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Abstract: Coastal erosion due to extreme events can cause significant damage to coastal communities
and deplete beaches. Post-storm beach recovery is a crucial natural process that rebuilds coastal
morphology and reintroduces eroded sediment to the subaerial beach. However, monitoring the beach
recovery, which occurs at various spatiotemporal scales, presents a significant challenge. This is due
to, firstly, the complex interplay between factors such as storm-induced erosion, sediment availability,
local topography, and wave and wind-driven sand transport; secondly, the complex morphology
of coastal areas, where water, sand, debris and vegetation co-exists dynamically; and, finally, the
challenging weather conditions affecting the long-term small-scale data acquisition needed to monitor
the recovery process. This complexity hinders our understanding and effective management of
coastal vulnerability and resilience. In this study, we apply Convolutional Neural Networks (CNN)-
based semantic segmentation to high-resolution complex beach imagery. This model efficiently
distinguishes between various features indicative of coastal processes, including sand texture, water
content, debris, and vegetation with a mean precision of 95.1% and mean Intersection of Union (IOU)
of 86.7%. Furthermore, we propose a new method to quantify false positives and negatives that
allows a reliable estimation of the model’s uncertainty in the absence of a ground truth to validate the
model predictions. This method is particularly effective in scenarios where the boundaries between
classes are not clearly defined. We also discuss how to identify blurry beach images in advance of
semantic segmentation prediction, as our model is less effective at predicting this type of image. By
examining how different beach regions evolve over time through time series analysis, we discovered
that rare events of wind-driven (aeolian) sand transport seem to play a crucial role in promoting the
vertical growth of beaches and thus driving the beach recovery process.

Keywords: machine learning; CNN; image segmentation; beach monitoring; beach recovery; blurry
image; hazy image

1. Introduction

Beach recovery involves the restoration of eroded sediment to the shoreline and the
reconstruction of subaerial features, such as berms and dunes, following high-energy
events [1]. The beach serves as a natural buffer that protects communities and ecological
habitats along the shore [2]. Thus, understanding the recovery process is crucial for coastal
engineers and authorities to design and manage beaches [3] and estimate the risk associated
with climate change and storm clustering [4].

Comprehending the recovery of the beach to its pre-storm condition, however, is a
challenging task due to the complex interplay of various factors. These factors include the
magnitude of storm-induced erosion, sediment availability, and local topography, as well as
wave and wind processes that occur at different temporal and spatial scales. The interaction
of these processes complicates the beach recovery process, making it difficult to understand
the occurrence and dynamics of beach recovery [5].
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Recent developments in optical recording equipment and data storage devices have
resulted in an increase in field observation data, shedding new light on beach recovery
processes. For instance, an investigation of sand bar morphological responses after a storm
through the use of Argus video images has shown that wave conditions play a significant
role in controlling bar dynamics [6]. In a similar line of research, video observation
studies have revealed the seasonality of post-storm recovery processes in sandbars and
shorelines [7]. However, it is important to note the limitations of these studies. The need for
manual classification or digitization of Timex images introduces the potential for human
errors and inconsistencies, besides being time consuming.

Meanwhile, empirical models have become more complex as data volumes increase,
making it difficult to identify which parameters are relevant and hindering their general
applicability. This calls for a complementary approach to empirically based coastal mod-
eling (top-down approach), such as pattern recognition (bottom-up approach) based on
Machine Learning (ML).

The recent surge in processing capacity and methodological advancements in Ma-
chine Learning has led to the deep learning renaissance, nurturing the field of computer
vision studies. Deep Convolutional Neural Networks (DCNNs) were initially introduced
for image classification [8] and have proven useful in addressing several coastal science
problems, such as wave breaking classification [9,10] and automatic beach state recogni-
tion [11,12]. However, to holistically analyze the beach recovery process, spatial information
is necessary in addition to semantic understanding. This necessitates the implementation
of image segmentation techniques, which can localize different objects and boundaries
within images.

Image segmentation, the technique of partitioning a digital image into different subsets
of image segments, has greatly improved accuracy in image processing tasks due to the
development of convolutional neural networks (CNNs). The original study for pixel-level
classification based on fully convolutional networks (FCN) [13] served as a basis for CNN-
based image segmentation. In the context of coastal monitoring, CNNs also have proven to be
a powerful tool for a variety of segmentation tasks. They have been leveraged to investigate
coastal wetlands using imagery captured by Unmanned Aerial Systems (UAS) [14], employed
to monitor Seagrass Meadows [15], and utilized to detect coastlines [16], both using remote
sensing data. Recent work also highlights measuring the agreement in image labeling for
coastal studies [17], which is crucial for training precise CNN-based image segmentation
models. Also, an extensive labeled dataset for aerial and remote sensing coastal imagery has
been created [18], supporting detailed segmentation and analysis in this field.

