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Abstract: The prediction of crop yield plays a crucial role in national economic development, encom-
passing grain storage, processing, and grain price trends. Employing multiple sensors to acquire
remote sensing data and utilizing machine learning algorithms can enable accurate, fast, and nonde-
structive yield prediction for maize crops. However, current research heavily relies on single-type
remote sensing data and traditional machine learning methods, resulting in the limited robustness
of yield prediction models. To address these limitations, this study introduces a field-scale maize
yield prediction model named the convolutional neural network–attention–long short-term memory
network (CNN-attention-LSTM) model, which utilizes multimodal remote sensing data collected
by multispectral and light detection and ranging (LIDAR) sensors mounted on unmanned aerial
vehicles (UAVs). The model incorporates meteorological data throughout the crop reproductive
stages and employs the normalized difference vegetation index (NDVI), normalized difference red
edge (NDRE), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) for the
initial part of the vegetative stage (initial part of the V period), the later part of the vegetative stage
(later part of the V period), the reproductive stage (R period), and the maturity stage (M period),
along with LIDAR data for Point75–100 in the later part of the V period, Point80–100 in the R period,
and Point50–100 in the M period, complemented by corresponding meteorological data as inputs.
The resulting yield estimation demonstrates exceptional performance, with an R2 value of 0.78
and an rRMSE of 8.27%. These results surpass previous research and validate the effectiveness of
multimodal data in enhancing yield prediction models. Furthermore, to assess the superiority of
the proposed model, four machine learning algorithms—multiple linear regression (MLR), random
forest regression (RF), support vector machine (SVM), and backpropagation (BP)—are compared
to the CNN-attention-LSTM model through experimental analysis. The outcomes indicate that all
alternative models exhibit inferior prediction accuracy compared to the CNN-attention-LSTM model.
Across the test dataset within the study area, the R2 values for various nitrogen fertilizer levels
consistently exceed 0.75, illustrating the robustness of the proposed model. This study introduces a
novel approach for assessing maize crop yield and provides valuable insights for estimating the yield
of other crops.

Keywords: maize; multitemporal; multimodal remote sensing; yield prediction model; nitrogen
fertilizer management
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1. Introduction

Yield, as the ultimate goal of agricultural cultivation, serves as the most direct eco-
nomic parameter for evaluating field productivity [1]. Maize, one of the world’s major
cereal crops, holds significant value in terms of food consumption, feed processing, and
industrial production [2]. Monitoring of the early stages of maize growth can improve crop
fertility management. Correct yield estimation using UAV remote sensing technology is not
only valuable for the economic decision-making and marketing layout of corn crop in that
year but can also play a vital role in agricultural development [3,4]. Traditional monitoring
of maize crops during reproductive stages typically involves destructive field sampling,
while yield assessment relies on on-site information surveys conducted during the harvest
season. However, these conventional methods are characterized by time-consuming and
labor-intensive procedures, high costs, and the need for data reliability assessment, par-
ticularly when dealing with multitemporal data. Consequently, optimizing maize crop
monitoring methods and establishing highly accurate yield prediction models for maize
crops have emerged as pressing issues.

The advent of remote sensing technology has made the continuous monitoring of crop
reproductive stages and yield assessment feasible [5]. Currently, remote sensing monitoring
methods can be classified into satellite remote sensing and unmanned aerial vehicle (UAV)
remote sensing. Satellite remote sensing provides broad coverage and low costs; however,
it is susceptible to weather conditions and suffers from limitations such as lower spatial
resolution compared to UAV imagery, which restricts its capacity for the high-frequency
monitoring of crops at smaller spatial scales [6]. UAVs equipped with diverse sensor
types enable the rapid acquisition of crop growth information, leading to their extensive
application in crop yield assessment, nutrient diagnosis, growth characteristic evaluation,
and more [7]. Presently, various UAV sensors, including light detection and ranging
(LIDAR), multispectral, and RGB cameras, have demonstrated immense potential in crop
monitoring [8]. Multispectral imagery allows for the calculation of vegetation indices (VIs)
that reflect crop growth conditions and facilitate yield estimation [9]. Onboard LIDAR
systems accurately capture three-dimensional vegetation information, thereby improving
the accuracy of vegetation parameter estimation during different crop reproductive stages.
For instance, Liang et al. [10] predicted rice yield in small-scale fields in southern China
by integrating RGB and multispectral imagery while monitoring leaf chlorophyll content
(LCC) during reproductive stages using the normalized difference yellow index (NDYI).
Patricia et al. [11] predicted grape yield using RGB spectral data and improved the linear
relationship through spectral data integration. Gong et al. [12] estimated canola seed yield
by utilizing canopy information and abundance data derived from UAV multispectral
imagery, demonstrating that the product of normalized VI and short-stem leaf abundance
provided the most accurate estimate of canola yield under varying nitrogen treatments.
Yi et al. [13] collected multitemporal soybean remote sensing data using hyperspectral,
LIDAR, and multispectral sensors, and estimated the leaf area index (LAI) through machine
learning techniques. Luo et al. [14] predicted the height of maize and soybean crops using
LIDAR point cloud data and compared the accuracy of height prediction at different point
densities. The aforementioned studies confirm that, compared to other methods, UAV
remote sensing enables the more effective monitoring of crop growth and yield prediction
across diverse crop types.

