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Abstract: Bow-tie antennas are utilized extensively in ground-penetrating radar (GPR) systems. In
order to achieve sufficient penetration depth and resolution, the bow-tie antennas for GPR applica-
tions require low operating frequency, high gain, and excellent broadband. A novel ultra-wideband
(UWB) bow-tie antenna with gain enhancement for GPR applications is proposed in this paper. First,
a UWB bow-tie antenna with resistive loading is designed. The metal reflector and metamaterial
loading make the bow-tie antenna directional, and loading the same metamaterial on the front side
of the antenna further improves directional gain. After testing, the lowest frequency of the fabricated
antenna is 317 MHz, the relative bandwidth is 98.6%, the peak gain in the frequency range is 9.3 dBi,
and the size is only 0.38 λ at the lowest frequency. The proposed compact antenna takes both gain
and bandwidth into consideration. Finally, in order to further verify the effectiveness of the proposed
antenna in the GPR system, a stepped frequency continuous wave ground-penetrating radar (SFCW-
GPR) system was built. The experimental results show that the designed antenna is suitable for the
GPR system of deep penetration and high-resolution detection, which is beneficial to the imaging of
underground structures.

Keywords: ground-penetrating radar (GPR); bow-tie antenna; high gain; metamaterial; ultra-
wideband (UWB)

1. Introduction

Ground-penetrating radar (GPR) is a nondestructive detection instrument that an-
alyzes subsurface constitution and identifies buried objects. It is widely used in tun-
nel detection, ice thickness measurement, and groundwater exploration [1–4]. Given its
high speed of data acquisition and high imaging resolution, GPR has been recognized
as one of the important tools for near-surface detection [5–9]. The GPR system radiates
high-frequency electromagnetic waves to the ground through the antenna and receives
the reflected signal due to the difference in the electrical parameters of the subsurface
medium [10]. Therefore, the performance of the antenna directly determines the imaging
effect of the GPR system. Ultra-wideband (UWB) technology can achieve high-resolution
imaging [11], and it is relatively easy to implement UWB for antennas operating at frequen-
cies higher than 1 GHz [12–15]. It is well known that the subsurface lossy medium causes
electromagnetic waves to decay rapidly, thus the antenna should be designed to have a
low operating frequency to achieve sufficient penetration depth. However, simultaneously
obtaining low operating frequency, high gain, and large bandwidth has been a challenge
for GPR antenna design [16].

In general, TEM horn antennas [17], Vivaldi antennas [18], and bow-tie antennas [19]
are suitable for GPR systems. Among them, bow-tie antennas are widely used because
of their simple structure, low profile, and linear phase characteristics in the operating
frequency range [20]. A few previous studies have designed UWB bow-tie antennas. The
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folded bow-tie antenna designed by Serhir et al. [21] covers a bandwidth of 0.5–3 GHz,
but the reflection coefficient of the antenna is higher than −10 dB at frequencies below
800 MHz, which seriously degrades the performance of the antenna in the low-frequency
range. Li et al. [22] applied the Wu-King profile to improve the bandwidth of the bow-tie
antenna, but the gain is less than 0 dBi in the operating frequency range of 250 MHz to
750 MHz. The loss effect of the subsurface medium becomes more serious as the depth
increases. Thus, the gain of the GPR antenna is crucial for detection. However, due to
the unconcentrated radiation energy of omnidirectional dipole antennas, it is extremely
difficult for bow-tie antennas to achieve high gain at low operating frequencies of several
hundred MHz, and the average gain of ordinary bow-tie antennas is only approximately
2–3 dBi, which cannot guarantee the effective detection depth of GPR systems [23]. Ajith
et al. [24] proposed a bow-tie antenna based on loop loading and multilayer loop directors
with impedance bandwidth ranging from 420 MHz to 5.5 GHz and an average gain of up
to 7.2 dBi. However, the gain is less than 5 dBi at frequencies below 1 GHz.