Notably, these studies primarily center on aerial and remote sensing imagery. When
the focus shifts to close-range beach imagery for morphodynamic studies, we encounter a
new set of challenges. The unique characteristics of close-range beach topography—different
types of sand layers with no apparent boundaries between interfaces, uncertainty related
to spatial resolution due to photogrammetric distortion, and observational vulnerability to
adverse weather and lighting conditions—make it challenging to apply the algorithm to
analyze short-range beach imagery for morphodynamic studies. Consequently, there is a
research gap in the application of CNN-based image segmentation to monitor changes in
beach morphology, particularly through close-range imagery analysis.

This paper represents the first attempt to monitor beach recovery with high temporal
resolution imagery using CNN-based image segmentation, thereby addressing this research
gap in the application of machine learning in coastal studies. We present customized
methodologies for CNN training and beach imagery prediction and introduce a novel
metric to gauge potential uncertainty in the absence of ground truth, a scenario often
arising in coastal monitoring due to image quality issues. Further, we illuminate instances
of false prediction and propose strategies to identify certain types of images prior to
segmentation. By analyzing time series from stacked area fractions over the observation
period, we look at the underlying mechanisms driving beach recovery.
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2. Material and Methods
2.1. Dataset Acquisition and Annotation

We obtained images for training and validating the CNN from three solar-powered
stationary GoPro cameras installed in Cedar Lakes, Texas (28.819°N, 95.519°W), which
monitored beach recovery following Hurricane Harvey in 2017 (Figure 1). Each camera
captured high-resolution images of 2560 pixels in width by 1920 pixels in height, every
five minutes. The cameras captured over 51,000 images, from 16 November 2017 to
23 June 2018. Out of these, we selected and hand-labeled a subset of 156 high-quality
images, which were exclusively used for training and testing our CNN model.

Figure 1. (A) Study area. (B) Pre-Harvey satellite view of Cedar Lakes.We installed three solar-
powered cameras (C,D) in Cedar Lakes, Texas, a site that experienced frequent wave runup flooding
and was breached during Hurricane Harvey. The cameras were installed 2.5 m above the ground.
The closest distance to the shoreline was approximately 30 m.

A single annotator labeled all images in the dataset to ensure consistency. The anno-
tator labeled only the visible portions of each image and classified the regions into seven
classes: water, sky, dry sand, wet sand, rough sand, objects (debris), and vegetation, each
corresponding to different processes controlling beach recovery.

We distinguished different types of sand based on texture and moisture content.
“Dry sand” refers to sand with a smooth texture and low moisture content (bright color),
indicative of aeolian transport. In contrast, “wet sand” has a smooth texture but high
moisture content (dark color), suggesting recent inundation. “Rough sand” exhibits a
rough texture with intermediate moisture content or organic crust, potentially a sign of
recent precipitation, and, like “wet sand,” cannot be transported via aeolian transport.

In our approach to distinguishing between these sand deposits, our first step was
to separate the “rough” sand from the “wet” and “dry” sand, based primarily on its
distinctive texture. Following this, we divided the “wet” and “dry” sands based on
their color distinctions. With this two-step classification, we annotated a dataset that
can facilitate accurate and detailed analysis of beach recovery processes using image
segmentation techniques.

2.2. CNN Training, Predicting, and Testing
2.2.1. Patchwise Training of CNN

We chose the Deeplab v3+ architecture, which incorporates a Resnet-18 model pre-
trained on ImageNet, to form the backbone of our CNN analysis for semantic segmentation.
Of the 156 high-quality images, we used 132 to train Resnet-18, following previous studies
that indicated over 100 images sufficient for reliable semantic segmentation prediction via
transfer learning [19].

To overcome GPU memory limitations, we cropped images into patches for CNN
training. Cropping maintained spatial resolution, which is essential for investigating
complex and often uncertain coastal regions.
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We extracted non-overlapping local patches of 640 pixels× 640 pixels from the original
high-resolution (2560× 1920) images, the greatest common divisor (GCD) of the input
image’s width and height (see Figure 2). This patch size minimized zero padding from
reshaping while preserving contextual information.

Figure 2. An illustration of the patchwise training approach. High-resolution images (left) and
their corresponding manual annotations (right) were divided into 12 patches for training. Only
the verifiable regions (colored in the manual annotations) were labeled for CNN training, while
ambiguous areas were excluded to prevent them from influencing the training process.

We divided our dataset of 132 images into 12 distinct patches per image, resulting in a
total of 1584 patches for training. To augment the dataset, each patch was subjected to hori-
zontal flipping with a 50% probability, random translations within a range of [−100, 100]
pixels in the x and y directions, and random rotations within a [−20, 20] degree range.

During training, we utilized weighted cross-entropy loss in the classification layer
to account for the imbalanced distribution of pixels across classes in the training set. We
ensured that patches were randomly shuffled during each epoch, and we used a mini-batch
size of eight. We employed Stochastic Gradient Descent (SGD) as the optimization method,
with a momentum value of 0.9, an initial learning rate of 0.001, and a learning rate decay
factor of 0.5 applied every five epochs for a total of 30 epochs.