In recent research, the integration of remote sensing data with various machine learn-
ing algorithms has been employed for crop yield prediction and analysis, considering the
influence of nonlinear growth characteristics of crops across multiple temporal phases [15].
Nonlinear machine learning models have demonstrated superior performance compared
to traditional linear regression models. For instance, Tian et al. [16] integrated two remote
sensing indicators with meteorological data using LSTM networks to estimate wheat yield.
Tian et al. [17] developed an IPSO-BP neural network that assigned different weights to VIs
and LAI during different reproductive stages to establish a yield regression model for yield
estimation. Yang et al. [18] trained a convolutional neural network (CNN) classification
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model using hyperspectral imagery to extract spectral and RGB information relevant to
maize characteristics, enabling maize yield estimation.

However, previous yield prediction models predominantly relied on UAV remote
sensing data from a single sensor, failing to effectively utilize multimodal crop information.
The fusion of multimodal data can overcome the limitations of unimodal features primarily
based on one-dimensional spectral information or two-dimensional RGB imagery. It allows
for the effective extraction of multidimensional structural features of crops, thereby enhanc-
ing yield prediction accuracy. Multimodal data fusion has attracted significant attention
and has been widely applied in various fields. For instance, Mou et al. [19] employed CNN
and long short-term memory (LSTM) models to fuse nonintrusive data and develop a driver
stress detection model. Multimodal data fusion has also been applied to yield prediction.
Ma et al. [20] proposed a novel winter wheat yield prediction model based on multimodal
imagery, demonstrating superior performance compared to individual modes. Fei et al. [21]
fused data from multiple sensors on UAVs using machine learning methods to enhance
crop prediction accuracy. Although these studies effectively integrated multimodal remote
sensing data, they did not fully incorporate the multitemporal information of crops.

The main objective of this study is to predict maize yield through an innovative
fusion model based on multitemporal and multimodal UAV data. To effectively capture the
nonlinear features of different data modalities, this study combines the attention mechanism
with the CNN-LSTM model to integrate multispectral, LIDAR, and meteorological data.
Based on the above issues, the specific objectives of this study are as follows:

1. Build the CNN-attention-LSTM network model. The model is used to fuse relevant
growth parameters and climate data for multiple fertility stages of maize and to make
yield predictions.

2. Provide a comparison of the effects of different reproductive stages and sensor combi-
nations on the yield prediction model. An evaluation of optimal multitemporal and
multimodal maize yield predictor combinations is performed.

3. Evaluate the model robustness using data collected in the test area; the adaptability
of the proposed CNN-attention-LSTM model to predict maize yield under different
fertilization treatments is also verified.

2. Materials and Methods
2.1. Study Area and Field Experimental Design

Field experiments were conducted from May to October 2022 at Xiangyang Farm
(45◦72′N, 126◦68′E) in Harbin, Heilongjiang Province, China, to collect multimodal and mul-
titemporal growth data of maize under different nitrogen fertilizer conditions (Figure 1a).
The study area is located in the northeastern part of China and experiences a cold temper-
ate climate, with an average effective accumulated temperature of 2800 ◦C and an annual
average precipitation of 400–600 mL. The soil in the experimental area is classified as a
Mollisol (i.e., black soil) by the United States Department of Agriculture, with a pH of 6.11
and a thickness of the humus layer of approximately 50 cm.