For GPR systems, backward radiated energy in the opposite direction to the ground
is useless. Traditionally, a shielding backed cavity or metal reflector is used to load the
backside of a bow-tie antenna to reflect backward energy to the forward direction to
improve the directional gain of the antenna. Backside loading is a significant improvement
for bow-tie antennas with high operating frequencies because the height of the cavity or
reflector is acceptable at short operating wavelengths [25,26]. When the bow-tie antenna
operates at several hundred MHz, the height limit of 1/4 λ makes the profile of the antenna
too high. Low profile is a key characteristic required for GPR antennas [27]. If the profile is
directly reduced, the impedance bandwidth will be deteriorated by the strong coupling
between the backed cavity or the metal reflector and the antenna. Even though this problem
can be alleviated by adding absorbing material between the cavity and the antenna, the
directional gain is attenuated [28]. Metamaterials have been recently used for enhancing
antenna gain [29]. Wang et al. [30] used a metamaterial lens to realize a high-gain bow-tie
antenna with a bandwidth of 1.7–2.1 GHz and an average gain of more than 10 dBi, but the
antenna’s size is excessively large. Dan et al. [31] proposed a low-profile bow-tie antenna
using an artificial magnetic conductor (AMC) reflector, and the peak gain in the frequency
range of 1.19–2.37 GHz could reach 6 dBi. However, the problem is that the zero-reflection
phase characteristic of AMC reflectors has difficulty taking effect at frequencies below
1 GHz and it cannot be applied to the low-frequency UWB bow-tie antenna.

Bow-tie antennas used in GPR systems have requirements in terms of bandwidth,
gain, directivity, and low profile, and it is difficult for a single optimization method to
consider all the characteristics. This study designs a UWB bow-tie antenna with a multilayer
structure to achieve directional radiation and high gain. In Section 2, a bow-tie antenna
working at low frequencies is designed based on resistive loading. Aiming at the problem
of deteriorating the impedance bandwidth of the antenna when the metal reflector is
loaded at a low profile, a metamaterial with periodic units is introduced between the metal
reflector and the antenna to improve the radiation characteristics of the bow-tie antenna.
The same metamaterial is loaded on the front side of the antenna as a directional gain
enhancer, and the forward gain of the bow-tie antenna is further improved. In Section 3,
the actual fabricated antenna is tested, and the performance of bow-tie antennas in other
published papers is compared. In Section 4, a stepped frequency continuous wave ground-
penetrating radar (SFCW-GPR) system is built by combining the vector network analyzer
and the proposed antenna. The performance and practical application effect of the antenna
are verified by a sand tank experiment and outdoor experiment.

2. Antenna Design and Simulation
2.1. Resistive Loaded Bow-Tie Antenna

The bow-tie antenna with a planar structure is evolved from a three-dimensional
biconical antenna, and the radiating element is a pair of metal patches on a dielectric sub-
strate. The arms of the traditional bow-tie antenna are triangular or asymmetric lozenges.
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In commercial GPR systems, the triangular antenna arm is the most common, and the basic
parameters include the arm length L, the field angle θ, and the distance d between the feed
points, as shown in Figure 1. The operating characteristics of a bow-tie antenna can be
described according to the following empirical formula:

Z = 120 ln(L cot(
θ

4
)/ cos(

θ

2
)), (1)

λ = 2L ×√
εe f f , (2)

where Z is the characteristic impedance of the antenna, λ is the wavelength in the air,
corresponding to the expected lowest operating frequency, and εeff is the effective dielectric
constant of the dielectric substrate in the air.
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Figure 1. Traditional bow-tie antenna.