We conducted CNN training using the Matlab Deep Learning library. We leveraged
GPU parallel computing capabilities of both the RTX 2060 with Max-Q and the RTX 2080 Ti
graphics cards. The training process took approximately two hours to complete.

2.2.2. Cut and Stitch Method for Prediction

After training the model, we adopted an enhanced cut and stitch method for the
prediction to mitigate the translational variance. This method is designed to mitigate the
effects of translational variance, which can affect the prediction of a pixel label depending
on its relative position in an image. To address this, we discarded 160 pixels from the edge
of each patch, except for those located at the perimeter of the original image. This strategy
takes into account the recommendations found in a prior study, while also expanding the
margin for error [20]. The increased margin is designed to better handle zero-padding
during the feed-forward process, which can occur as the feature map size changes when
information flows through the pooling layers. This approach is a modification of earlier
recommendations, which suggested discarding only 20 to 40 pixels from the edge of each
patch (Figure 3).
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Figure 3. An illustration of the cut and stitch method used for refining predictions. The method
involves dividing the original image into 35 patches, which include 12 original patches (C1), 9 patches
with an x-translation of 480 pixels (C2), 8 patches with a y-translation of 480 pixels (C3), and 6 patches
with both x and y translations of 480 pixels (C4). These patches are then combined to create a single
image segmentation prediction.

2.2.3. Model Testing with and without Ground Truth

We evaluate the model’s performance using two separate strategies: one with ground
truth and the other without.

In order to assess the model’s predictive precision, we first matched its predictions
with a variety of images from a test set. The set comprised 24 high-quality images, each
meticulously hand-labeled to serve as ground truth. Precision and Intersection over Union
(IoU) scores were then calculated to measure the congruity between the model’s predicted
labels and the manual annotations in the test set.

Precision =
True Positive

True Positive + False Negative
(1)

Intersection of Union =
True Positive

True Positive + False Positive + False Negative
(2)

On the other hand, we also assessed the model’s performance on general-quality
images with lower quality (less verifiable) and luminance compared to the images it was
trained on. The uncertain areas in theses general-quality images are larger, preventing the
annotation of ground truth.

Given the lack of ground truth in this scenario, our testing predominantly rests on
visual assessments of the model’s capability to discern changes in the image composition,
which encompasses different regions such as wet sand, dry sand, and rough sand. Each
of these regions signifies unique moisture levels and sand textures. These changes in
areas within an image can serve as indicators of different beach processes, such as recent
inundation, precipitation, or aeolian sand transport.

2.3. Estimation of Potential False Positive and Negative Error

This section outlines a method that estimates potential errors, such as false positives or
negatives. We consider the difference between the highest and second-highest prediction
probabilities for each pixel. These differences can highlight areas of uncertainty in the
model’s predictions, where larger gaps typically signify a confident prediction, while



Remote Sens. 2023, 15, 3485 6 of 20

smaller differences suggest a higher likelihood of class confusion. This analysis provides a
measurable means to gauge potential errors.

We use matrix notation to streamline our calculations. We transform the two-dimensional
pixel coordinate (i, j) into a one-dimensional pixel coordinate d, with N representing the
total number of pixels. For each pixel d, we define a binary matrix ldk where ldk = 1 when
class k achieves the highest pixel score Pd, and ldk = 0 in all other cases. Similarly, we define
another binary matrix mdk where mdk = 1 when class k has the second-highest pixel score
Qd, and mdk = 0 in all other situations. We categorize the classes as follows: “Water” is
k = 1, “Sky” is k = 2, “Dry sand” is k = 3, “Wet sand” is k = 4, “Rough sand” is k = 5,
“Object” is k = 6, and “Vegetation” is k = 7.

Using this notation, we can calculate the area fraction Ak for each class k in C :
1, 2, . . . , 7 as follows:

Ak =
1
N

N

∑
d=1

ldk (3)

We also estimate potential false positive/negative errors and the degree of uncertainty
in predictions for each class. We focus on relevant classes (those likely to be confused)
when measuring potential errors and exclude unrelated classes.

We focused on classes that share a domain of relevance (e.g., “Water” (k = 1) and “Sky”
(k = 2) can be confused, while “Sky” (k = 2) and “Vegetation” (k = 7) are unlikely to be
confused) when measuring the potential errors, excluding classes with no connection to
one another.

We assumed that all adjacent classes could potentially exhibit some level of confusion.
In order to represent the relevant pairs of classes, we employed a binary matrix Ruv, where
both u and v are elements of class C. This is detailed in Equation (4).