Maize was sown in the experimental area on 7 May 2022. To enhance the generalizabil-
ity of the model developed in this study, the experimental area was divided into a training
zone (Figure 1b) and a validation zone (Figure 1c). The training zone adopted a complete
randomized block design, with 6 different nitrogen fertilizer treatments replicated 3 times.
Each experimental plot in the training zone had an area of 3.5 × 15 m2, resulting in a total
of 18 experimental blocks (Figure 1b). During the V3–V6 phenological periods, 5 rounds of
liquid nitrogen fertilizer and 1 round of solid nitrogen fertilizer were applied. Based on
the soil conditions in the experimental area and regional recommendations, the 5 rounds
of liquid nitrogen fertilizer (45% N in liquid urea solution) had the following application
rates: 0, 50, 100, 150, and 200 kg/ha. The solid nitrogen fertilizer (45% N in solid urea
mixture) was applied at a rate of 150 kg/ha. The same N fertilizer treatments were used in
the validation zone, and five replicate trials were conducted for each group of N fertilizer.
Each experimental plot in the training zone had an area of 5 × 20 m2.
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Figure 1. Experimental area overview: (a) geographic location of the study area; (b) experimental
layout of the test blocks; and (c) experimental layout of the validation blocks.

2.2. Data Collection

This study conducted data collection for maize yield, field information during key
phenological stages, meteorological data, and remote sensing data including multispectral
and LIDAR data obtained from UAVs.

2.2.1. UAV Data Collection

The remote sensing data were acquired using the DJI M300RTK UAV platform through-
out the maize growth period in 2022, specifically during clear and cloudless weather condi-
tions between 10:00 and 14:00 (Table 1). Vi is the i-th stage of the vegetative stage, and Ri
is the i-th stage of the reproductive stage. The UAV platform was equipped with both a
multispectral sensor and a LIDAR sensor.

Table 1. Flight time records throughout the growth period.

Dates Phenological Stages

15 June 2022 V3–V4
29 June 2022 V6–V7 (plucking stage)
13 July 2022 V9 (growth rate rapidly increases)
18 July 2022 V12 (trumpeting stage)
24 July 2022 V12 (trumpeting stage)

1 August 2022 VT (tasseling stage)
8 August 2022 R1 (silking stage)

16 August 2022 R3 (milk stage)
12 September 2022 R4–R5 (dough stage)

6 October 2022 R6 (physiological maturity)

The multispectral data were collected using a Changguang Yuchen MS600pro sensor
(Changchun, China), which has a spectral range of 400–900 nm and a ground spatial
resolution of 8.6 cm at flying height. The sensor had an 80% side overlap rate and an 80%
forward overlap rate. LIDAR data were captured using a DJI L1 sensor (China), with a
flight altitude set at 30 m and a point cloud density of 300 m2. The sampling was performed
at a frequency of 160 Hz (Figure 2), and the spatial separation rate is about 1500 pixels/m.
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All flight missions were autonomously conducted, maintaining a flight altitude of 30 m
and a flight speed of 1.2 m/s.
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2.2.2. Field Data Collection

Field measurements were conducted on the same day as the completion of UAV flight
missions during key phenological stages.

During the nutritional growth and early reproductive stages of maize, 15 sample
plants were randomly selected and sampled in each experimental block. The coordinates
of the sampling points were recorded to determine the location information. The natural
plant height (PH) of the sample plants was measured using a measuring tape [22]. The
relative chlorophyll content of the sample plants with fully expanded leaves during the cor-
responding period was nondestructively measured using a soil plant analysis development
(SPAD) chlorophyll meter. Equation (1) was employed to convert SPAD values into LCC.
Following the measurement of SPAD values, the corresponding maize leaf samples were
collected and placed in self-sealing bags, which were then transported to the laboratory.
The nitrogen content of the samples was analyzed using an elemental analyzer (EuroVector,
Italy, Model: EA3000).

>y = 1.02008x − 1 (1)

In Equation (1),>y represents the LCC of maize leaves, and x represents the SPAD value
of maize leaves [23].

In this study, the LAI of maize was determined using destructive sampling. The
sampled leaves were collected and brought to the laboratory for the measurement of leaf
area in m2. LAI was then calculated using Equation (2).

LAI = LAi × D (2)



Remote Sens. 2023, 15, 3483 6 of 22

The average value of three samples was considered as the individual plant leaf area
(LAi). D is the planting density of maize, and LAI is the leaf area index of maize leaves.