In order to connect with a general 50 Ω microwave system, the characteristic impedance
of the antenna is usually designed to be close to 50 Ω. When the field angle θ of the
traditional bow-tie antenna is small, the impedance is usually large, and an additional
impedance converter needs to be designed [32], which complicates the structure of the
antenna. Increasing the field angle θ is beneficial to reduce impedance, but the triangular
arms increase the size of the antenna. The truncated arm is a common method to reduce
the size of the bow-tie antenna while improving the bandwidth [33]. In this section, on the
basis of the truncated arm, a bow-tie antenna is designed by adding slots, loading resistors,
and fillet operation.

The proposed antenna structure is shown in Figure 2. The original shape of the antenna
arm is a pentagon. Based on this, the two obtuse corners are rounded with a radius of
curvature r = 20 mm. The fillet operation is conducive to improving the highest operating
frequency of the antenna, which is similar to the principle of a UWB half-ellipse antenna
to achieve ultra-wideband [9]. Further, a long and narrow slot is added to each arm, and
the distance W1 from the edge of the antenna arm is 40 mm. The width W2 of the slot is
designed to be 5 mm to match the chip resistor with a large size that can withstand high
power, and the resistors R1–R4 with the same value are loaded at both ends of each slot.
The resistors increase the loss of the antenna, but given that the return loss of the bow-tie
antenna will deteriorate after loading the metal reflector, which may cause the S11 curve
to be higher than −10 dB, the return loss of the single bow-tie antenna should be as good
as possible in the operating frequency range. The substrate is made of FR-4 material with
dielectric constant εr = 4.6 and thickness d1 = 1.6 mm. The arms of the antenna are printed
on both sides of the dielectric substrate, the length L0 of the substrate is 360 mm, and the
width W0 is 250 mm. The field angle θ of the antenna is at the center of the substrate. In
order to facilitate feeding, a transmission line extending to the edge of the substrate is
added.
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The arm length L1, the resistance loading position W1, and the values of the resistances
R1–R4 are the key parameters that affect the performance of the bow-tie antenna. We
analyze the influence of these parameters on the bandwidth and gain by simulation in
CST Microwave Studio. Figure 3a,b show the effect of arm length L1. Increasing L1 is
beneficial to improve the antenna gain and can lower the lowest operating frequency of the
antenna, but it will deteriorate the performance of the antenna at high frequencies and the
matching in the frequency range. The arm length L1 = 170 mm is a compromise parameter.
Figure 4a,b show the effect of the resistors on the performance of the antenna. When the
value of resistors R1–R4 is 50 Ω, the antenna’s performance is better at low frequencies,
but the gain in the frequency range is lower. The value of the resistor is set to 100 Ω to
balance the gain and the lowest operating frequency. According to Figure 5a,b, the closer
the resistors are located to the transmission line, the narrower the impedance bandwidth of
the antenna and the smaller the gain. When the position of the resistor is close to the edge
of the arm, the impedance bandwidth and gain of the antenna are improved, but the S11
curve around the center frequency is already close to −10 dB. The S11 curve of the single
bow-tie in the frequency range should be as low as possible, so W1 = 40 mm is appropriate
for the overall design of the antenna. The final parameters of the antenna are shown in
Table 1.

Figure 6 compares the surface current distribution at 500 MHz before and after opti-
mization. The slots and the resistors improve the current distribution and direct the current
to the end of the antenna arm. Meanwhile, it can be seen from Figure 7a,b that the operating
frequency of the basic bow-tie antenna with pentagonal arms is not continuous. The S11
curve is higher than −10 dB in the range of 428 MHz to 746 MHz. Although the radiation
efficiency of the bow-tie antenna is reduced in the low-frequency part after adding resistors,
it is obvious that the resistive loading can improve the matching characteristics of the
antenna, and the S11 curve in the operating frequency range is always lower than −10 dB.
In addition, the highest operating frequency of the antenna is improved due to the fillet
operation. In the simulation, the antenna impedance bandwidth is 339–970 MHz, which
allows GPR to achieve high-resolution imaging. The radiation pattern of a single bow-tie
antenna at frequencies from 400 MHz to 900 MHz is shown in Figure 8. The antenna
has a clear main lobe in the +z and –z directions. Given that the energy radiation is not
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directional, the gain is only 2 dBi to 3 dBi. In GPR applications, the backward radiation in
the opposite direction to the ground is deemed to be useless and, thus, focusing the energy
forward is necessary in order to enhance the directional gain.
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Table 1. Parameters of the bow-tie antenna.

