static data for each site by learning temporal multi-head
self-attention from historical observations, resulting in cross self-attention and a robust
parameter mapping for ParaFormerZ. Compared to the existing FFN and LSTM models,
the transformer model’s parallel data processing offers higher computational efficiency,
and the interpretability improvement from the self-attention mechanism is noteworthy.

In summary, applying deep learning techniques to land surface hydrological parameter
calibration offers significant advantages. With the increasing availability of remote sensing
satellite data, combined with the current trend in large-scale model research, it is possible
to extend deep-learning-based parameter calibration to general Earth models for predicting
a wide range of land surface variables.

7. Conclusions

In this paper, we propose the ParaFormer for land surface hydrological parameter
calibration. To achieve a more efficient transformer-based parameter calibration approach,
we construct a training framework that propagates gradients through a surrogate model,
avoiding direct supervised training of unobservable calibration parameters and the need
for embedding complex land surface hydrological models in the training process. To further
overcome the uncertainties in parameter calibration, we introduce transformer-based deep
learning models for parameter calibration, leveraging their self-attention mechanism. We
design two models, ParaFormerA and ParaFormerZ, suitable for different data scenarios.
To the best of our knowledge, we are the first to introduce transformer-based deep learning
models into the field of parameter calibration. We conducted extensive experiments
to validate the effectiveness of the proposed ParaFormer. The results demonstrate its
superiority over traditional and state-of-the-art DL-based parameter calibration methods
in predicting soil moisture.
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