In addition, representative plants were selected from each plot at various reproductive
stages. The roots were pruned, and the aboveground parts were cleaned. The samples were
then dried at 105 ◦C for desiccation and further dried at 80 ◦C until a constant weight was
achieved. The aboveground biomass (AGB) of each sample was measured using a balance
and converted to plot-level AGB (g/m2) based on the planting density.

In this study, the actual yield of maize was measured in the field at the finishing stage
of maturity (R6). During the R6 of maize, a designated area measuring 10 m× 2.2 m (4 rows
in the middle of the plot) was manually harvested in each plot to determine the actual
yield [24]. The harvested maize crops were transported to the laboratory, threshed, and
adjusted to a standard moisture content of 14%. The number of rows, number of grains
per row, and weight of 500 grains were measured from the harvested maize ears. The
maize yield was calculated by weighing the grains from the sampled area and applying
a weightage factor (Figure 2). Additionally, this study assessed the impact of different
nitrogen application rates on maize yield by evaluating the apparent nitrogen use efficiency
(aNUE) using Equation (3).

aNUE = (CNi −CN0)/Ni (3)

where CNi represents the maize yield at the ith nitrogen level, CN0 represents the maize
yield without nitrogen application, and Ni represents the nitrogen content at the ith level.

2.2.3. Meteorological Data

Daily meteorological data for the experimental area during the 2022 growing season
were obtained from the website of the China National Meteorological Science Data Cen-
ter [25]. The dataset included 6 meteorological variables: daily total precipitation (mm/day),
daily average temperature (◦C), daily maximum temperature (◦C), daily minimum tem-
perature (◦C), vapor pressure (hPa), and daily total solar radiation (KJ m−2 day−1). These
variables were collected and used as input variables for yield prediction.

2.3. Data Processing and Dataset Construction

This study involved 4 main processes: data preprocessing, feature extraction, multimodal
feature fusion, and yield prediction. This section focuses on the data preprocessing process.

2.3.1. Point Cloud Data Processing

LIDAR point cloud data were processed using Pix4D Mapper software to remove
noise and generate a LAS dataset. Additionally, a digital surface model (DSM) and a dense
point cloud with a resolution of 0.1 m × 0.1 m were obtained.

Based on the results of the acquired field data, this study extracted maize structural
information by means of further hierarchical extraction of the processed point cloud data
using Agisoft and selecting the optimal parameters. The point cloud data were divided into
different levels (i.e., five-level, four-level, and two-level) based on their heights, starting
from lower levels to higher levels. Specifically, the five-level point cloud data were labeled
as Point0–20, Point20–40, Point40–60, Point60–80, and Point80–100. The four-level point cloud
data were labeled as Point0–25, Point25–50, Point50–75, and Point75–100. The two-level point
cloud data were labeled as Point0–50 and Point50–100.

To obtain a digital elevation model (DEM), the point cloud data were classified into
ground points and crop points using the cloth simulation filter (CSF) algorithm. The CSF
algorithm assumes the natural fall of a cloth onto the terrain, and the resulting shape
represents the terrain. By fitting the ground points, a DEM was generated. The basic
equation of the CSF algorithm is shown in Equation (4).

m
∂X(t)

∂t2 = Fext(X, t) + Fint(X, t) (4)
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where X represents the position of particles on the surface of the “fabric” at time t, which is
influenced by the external driving factor Fext (X,t) and the internal driving factor Fint (X,t).
Assuming that only the external factor has an influence, the internal driving factor is set to
0, and their relationship is described by Equation (5).

X(t + ∆t) = 2X(t)− X(t− ∆t) +
G
m

∆t2 (5)

where m represents the weight of fabric particles and ∆t represents the time step used to
calculate the iterative position of particles. Additionally, the internal factor Fint (X,t) can
control the issue of particle inversion in blank areas (Equation (6)). By incorporating both
the internal and external factors, the height differences between the LIDAR point cloud
and particles are calculated, resulting in the classification of ground points.

→
d =

1
2

b(
→
p i −

→
p 0) ·

→
n (6)

where
→
d represents the displacement of particles and

→
n represents the unit vector normal-

ized in the vertical direction.
DSM and DEM models are imported into ArcGIS (ArcGIS, Esri.Inc., Redlands, CA,

USA) and processed using raster tools to generate the canopy height model (CHM) as
described in Equation (7). It is crucial to ensure that the grids of the DSM and DEM are
properly aligned during the calculation process.