Ruv =



0 1 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 1 1 1 1
1 0 1 0 1 1 0
0 0 1 1 0 1 1
0 0 1 1 1 0 1
0 0 1 0 1 1 0


(4)

Based on the symmetric matrix of relevant classes Ruv, we estimated the potential
errors and the uncertainty of each class. We defined the potential false-negative error
(upper bound) of an arbitrary class k using the Heaviside function Θ (Θ(x) = 0 for x < 0
and Θ(x) = 1 otherwise) as follows:

δ+k =

[
N

∑
d=1

mdk

(
T

∑
n=1

ldnRkn

)
Θ{1− (Pd −Qd) log2 T}

]
/N (5)

Likewise, we defined the potential false positive error (lower bound) as:

δ−k =

[
N

∑
d=1

ldk

(
T

∑
n=1

mdnRnk

)
Θ{1− (Pd −Qd) log2 T}

]
/N (6)

where T was the total number of classes in C, which was 7 in this study. We established a
uniform error threshold of log2 7 for both Equations (5) and (6), irrespective of the number of
relevant classes (i.e., the sum for each row in Equation (4)), in order to simplify calculations.

In other words, if an arbitrary pixel d1 had the highest pixel probability of 0.6 for “Dry
sand” (k = 3) and the second highest pixel probability of 0.3 for “Rough sand” (k = 5),
the pixel would be considered uncertain, as the difference between the two probabilities
is less than 0.35 (= 1/ log2 7). However, even if the difference between pixel probabilities
for “Dry sand” (k = 3) and “Water” (k = 1) at another arbitrary pixel d2 was less than 0.35,
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the pixel would not be deemed uncertain, since these two classes were determined to be
less likely to be confused according to the binary matrix Ruv.

Finally, we define the uncertainty of a given class in each image as the average of the
potential false negative and positive errors:

δk = (δ+k + δ−k )/2. (7)

Our approach, which considers the second-highest pixel probability, could potentially
be extended to the loss function during training, thereby enhancing the commonly used
cross-entropy loss function. However, this concept lies beyond the current study’s scope
and requires further exploration.

2.4. Blurry and Hazy Images Classification

In order to maintain the reliability of image segmentation results, it is critical to
identify whether the image is blurry or hazy—a condition that often leads to misprediction
(Figure A1)—prior to conducting the segmentation prediction.

In this section, we propose a method to classify these types of images. The method
is based on the principle of measuring image sharpness, a key characteristic that directly
impacts prediction accuracy.

There are various metrics for measuring image focus (sharpness), but selecting one that
works accurately for all varying image conditions can be challenging [21]. Among many
operators for defining blurriness, we choose the Laplacian-based operator, which is known
to work well for most image conditions [22].

The Laplacian of an image, denoted by ∆Iij, is acquired by convolving the grayscale of
the original image space, Iij, with the discrete Laplacian filter F, as shown below:

∆Iij = Iij ∗ F, where F =

 0 −1 0
−1 4 −1

0 −1 0

. (8)

The variance of this Laplacian yields the measure of image sharpness [23]:

σ2(∆Iij) = ∑
ij
(∆lij − ∆I)2. (9)

In this research, we categorized images with a sharpness index exceeding 100 as being
of normal clarity, whereas we classified those with a sharpness index below 100 as either
blurry or hazy (Figure A2). To further distinguish between blurry and hazy images within
a set of low-sharpness images, we developed a methodology that leverages the concept of
image dehazing.

An image space Iij can be decomposed into direct attenuation Rijtij and the air-light
A(1− tij) [24]. The transmission tij and the scene radiance Rij represent the amount of light
reaching the camera and the original scene without scatter influence, respectively. The recovery
of the original scene radiance can be achieved using the dark channel prior method, as follows:

Rij =
Iij − A

max
(
tij, t0

) + A, (10)

where t0 is a threshold value.
To evaluate the improvement in sharpness of the recovered scene radiance Rij com-

pared to the original image Iij, we introduced the improvement ratio υ, defined as:

υ =
σ2(∆Rij)

σ2(∆Iij)
. (11)
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Our analysis revealed that the improvement ratio for hazy images υhaze was signifi-
cantly larger than that for blurry images υblurry (Figure A1). Hence, by assessing the increase
in the sharpness index after dehazing, we can determine whether an image is “blurry” and
unsuitable for semantic prediction or “hazy” and appropriate for semantic segmentation.

2.5. Using Image Segmentation for Time Series Prediction

We delve into the application of image segmentation for time series prediction in this
section, building upon the methods previously presented for measuring area fraction from
image segmentation and estimating potential false negatives and positives.

Initially, we utilized these techniques to formulate a time series of the area fraction
Ak(t) for each class, enabling us to track beach recovery post-storm. Our analysis spanned
over a period of 220 days, from 16 November 2017 to 23 June 2018, during which images
were captured at five-minute intervals. In an effort to maintain the accuracy of our semantic
segmentation predictions, we omitted images captured during sunrise and sunset, times
when the sun’s position alters rapidly. As such, our analysis relied on images taken between
7:00 AM and 6:00 PM each day.