Parameter W0 W1 W2 W3 r L0 L1 L2 L3 θ

Value 250 mm 40 mm 5 mm 3.8 mm 20 mm 360 mm 170 mm 196 mm 125 mm 160◦
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2.2. Metal Reflector and Metamaterial

Initially, we tentatively loaded a metal reflector in order to enhance the forward gain.
Metal reflectors mainly rely on the metal surface to reflect electromagnetic waves, and the
thickness of the metal has no effect on the reflection characteristics, which can be achieved
by printing a complete metal surface onto an inexpensive FR-4 substrate. As shown in
Figure 9, the metal reflector is loaded on the backside of the bow-tie antenna at height
h1. The thickness d2 is 1.6 mm, the dielectric constant εr is 4.6, and the side of the printed
metal surface faces the bow-tie antenna. The substrate is a square of 360 mm × 360 mm,
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and the side length is the same as the length L0 of the bow-tie antenna. Figure 10a,b show
the simulation results of the return loss of the antenna and the gain in the −z direction at
different h1. The metal reflector can enhance the directional gain, but the S11 curve in part of
the frequency range is higher than −10 dB, and the impedance bandwidth is deteriorated.
Increasing the height h1 of the reflector will alleviate the return loss, however, the gain
will be seriously reduced and the profile is excessively high, which is unfavorable for GPR
systems.
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This study designs a metamaterial with artificial periodic units to improve the radia-
tion characteristics of a low-profile bow-tie antenna loaded with a metal reflector. Figure 11
shows the structure of the bow-tie antenna with a metamaterial and a metal reflector, and
the height h1 of the metal reflector is set to 120 mm. The metamaterial is located between
the metal reflector and the bow-tie antenna, and the height h2 from the bow-tie antenna
is 10 mm. Different from the zero-reflection phase characteristic of the AMC reflector, the
proposed metamaterial is located closer to the antenna. The close loading of metamaterial
can enhance the coupling between the metamaterial and the antenna and improve the
impedance of the antenna when loading a metal reflector. The metamaterial is printed on
one side of the FR-4 dielectric substrate. The thickness d3 is 1.6 mm, the dielectric constant
εr is 4.6, and the shape remains the same as the metal reflector. To match the dimensions,
we design the metamaterial as a 6 × 6 array, and the side length D1 of the periodic unit is
60 mm. The period unit of the metamaterial is a metal ring with a width D3 of 10 mm, as
shown in Figure 12a. The antenna relies on the metal reflector to reflect electromagnetic
waves, meaning that the metamaterial possesses advantageous transmission properties.
We simulate the metamaterial unit under periodic boundary conditions. Figure 12 shows
the effect of the outer diameter D2 of the ring on the metamaterial. The larger the outer
diameter D2 of the ring, the worse the transmission coefficient of the metamaterial, and
the lower the gain of the antenna in the -z direction. However, at the same time, the
matching degree in the operating frequency range becomes better with the increase in D2.
By comparison, it is found that the antenna has the widest impedance bandwidth when
D2 = 53 mm, and the gain in the low-frequency part is considered.