CHM = DSM− DEM (7)

The CHM contains information about the natural height and canopy coverage of maize
crops. The highest point of the individual maize crop’s canopy can be obtained by applying
the local maximum method to the CHM. To achieve this, an appropriate window size is
selected to traverse the statistical area. The first raster position is determined, and the local
maximum value is computed by considering its neighborhood. The maximum value within
each crop corresponds to the highest point of the individual plant [26].

2.3.2. Multispectral Image Processing

In order to facilitate accurate maize growth monitoring and yield prediction, the
multispectral images were processed in this study. Yusense Map software was utilized for
image registration and stitching to generate a TIF image. The TIF image has a recorded
format of digital numbers (DN) without any physical significance. Therefore, ENVI 5.3
software was employed to convert the DN of the multispectral data into surface reflectance
through radiometric calibration. According to Equation (8), DN can be transformed into
reflectance values.

Ri =
(a i × DNi + b)× d2 ×∏

E0 × cos θ
(8)

where ai × DNi + b represents radiance and E0 denotes the solar irradiance, which varies
for different spectral bands. Typically, d is set to 1.

In the visible band, the reflectance thresholds were set to 0.05–0.12 for weeds and
0.17–0.25 for soil, and the average reflectance of the corn canopy was obtained by eliminat-
ing the effect of background reflectance based on the set reflectance thresholds. Additionally,
in order to evaluate the impact of chlorophyll and nitrogen content on maize growth and
yield, various VIs were computed using the calibrated reflectance images from different
spectral bands. The VIs calculated in this study include the normalized difference vegeta-
tion index (NDVI); the difference vegetation index (DVI); the green normalized difference
vegetation index (GNDVI); the red difference vegetation index (RDVI); the ratio vegetation
index (RVI); the enhanced vegetation index (EVI), which is more sensitive to biomass;
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the soil conditioning vegetation index (SAVI); and the green chlorophyll index (GCI) for
assessing light use efficiency. The specific calculations for these VIs are provided in Table 2.

Table 2. Computation of VIs using multispectral images.

Index Formulas

NDVI (RNIR − RRED)/(RNIR + RRED)
DVI RNIR − RRED

GNDVI (RNIR − RRED)/(RNIR + RGRE)
RDVI (RNIR − RRED)/

√
RNIR + RRED

RVI RNIR/RRED
EVI 2.5× (RNIR − RRED)/(RNIR + 6.0× RRED − 7.5× RBLUE + 1)

SAVI ((RNIR − RRED)/(RNIR + RRED + 0.16))× (1 + 0.5)
GCI NIR

GRE − 1
NDRE NDRE = (RNIR − RRED_EDGE)/(RNIR + RRED_EDGE)

Note: RED, GRE, BLUE, and NIR represent the surface reflectance of the red channel, green channel, blue channel,
and near-infrared channel, respectively.

2.4. CNN-Attention-LSTM for Maize Yield Prediction

To effectively monitor the entire growth period of maize and accurately assess its yield,
this study utilized laser LIDAR point cloud data, multispectral data, and meteorological
data as variables. These multimodal data were integrated using an improved CNN-
attention-LSTM model for yield prediction. The specific architecture of the model is
depicted in Figure 3. The dataset was divided into training, validation, and test sets. The
training set comprised data collected from the training zone mentioned in Section 2.1, while
the validation zone data were equally split to form the validation and test sets at a 1:1 ratio.
The dataset was labeled based on field-collected data.

Firstly, the different sensor data were normalized, and any outliers were eliminated
from the dataset. The multimodal and multitemporal features were segmented using a
sliding time window with an overlap rate of 85%. The resulting time windows served as
input variables, ensuring alignment with the original feature tags [27].