We generated daily time series for each region and their potential error by averaging
Ak(t) and δk(t) for each image under “normal” and “hazy” conditions.

In line with our earlier discussions, we removed blurry images while retaining hazy
images when measuring the time series. We defined a blurry image as any image that
satisfied two conditions: (a) its sharpness index was less than 100 and (b) the sharpness
index for its recovered (dehazed) image was less than 1000. Condition (b) was based on
the assumption that, due to the large improvement factor υ for hazy images, all dehazed
pictures, regardless of their original sharpness indices, would have a sharpness index of at
least 1000 if the image was a hazy image.

3. Results and Discussion
3.1. Model Testing
3.1.1. Comparison with the Ground Truth

We applied our CNN model to predict different images in the test set to verify how
our model performs for high-quality images. The predicted labels matched well with the
hand annotation (Figure 4B,C), despite some noise near the interface of each class.

Figure 4. (A) Beach image (B) beach image overlayed with the hand annotated ground truth (mea-
sured label) (C) beach image overlayed with the prediction from the model. The central part of
(B) was left unlabeled, while every pixel was predicted in (C).

In general, the model accurately predicted the labeled regions, as reflected in Table 1.
On the other hand, a closer look at the mean precision (95.1%) and the Intersection over
Union (IoU) (86.7%) (also shown in Table 1) reveals that the rate of false-positive errors
was more than double the rate of false negatives. These false positives could arise from
predicting regions that were unlabeled or from making incorrect predictions.

We can also speculate that false-positive error was larger in classes with smaller areas,
as the weighted Intersection of Union, which considered the number of pixels (size of each
region), was greater than the mean Intersection of Union.
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Table 1. Metrics for semantic segmentation performance.

Global
Precision 1 (%) Mean Precision (%) Mean IoU (%) Weighted IoU 2 (%)

94.6 95.1 86.7 90.2
1 Global Precision is the proportion between correctly classified pixels and total pixels, regardless of class.
2 Weighted IoU is the mean IOU weighted by the number of pixels for each classes.

In addition to the general performance metrics, Table 2 presents the Precision and
Intersection over Union (IoU) for each class. Notably, the “object” (IoU score: 74.8%) and
“vegetation” (IoU score: 78.3%) classes exhibited lower prediction performance compared
to other classes with IoU scores exceeding 90%. This was surprising, given that both
classes had distinct shapes and boundaries that should have facilitated the CNN’s ability
to differentiate the regions more effectively.

Table 2. Precision and IOU for each classes.

Precision (%) IoU (%)

Water 95.9 79.0
Sky 98.8 98.3

Dry sand 94.6 91.2
Wet sand 95.8 92.2

Rough sand 93.7 92.8
Object 89.5 74.8

Vegetation 97.7 78.3

A likely explanation for this lower prediction performance could be rooted in the
inherent constraints of manual annotation. Marking objects and vegetation that exhibit
diverse shapes proved to be substantially more laborious and difficult compared to the
simpler task of labeling monotonous boundaries. Consequently, the actual objects and
vegetation, along with the small areas surrounding them, were labeled as the “object” or
“vegetation” classes for training and validation purposes. These inaccuracies, nonetheless,
might have contributed to the lowering of Intersection over Union (IoU) scores for these
respective classes.

Also, our analysis revealed that the primary source of false positives in the water
region (IoU score: 79.0%) was associated with the incorrect prediction of high luminance
areas as water labels, as depicted in Figure 5.

Figure 5. (A) Beach image (B) Beach image overlayed with the hand annotated ground truth (mea-
sured label) (C) beach image overlayed with the prediction from the model. Due to the high luminance,
the upper part of the region was left unlabeled in (B), where the model falsely identifies this as the
water region.

To observe how classes were correctly classified, we compared the predicted and
measured pixel counts for each class. The confusion matrix (Table 3) revealed that a small
number of classes had contributed unequally to the false positives for specific classes.

For example, the majority of predicted “water” pixels matched the measured water
pixels (95.9% of measured water pixels), with the primary source of false positive errors for
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the “water” pixel being the misidentification of “wet sand” (2.1%) and “sky” areas (1.7%)
as the “water” region. Confusion between “dry sand,” “rough sand,” “vegetation” (0.1%),
and the “water” class was minimal.

Table 3. Normalized confusion matrix. Classes in the column direction indicates predicted class and
the row direction indicates measured class.