Remote Sens. 2023, 15, 3522 8 of 17

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

D3 of 10 mm, as shown in Figure 12a. The antenna relies on the metal reflector to reflect 
electromagnetic waves, meaning that the metamaterial possesses advantageous transmis-
sion properties. We simulate the metamaterial unit under periodic boundary conditions. 
Figure 12 shows the effect of the outer diameter D2 of the ring on the metamaterial. The 
larger the outer diameter D2 of the ring, the worse the transmission coefficient of the met-
amaterial, and the lower the gain of the antenna in the -z direction. However, at the same 
time, the matching degree in the operating frequency range becomes better with the in-
crease in D2. By comparison, it is found that the antenna has the widest impedance band-
width when D2 = 53 mm, and the gain in the low-frequency part is considered. 

 
Figure 11. Structure of bow-tie antenna with a metamaterial and a metal reflector. 

 
Figure 12. (a) Metamaterial unit; (b) transmission coefficient at different D2; (c) return loss of the 
antenna at different D2; (d) gain of the antenna in the −z direction at different D2. 

Figure 11. Structure of bow-tie antenna with a metamaterial and a metal reflector.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

D3 of 10 mm, as shown in Figure 12a. The antenna relies on the metal reflector to reflect 
electromagnetic waves, meaning that the metamaterial possesses advantageous transmis-
sion properties. We simulate the metamaterial unit under periodic boundary conditions. 
Figure 12 shows the effect of the outer diameter D2 of the ring on the metamaterial. The 
larger the outer diameter D2 of the ring, the worse the transmission coefficient of the met-
amaterial, and the lower the gain of the antenna in the -z direction. However, at the same 
time, the matching degree in the operating frequency range becomes better with the in-
crease in D2. By comparison, it is found that the antenna has the widest impedance band-
width when D2 = 53 mm, and the gain in the low-frequency part is considered. 

 
Figure 11. Structure of bow-tie antenna with a metamaterial and a metal reflector. 

 
Figure 12. (a) Metamaterial unit; (b) transmission coefficient at different D2; (c) return loss of the 
antenna at different D2; (d) gain of the antenna in the −z direction at different D2. 

Figure 12. (a) Metamaterial unit; (b) transmission coefficient at different D2; (c) return loss of the
antenna at different D2; (d) gain of the antenna in the −z direction at different D2.

Figure 13a compares the return loss of the single bow-tie antenna, the antenna with a
metal reflector, and the antenna with a metamaterial and a metal reflector in simulation.
Without increasing the antenna profile, loading metamaterial can alleviate the deterioration
of S11 by the metal reflector. In the frequency range of 331 MHz to 921 MHz, the S11 curve
is less than −10 dB, which reflects that the metamaterial is effective in improving the
radiation characteristics of the antenna. Figure 13b shows that, compared with the original
bow-tie antenna, the gain of the antenna with a metamaterial and a metal reflector in the −z
direction is significantly enhanced, and the peak gain reaches 7 dBi. The radiation patterns
of the antenna at 400 MHz, 600 MHz, and 900 MHz are shown in Figure 14. Compared
with Figure 8, the antenna has directivity, the main lobe in the −z direction is clear, and no
side lobes are found.
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2.3. Directional Gain Enhancer

In the simulation, we found that loading the proposed metamaterial on the front side
of the bow-tie antenna can further enhance the directional radiation performance. For
antenna fabrication, using the same metamaterial is a low-cost implementation method.
Thus, the metamaterial is loaded in the forward direction of the bow-tie antenna as a
directional gain enhancer. Figure 15 shows the overall structure of the antenna system.
The two metamaterials are shown in different colors to make the figure more intuitive. We
analyze the effect of h3 on the impedance bandwidth and the gain in the −z direction of
the antenna, as shown in Figure 16a,b. Increasing h3 is beneficial to enhance the directional
gain below 700 MHz, but the impedance bandwidth is reduced. Considering the height of
the antenna profile, h3 = 80 mm is an appropriate value. Figure 17 compares the gain in
the −z direction of different antenna structures, and the peak gain of the bow-tie antenna
after loading the directional gain enhancer is 9.2 dBi. Compared with the antenna with
metamaterial and metal reflector, the gain at 800 MHz is enhanced by 3.2 dB and shows a
significant gain enhancement effect in the operating frequency range, which can make the
depth exploration ability of the GPR system stronger.