Secondly, considering the distinctive characteristics of three-dimensional vector struc-
tural information derived from the point cloud at different reproductive stages, the spectral
information obtained from the multispectral images, and the meteorological information
during the growth period, separate feature extraction branches were created for each data
type. The preprocessed data were fed into 3 branches of the CNN-attention-LSTM model,
where adaptive convolutional kernels in 3 convolutional layers extracted the relevant data
features. These convolutional layers traversed the dataset, generating feature matrices
through convolutional kernel weighting and local sequence convolution operations. Each
convolutional layer was linked to a max-pooling layer, which reduced the dimensionality of
the extracted features. A dropout layer was then connected to the max-pooling layer to pre-
vent overfitting. Through multiple iterations of convolution and pooling, high-dimensional
feature maps were obtained, allowing the CNN model to effectively extract structural and
spectral information from multiple time periods. In the data fusion stage, the extracted
features were computed via stepwise summation of the information for each branch, and
finally, a new feature map was generated. The feature maps resulting from the convolu-
tional layers maintained the original sequence order and were subsequently input into two
consecutive LSTM layers. Each LSTM unit consisted of input, forget, and output gates, as
well as internal state variables. LSTM layers transformed the feature maps into hidden
states [28]. The feature maps processed using the LSTM layers were fused to generate new
feature maps. These hierarchical feature maps encompassed m hidden states xt, and their
representation of y is denoted in Equation (9):

y = f (x1, x2, x3, . . . . . . xm) (9)

where xt denotes the i-th hidden state and y is the corresponding feature map mapping.
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The different hidden states of the feature maps mentioned above have an influence
on yield indicators. To address this, this study employed a self-attention mechanism
to calculate the hidden states, which produces a feature vector z. The feature vector is
obtained by applying the tanh() activation function to the hidden states, resulting in the
representation Ct (Equation (10)). In Equation (10), W denotes the weight matrix and b
represents the bias vector. The weights, αt, are obtained by normalizing using the softmax
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function (Equation (12)). Ultimately, the vector z represents the weighted sum of the
hidden states.

Ct = tanh(Wxt + b) (10)

et = QueryKeyT
t /

√
dk (11)

αt =
exp(et)

∑n
t=0 exp(et)

(12)

z = ∑
t

αtValuet (13)

After computing the features using the attention mechanism, the process of multi-
modal feature fusion was accomplished. The combination of CNN and LSTM features
allows for the effective handling of long-term sequences, mitigating the issue of reduced
accuracy associated with longer sequences [29]. Moreover, the introduced self-attention
module assigns distinct weights to various modalities, facilitating the capture of the rela-
tionship between multimodal data and yield.

Subsequently, the fused multimodal features were transformed in the output section.
The feature samples were fed into the ElasticNet regression layer (ElasticNet) [30] for
training, yielding predictions of yield outcomes.

2.5. Modelling and Evaluation Indices

The model uses the coefficient of determination (R2), root mean square error (RMSE),
relative root mean square error (rRMSE), and relative percentage difference (RPD) to
evaluate the yield prediction results of the model in a comprehensive manner [31]. Usually,
models are considered to have better prediction when they have a higher R2 and lower
rRMSE. The relevant equations are shown in Table 3.

Table 3. Accuracy evaluation indices of maize yield estimation model.

Evaluation Metric Calculation Formula

R2 1−
n
∑

i=1
(Yi−Xi)

2

n
∑

i=1
(Yi−Y)

2

RMSE

√
n
∑

i=1
(Yi−Xi)2

n

rRMSE
RMSE

y

RPD STD
RMSE

3. Results

This section evaluates the variations in parameters such as VIs resulting from maize
growth under different nitrogen levels and identifies the optimal parameter combination
for yield prediction. Additionally, comparative experiments were designed to investigate
the performance of the CNN-attention-LSTM model in multimodal data fusion and maize
yield prediction. The performance of this model was compared with other prediction
models to assess its effectiveness.

3.1. Analysis of Growth Characteristics and Yield Prediction under Different Nitrogen Levels

This study conducted a comparison of grain yield and aNUE among different plots
to investigate the effect of nitrogen levels on maize yield. The experimental results are
presented in Figure 4 [32], which illustrates the average grain yield and aNUE in both the
experimental and validation zones under varying nitrogen levels. Figure 4 demonstrates
that the yield exhibits a significant increasing trend with higher nitrogen levels in the N1 to
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N4 range, while a decrease in yield is observed at the N5 level. The yield at the N5 level
is similar to that at the N3 level. In contrast, the distribution pattern of aNUE shows an
opposite trend to yield. Within the N1 to N4 range, aNUE decreases as nitrogen levels
increase, but it increases at the N5 level. These findings indicate a correlation between
maize yield and nitrogen content, underscoring the importance of monitoring maize growth
under different nitrogen levels and predicting yield. Moreover, the measured data from
the experimental and validation zones exhibit similar distribution patterns, indicating
the suitability of the selected validation plots for the experiment and the usability of the
extracted data for the subsequent evaluation of yield prediction models.
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nitrogen levels, with aNUE being 0 under N1 treatment.