Prediction

Measurement
Water (%) Sky (%) Dry

Sand (%)
Wet Sand

(%)
Rough

Sand (%) Object (%) Vegetation
(%)

Water (%) 95.9 1.7 0 2.1 0 0.2 0.1
Sky (%) 0.8 98.8 0 0 0.1 0.3 0
Dry sand (%) 0 0 94.6 1.4 0 3.1 0.9
Wet sand (%) 1.6 0 0.5 95.8 0.2 1.9 0
Rough sand (%) 0 0 0.5 1.3 93.7 3.5 1.0
Object (%) 0.1 0 1.5 3.3 2.2 89.5 3.3
Vegetation(%) 0 0 0.4 0 0.2 1.6 97.7

Similarly, the model accurately classified the “dry sand” classes (94.6% of measured
dry sand pixels), while most misclassifications for “dry sand” resulted from the confusion
of “wet sand” and “objects” as “dry sand.”

Our observation of an uneven distribution of confusion among certain classes is
consistent with our methodological assumptions. This evidence strongly supports our
approach of concentrating on related classes when assessing potential errors.

3.1.2. Visual Comparison

We also put the model to test on images of more general quality, specifically those with
less identifiable regions and low luminance levels, a departure from the type of images
used during its training. This evaluation is crucial, as the majority of images captured by
our camera system fall into this category.

Our CNN model demonstrated an effective capability to capture variations in different
regions reflecting distinct beach processes, as shown in Figure 6.

Following inundation, the areas between debris and water were identified as wet
sand, while the zones between vegetation and debris were classified as rough sand, which
resulted from rainfall during the inundation (Figure 6D). As the wet sand dries, the rough
sand expands and replaces the wet sand (Figure 6E). Subsequently, dry sand from the
surrounding area overlays the rough sand, forming dry sand regions (Figure 6F).

Additionally, the potential false positives corresponded well with the “true” false
positives of wet sand. This is clearly depicted in Figure 6F, where the false positive wet
sand—marked by opaque red regions—is distributed throughout the center and along
the edge of the dry sand area. On the other hand, there was a dense distribution of the
potential false positive of the dry sand region (opaque yellow area) around the interface.
This could be due to the less apparent and vague nature of dry sand compared to other
sand regions, which leads to less accurate model predictions.

Furthermore, the model accurately predicted images taken from coastal cameras with
different perspective, effectively tracking the progression of dry sand replacing the rough
sand area (Figure 7). It excelled at capturing intricate details of objects and vegetation
(Figure 7, E1 and E2), subtle variations in texture between rough and dry sand regions
(Figure 7, E3), and the inherent uncertainty at their interface.

Despite these strengths, the model faced difficulties in identifying the sand
streamer—a narrow flow of saltating dry sand moving across the wet sand region
(Figure 7C,F). These results indicate that the model is more responsive to texture
variations—specifically between dry and rough sand (smooth–rough)—than to color dis-
parities, such as those between dry and wet sand (bright–dark).
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Figure 6. (A) Beach image with a large wet sand area, (B) beach image with a large rough sand area,
(C) beach image with dry sand overlaying the rough sand; (D–F) are the semantic segmentation
predictions overlaid on the original images (A–C). Transparent labels indicate regions predicted
with certainty (Ak − δ−k ), while opaque labels represent the potential false-positive part (δ−k ) of the
semantic segmentation.

Interestingly, the model’s precision in distinguishing between objects (debris) and
vegetation enabled us to discover that during the expansion of dry sand, most objects tend
to become submerged, while vegetation shoots typically remain exposed (Figure 7E,F).
This finding demonstrates the model’s utility in revealing subtle interactions between the
physical environment and biological entities.

3.2. Estimation of Potential Errors for Different Image Conditions

In this section, we focus on the performance of our model under more challenging
image conditions, and how these conditions might contribute to potential errors. Using our
classification method, we analyzed a collection of images that were categorized as either
normal (high or general quality), blurry, or hazy.

In order to avoid data overload, we made use of one image per hour for our study,
even though the camera was initially capturing images every five minutes. From the twelve
images available each hour, we selected one to apply our CNN model, enabling us to
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estimate two factors: the fraction of different areas in each image and the potential relative
errors. Here, the potential relative error is defined as the ratio of the potential error to the
corresponding area fraction.

Figure 7. (A) Beach image with a large rough sand area, (B) beach image where dry sand has replaced
half of the rough sand, and (C) beach image where the dry sand has replaced all of the rough sand
after aeolian transport; (D–F) are semantic segmentation predictions overlaid on the original images
(A–C). Enlarged prediction results for the objects (E1), vegetation (E2), and the interface between the
dry and rough sand regions (E3) demonstrate the accuracy of the model. Transparent labels indicate
regions predicted with certainty (Ak − δ−k ), while opaque labels represent the potential false-positive
part (δ−k ) of the semantic segmentation.

We are focusing on the relative false positive error patterns, as the relative false
negative error patterns are similar to the relative false positive error patterns. Including
both would result in unnecessary redundancy within the graphical representations of our
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study. Given the similarity between these two error types, we can infer that the conclusions
derived from analyzing one can be applied to the other.