The GPR system requires the antenna to have good waveform fidelity. We further
simulated the time-domain characteristics of the antenna in free space. The input signal
is a Gaussian pulse, and the electric field probe is placed at a distance of 1 m from the
antenna in the −z direction. Figure 18 shows that the waveform of the pulse radiated by
the antenna is good, without obvious distortion, and has a low ringing amplitude, which
proves that the antenna can meet the requirements of the GPR system.
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3. Results and Discussion

The fabricated bow-tie antenna, metal reflector, metamaterial, and the overall antenna
system are shown in Figure 19. The parts of the antenna system are connected by mounting
holes, nylon struts, and nylon nuts. The 50 Ω chip resistors used on the bow-tie antenna are
MCR100JZHF1000 produced by ROHM Semiconductor. The parametric test of the antenna
is carried out in a microwave anechoic chamber, and the measurement scenario is shown
in Figure 20a. The comparisons between the measured and simulated results are shown in
Figure 20b,c. The measured operating frequency range of the antenna is 317–934 MHz, the
relative bandwidth is 98.6%, and the matching within the operating frequency range is good.
Compared with the simulation results of return loss, the impedance bandwidth of the actually
fabricated antenna is slightly wider. The measured gain of the antenna in the −z direction
is consistent with the simulated results, and the peak gain is 9.3 dBi. Figure 21 shows the
measured radiation patterns of the antenna in the xz-plane and yz-plane at 400 MHz, 700 MHz,
and 900 MHz, respectively. The measured results show that the antenna has strong directivity
and a clear main lobe, which meets the requirements of the directional radiation of GPR systems.

Table 2 compares bow-tie antenna designs in other published papers and demonstrates
the strengths of this work. In [11], a UWB bow-tie antenna with low dispersion is designed
with a peak gain of 3.7 dBi in the operating bandwidth (250 MHz to 780 MHz). In Ref. [22],
the antenna bandwidth is extended by loading 64 resistors on the half-elliptical-shaped arms,
but the peak gain within the operating bandwidth (250 MHz to 750 MHz) is only −7.5 dBi.
In this case, the transmitter of GPR needs to be configured with extremely high power;
otherwise, the penetration of electromagnetic waves into the subsurface lossy medium cannot
be guaranteed. The authors of [24] designed a bow-tie antenna with parasitic loops with
impedance bandwidth covering from 420 MHz to 5.5 GHz, but the gain below 900 MHz
is less than 5 dBi and nondirectional. The authors of [29] designed a directional high-gain
bow-tie antenna using an inductive reflector, but it cannot be used in the GPR system for deep
underground target detection because the lowest frequency is 800 MHz. The authors of [34]
designed a folded bow-tie antenna based on a combination of capacitive and resistive loading,
which has a minimum operating frequency of 250 MHz but a peak gain of only 4 dBi. In this
work, the lowest operating frequency of the antenna is 317 MHz, the relative bandwidth is
98.6%, the peak gain is 9.3 dBi, and the size of the antenna is only 0.38 λl × 0.38 λl (λl is the
wavelength corresponding to the lowest operating frequency). Based on the above analysis,
it can be found that the bow-tie antenna proposed in this paper achieves low operating
frequency, high gain, and large bandwidth simultaneously, which has obvious advantages
over other antennas mentioned in Table 2 in GPR applications.
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Table 2. Comparison with Other Bow-tie Antennas.