Since the characteristics of multimodal data vary under different nitrogen levels, the
CNN-attention-LSTM model can learn the weights of different parameters based on the
features acquired at each nitrogen level. To further investigate the sensitivity of different
parameters to nitrogen levels, this study analyzed the multispectral data and laser LIDAR
data of maize at multiple reproductive stages. The correlations between multispectral
data, LIDAR data, and yield under different nitrogen levels were examined throughout the
reproductive stages, as depicted in Figure 5a,b.
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reproductive stages. (b) Correlation between LIDAR point cloud data at different nitrogen levels and
field yield during various reproductive stages.
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The results indicate the importance of both multispectral data and three-dimensional
vector feature information for maize yield prediction. While the spectral data and LIDAR
data exhibit significant differences at various reproductive stages under six different ni-
trogen treatments, the influence of nitrogen levels on the correlation between yield and
multimodal data is relatively small. Additionally, for feature extraction under different
nitrogen levels, the proposed model demonstrates consistent yield prediction results. Con-
sequently, the CNN-attention-LSTM model is capable of adaptive yield prediction for
different reproductive stages and nitrogen levels.

3.2. Results of Maize Grain Yield Prediction Based on Different Reproductive-Stage Remote
Sensing Data
3.2.1. Maize Grain Yield Prediction Results Based on Different Reproductive-Stage
Multispectral Data

VIs play a crucial role in extracting maize growth parameters. This study utilized
multispectral imagery data collected using UAVs at various time periods to calculate
four VIs: NDVI, normalized difference red edge (NDRE), soil-adjusted vegetation index
(SAVI), and EVI. The correlation between these VIs and field-collected data was computed.
Subsequently, these indices were used as input variables in the CNN-attention-LSTM model
for maize grain yield prediction experiments.

By analyzing the selected VIs, we assessed the correlation between each index and
maize grain yield at different reproductive stages. The correlation coefficients between
different VIs and yield varied across the different time periods. These correlations were
visualized using a correlation coefficient heat map, as depicted in Figure 6.
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As depicted in Figure 6, the x axis of the correlation coefficient heat map represents
different VIs, while the y axis represents different reproductive stages of maize. Each square
in the heat map represents the correlation between the corresponding VI and yield for a
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specific reproductive stage. The saturation of colors in the squares indicates the strength of
the correlation, with fuller colors indicating stronger correlations. Based on the image, it
can be observed that NDRE exhibits the highest correlation during the M period, while EVI
shows strong correlations with yield in both the initial part of the V period and the later part
of the V period. SAVI exhibits the fullest color saturation during the R period, indicating its
greater potential for estimating maize yield during that period. NDVI demonstrates high
correlations throughout the entire growth period, with the highest correlation occurring in
the later part of the V period.

To determine the optimal combination of multispectral VIs from which data can be
analyzed for yield prediction, this study selected multitemporal data from NDVI, NDRE,
SAVI, and EVI as input variables for the CNN-attention-LSTM model. The branches
corresponding to the other two modalities were frozen, and comparative experiments were
conducted for yield prediction. The experimental results are summarized in Table 4.

Table 4. Maize yield prediction results based on different VI combinations at various reproductive stages.

Different Fertility
Combinations The Reproductive Period R2 RPD rRMSE

Two reproductive
stages

Later part of V period, R period 0.33 1.20 37.9%
Later part of V period, M period 0.45 1.36 15.7%
R period, M period 0.61 1.47 20.1%

Three reproductive
stages

Initial part of V period, Later part
of V period, R period 0.56 1.45 21.7%

Initial part of V period, Later part
of V period, M period 0.51 1.34 23.9%

Later part of V period, R period,
M period 0.65 1.71 19.4%

All reproductive
stages

Initial part of V period, Later part
of V period, R period, M period 0.67 1.83 15.7%

The results indicate that as the number of reproductive stages increases, the R2 value
shows a clear increasing trend. Using the full growth period as input variables yields better
prediction results compared to using data from only two or three stages of the growth
period. When utilizing the full growth period’s multispectral data as input variables, the
model achieves an R2 value of 0.67 and an rRMSE of 15.7%. As more reproductive stages
are included, the prediction performance improves. Additionally, including data from the
initial part of the R period as input variables significantly enhances the yield prediction.
Among the experiments using three reproductive stages as input variables, the combination
of the later parts of the V, R, and M periods demonstrates the best performance, with an
R2 value of 0.65 and an rRMSE of 19.4%. Conversely, excluding R period data from the
reproductive stage combination (specifically using the initial part of the V period, the later
part of the V period, and the M period) leads to the worst performance, with an R2 value of
0.51 and an rRMSE of 23.9%.