Figure 8A illustrates the distribution of relative false positive errors in relation to
the area fraction of dry sand in each image. Our observations reveal that for “normal”
condition images, where the dry sand area fraction exceeds 20%, the relative false positive
errors are primarily below 30%, with a few exceptions that deviate from this trend.

Figure 8. The predicted area fraction and potential false positive (δ−) errors for distinct regions:
(A) dry sand, (B) wet sand, (C) rough sand, and (D) object. Images are classified based on their
sharpness index; those with an index greater than 100 are considered “normal.” Images with an index
below 100 are further categorized as either “hazy” or “blurry,” depending on whether the dehazed
(recovered) image has a sharpness index exceeding 1000.

This pattern of relative error for larger areas within “normal” condition images is also
found in all other observed regions, such as wet sand, rough sand, and objects (Figure 8B–D).
In instances where the wet sand area fraction is more than 10%, the relative false positive
errors are predominantly below 20%. This pattern holds true for rough sand and objects
area fractions larger than 20% and 10%, respectively. These observations suggest that the
model reliably analyzes larger regions that are important for capturing beach processes,
albeit with a handful of deviations from the overall trend.

On the other hand, “hazy” images usually displayed dry sand area fractions and
relative potential errors that fell between those of ”blurry” and “normal” condition images,
with dry sand area fractions around 60% and relative potential errors around 10%. The
wet sand area fraction and potential error for “hazy” images had a wide range of values,
ranging between 10% and 30% for area fraction and between 10% and 20% for relative
potential error. Interestingly, these values were more similar to those of “normal” images
than “blurry” ones. This discrepancy in wet area fraction values between “hazy” and
“blurry” images aligns with the empirical finding that the model can more reliably predict
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hazy images than blurry ones. However, it was difficult to find any meaningful pattern for
rough sand and objects.

In the case of “blurry” images, they typically showed a dry sand area fraction exceed-
ing 60% with high certainty (relative potential error less than 10%), while the area fractions
of wet and rough sand, as well as objects, were generally confined to less than 10%. This
finding validates that, with a very low level of uncertainty, the model inaccurately identifies
the blurry part of an image as dry sand, while failing to accurately capture the features of
other regions.

The focus of this section has been to utilize the newly introduced potential false error
metric to evaluate our model’s performance under various image conditions. However,
this metric’s utility extends beyond this context, offering wider applications beyond beach
imagery analysis. It may be particularly useful in quantifying uncertainty in ambiguous
layers without clear boundaries, such as analyzing geological or glaciological mélanges,
or defining chaotic structures within sedimentary basins. Thus, while our analysis has
largely centered around beach imagery, the potential false error metric holds broader
implications for other scientific domains.

3.3. Time Series of Beach Recovery

Finally, we examined the daily time series of area fractions for various regions
throughout the span of the observation period. Although we did not factor in the po-
tential errors for this analysis, detailed time series of potential errors can be found in the
Appendix B (Figure A3).

A notable adjustment occurred on day 117 when the camera was replaced, resulting in
a shift in the field of view from cross-offshore to cross-shore direction. This change led to a
noticeable alteration of the time series (Figure 9), capturing more sky, water, and wet sand
regions, while the previously dominant vegetation, objects, and rough sand regions became
less prominent. Despite this change in perspective, evolving conditions of the beach remain
the central focus of our study, as we explore the subsequent analysis.

Figure 9. Time series of daily average area fractions for different image classes. Blurry image days,
characterized by a daily average sharpness index below 100 and a daily average sharpness index for
dehazed images under 1000, are indicated by dotted lines.

During the coastal inundation on the 19th observation day, the object area fractions
substantially increased from 5 percent to 20 percent, as large debris was transported to
the back beach (Figure 10). This inundation event also triggered a transformation of the
rough sand regions into wet sand, with the wet sand area approximately doubling after the
flooding (Figure 9).
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Figure 10. The inundation at the day 19. Debris that later trapped the sand was brought to the beach
surface during the inundation. Following a significant increase in wet sand during the flooding,
the rain on day 20 transformed some of the wet sand into rough sand.

A notable feature in the time series shown in Figure 9 is the increasing trend in the dry
sand area from day 120 up until day 214, when another coastal inundation event occurred.
During this observation period, the dry sand area fraction fluctuates between zero and local
maxima, with the peak value of each cycle gradually increasing from around 40 percent on
day 125 to around 55 percent on day 205.

This increasing pattern of the dry sand area fraction between day 120 and 214 is
different from the trend observed between day 1 and day 120 (Figure 9). In the earlier
period, there were also small cyclic patterns for the dry sand area, indicating the occurrence
of several aeolian transport events. However, the peak value of each cycle during day
1 to day 120 does not grow over time. This suggests that the beach state shifted from a
non-recovering state, where aeolian transport temporarily increased the dry sand area
without any long-lasting effects, to a recovering state, in which the dry sand area maxima
of each cycle increased with every subsequent aeolian transport event.