Ref. Lowest Frequency Bandwidth Size Peak Gain below 900 MHz Application

[11] 250 MHz 102.9% 0.38 λl × 0.05 λl 3.7 dBi GPR
[22] 250 MHz 100% 0.63 λl × 0.25 λl −7.5 dBi GPR
[24] 420 MHz 171.6% 0.32 λl × 0.32 λl 5 dBi GPR
[29] 800 MHz 37% 0.60 λl × 0.60 λl 9 dBi /
[34] 250 MHz 109% 0.25 λl × 0.15 λl 4 dBi GPR

This work 317 MHz 98.6% 0.38 λl × 0.38 λl 9.3 dBi GPR

4. Experimental Case

To verify the practical application effect of this antenna in GPR systems, we con-
structed an SFCW-GPR using two fabricated bow-tie antennas and a two-port vector
network analyzer (Keysight N9925A) system, as shown in Figure 22. Port 1 of the vector
network analyzer is used as the excitation port, Port 2 is used as the receiving port, and the
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two antennas are connected to the two ports through 50 Ω coaxial cables. The transmitting
and receiving antennas are configured to be placed in parallel with a fixed relative distance
of 6 cm. Furthermore, we used the constructed SFCW-GPR system to conduct sand tank
experiments and outdoor experiments.
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4.1. Case 1: Sand Tank Experiment

First, a sand tank with buried objects was constructed in the laboratory to simulate a
real outdoor subsurface structure. Figure 23a shows the structure of the sand tank. Sand
is used as a lossy medium to simulate the real geological environment. The depth of the
sand tank is 0.8 m, and the bottom of the tank is a concrete structure. In the sand tank,
five targets are tested, including three copper pipes (Target 2,3,5) and two hollow PVC
pipes (Target 1,4). The diameters and depths of the five targets from the upper surface of
the sand tank are shown in Table 3. In the experiment, the total length of the survey line is
3 m, and the step movement of the SFCW-GPR system is 5 cm. The profile image along
the survey line of the sand tank is shown in Figure 23b. The positions of the five targets
in the sand trough can be clearly distinguished, which is consistent with the structure of
the constructed sand tank, and the foundation below the sand tank can be found, which
verifies that the designed antenna can be effectively applied to the GPR system.

Table 3. Attributes of Targets in Sand Tank.

Target Material Diameter (m) Depth (m)

1 PVC 0.4 0.4
2 Copper 0.4 0.5
3 Copper 0.4 0.4
4 PVC 0.3 0.3
5 Copper 0.4 0.4
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4.2. Case 2: Outdoor Experiment

To evaluate the detection depth and imaging resolution of the constructed SFCW-
GPR system, we conducted an outdoor experiment on a pedestrian road in a city. The
experimental environment is shown in Figure 24a. In the experiment, the length of the
survey line is approximately 30 m, and some trees with a height of more than 10 m are
arranged along the survey line next to the detection area. Furthermore, there is a drainage
well at the end of the survey line. Figure 24b shows the profile image of the survey line. We
have performed background removal and gain processing on the original data. At 25 m,
from the start of the survey line, strong reflections caused by the drainage well can be seen.
From 20 ns to 40 ns in the profile image of the survey line, there are reflected waves caused
by tree roots, which can be clearly distinguished. The experimental results verify that the
SFCW-GPR system can achieve deep penetration detection with high resolution, which
benefits from the high-gain and ultra-wideband characteristics of the proposed antenna.
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5. Conclusions

Antennas are the key to the GPR system to realize subsurface detection. This study
proposes a directional high-gain antenna with a multilayer structure for GPR applications
of deep penetration and high-resolution imaging. The UWB bow-tie antenna is designed by
loading slots and resistors on the antenna arms, and the metal reflector and metamaterials
are used to improve the radiation characteristics of the antenna. The operating frequency
range of the fabricated antenna is 317–934 MHz, the relative bandwidth is 98.6%, the
peak gain is 9.3 dBi, and the size of the antenna is only 0.38 λl × 0.38 λl. Compared with
published papers, the antenna proposed in this work is compact while considering gain
and bandwidth. The results of the experimental case using the constructed SFCW-GPR
system show that the antenna can provide a solution for improving the performance of the
GPR system.
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