Our analysis revealed that the transition from a non-recovering to a recovering state,
ultimately leading to the vertical accretion of the beach, can be attributed to a massive
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aeolian transport event that took place on day 125 (middle and bottom Figure 11). This
significant transport event not only caused an immediate increase in the dry sand area but
also had lasting effects on the beach dynamics. The vertical accretion, which resulted from
this massive transport event, altered the beach’s state in such a way that it became more
conducive to accumulating dry sand over time.

Figure 11. The aeolian transport at day 124 to 126. Massive amounts of dry sand were moved from
the berm to the beach on day 125, raising the beach elevation and changing the pattern of the dry
sand area fraction after that.

As a result of this shift in the beach’s state, other coastal processes, such as the
distribution of sediment and the growth of vegetation, were also influenced. The increase
in dry sand area, combined with the gradual disappearance of objects and the expansion of
vegetation, suggests a complex interplay between aeolian transport, sediment deposition,
and ecological processes. As the beach continued to recover and grow vertically, these
processes became more tightly interconnected, reinforcing the overall recovery process and
further driving the observed changes in the beach’s state.

Evidence of this vertical growth can be seen in the combined area of dry, rough,
and wet sand, which increased from 70 to 80 percent between day 120 and day 214, while
the vegetation area grew from 0 to 5 percent. In contrast, the object area decreased from
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15 to 0 percent. This indicates that the object area was replaced by sand and vegetation,
as the sand buried the debris and vegetation continued to grow, further supporting the
idea that the beach experienced vertical growth during this period (Figure 9).

4. Conclusions

In this study, we have employed a CNN technique for coastal monitoring using high-
resolution complex imagery, with the goal of understanding beach recovery processes. The
CNN model demonstrated an exceptional capability to detect indirect markers of coastal
processes and beach recovery, such as water content and the texture of the sand, the presence
and burial of debris, and the presence and quantity of vegetation that influence coastal
dune formation. This was achieved through the adept interpretation and analysis of beach
imagery, where the model was able to accurately differentiate these unique features, in spite
of the complexity of the imagery, that spanned all possible weather and lighting conditions.

The proposed metrics used to quantify potential false positives and negatives allow
a robust estimation of the uncertainty of the CNN model and thus evaluate its reliability
in conditions where no ground truth is present. This method is general and can be easily
extended to other cases. Additionally, we put forward a method to identify blurry beach im-
ages, which could potentially compromise the quality of the prediction, before proceeding
with the image segmentation prediction.

After successful image segmentation and interpretation, the time series data revealed
new insights into the beach recovery process. In particular, they highlighted the crucial role
that rare aeolian transport events have on the beach recovery process, as they promote the
initial vertical growth and set the conditions for further accretion and eventual recovery.

In summary, our study is the first to monitor beach recovery at a high temporal
resolution using CNN techniques. Our proposed methods have broader applicability in
coastal and ecological studies and can open the door to further enhanced environmental
image-based monitoring techniques that deepen our understanding of complex ecosystems.
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Appendix A. Image Segmentation for Blurry and Hazy Images

This appendix outlines an aspect of our CNN model that requires additional con-
sideration, particularly when dealing with blurry images. The model has a tendency to
misinterpret blurry areas in the image as dry sand or sky (Figure A1A,C), while it accurately
processes the clear segments of the image (upper middle part in Figure A1A). Through
empirical analysis, we discovered that these blurry images typically exhibit sharpness
indices below 100 (Figure A2) for the image set we evaluated.

On the other hand, our observations revealed that images affected by haze often bear
low sharpness indices, yet they are not necessarily blurry and remain amenable to analysis
by the CNN model (Figure A1B,D). This difference in predictive quality implies that images
with low sharpness indices can be classified into two categories: those that are “truly”
blurry and hence difficult to interpret, and those that are still interpretable by the model
(namely, “hazy” images).
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Figure A1. (A) Blurry beach image, (B) beach image influenced by haze; (C,D) are semantic seg-
mentation predictions overlaid on the original images (A,B). Semantic segmentation (C) misses
most of the beach features, whereas (D) can predict most of the features, such as water, sky, objects,
and vegetation. Both blurry (A) and hazy (B) images initially had low sharpness indices of 58.6 and
63.3; the hazy image demonstrated a significant improvement ratio of 20.86 post-dehazing, in contrast
with the blurry image which only saw a marginal enhancement in its sharpness index (υ = 3.21).

Figure A2. Comparison of images with different sharpness indices. Images with a sharpness index
higher than 100 can be regarded as “normal” images (left column), while images with a sharpness
index less than 100 are considered “blurry” images (right column).
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Appendix B. Daily Average Time Series and the Potential Errors

Figure A3. Daily average time series for Ak(t), with the corresponding potential false positive (δ−k (t))
and false negative (δ+k (t)) rates. Blurry image days are marked using asterisk.
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