Overall, utilizing the data from the full growth period’s multispectral VIs as input
variables yields significant improvements compared to using data from only two or three
reproductive stages.

3.2.2. Maize Growth Parameter Extraction and Yield Prediction Results Based on
LIDAR Data

LIDAR point cloud data provide valuable structural information about maize [13].
In this study, we applied the method described in Section 2.3.1 to extract crop structural
features in the initial part of the V period and the later parts of the V, R, and M periods.

To investigate the relationship between point cloud parameters and maize characteris-
tics, we calculated the correlation coefficients between different levels of point cloud data
with both LAI and CHM. The correlation coefficients showed significant variations. The
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point cloud data in the initial part of the V period exhibited relatively low correlation coeffi-
cients with LAI and CHM. Among them, Point50–100 had the highest correlation coefficient
with CHM, reaching 0.52, and a correlation coefficient of 0.49 with LAI. In the later part of
the V period, Point75–100 showed a correlation coefficient of 0.65 with LAI and 0.71 with
CHM. For the R period, Point80–100 was selected for parameter extraction, and for the M
period, Point50–100 was selected. To conduct yield prediction experiments, this research
work extracted three-dimensional features from the selected point cloud data.

Based on the calculated correlation coefficients, this study used different point cloud
data as input variables in the CNN-attention-LSTM model for yield prediction. When
using single-time-period point cloud data as input variables, the R period yielded the
best results, with an R2 value of 0.48 and an rRMSE of 29.1%. When using point cloud
data for two time periods as input variables, the combination of the later parts of the V
and R periods showed the best training performance, with an R2 value of 0.54 and an
rRMSE of 24.3%. When using point cloud data for three time periods as input variables,
the combination of the later parts of the V, R, and M periods yielded the best training
performance, with an R2 value of 0.62 and an rRMSE of 19.6%. These results showed only a
slight difference compared to the prediction results using the full growth period’s LIDAR
data. The experimental results demonstrated that the point cloud data for the later parts
of the V, R, and M periods achieved higher accuracy and stability. Therefore, this study
selected the combination of these three reproductive stages as the model parameters for
LIDAR data. The experimental results are presented in Table 5. Better yield prediction
results can provide more accurate and detailed information on productivity crops in the
field while allowing for more significant yield variation at different N levels.

Table 5. Maize yield prediction results based on different LIDAR data combinations at various
reproductive stages.

Different Fertility Combinations R2 RPD rRMSE

One reproductive stage (R period) 0.48 1.38 29.1%
Two reproductive stages (later part of V period, R period) 0.54 1.66 24.3%
Three reproductive stages (later part of V period, R period,

M period) 0.62 1.87 19.6%

3.3. Yield Prediction Results Based on CNN-Attention-LSTM Model

This section presents the results of yield prediction using the CNN-attention-LSTM
model for multimodal variable fusion. Additionally, this study compares the model’s
performance under different window intervals.

3.3.1. Impact of Attention Mechanism on Yield Prediction Results

To assess the influence of the attention mechanism on different features, comparative
experiments were conducted. The preprocessed multimodal feature vectors were input
into two models: the CNN-LSTM model and the CNN-attention-LSTM model with an
attention mechanism. The experiments were performed using window intervals of 5, 10,
and 15 s to examine the effect of the attention mechanism on yield prediction. The results
are illustrated in Figure 7.

For the CNN-LSTM model, the R2 values for window intervals of 5, 10, and 15 s were
0.62, 0.73, and 0.59, respectively. In contrast, the CNN-attention-LSTM model with an
attention mechanism achieved R2 values of 0.69, 0.78, and 0.64 for the respective window
intervals. Notably, the CNN-attention-LSTM model demonstrated an improvement of 0.05
in R2 for the 10 s window interval compared to the CNN-LSTM model. The experimental
results consistently demonstrated the superior performance of the CNN-attention-LSTM
model with an attention mechanism. The attention mechanism effectively fused the multi-
modal data by assigning different weights to different features, leading to positive impacts
on the prediction results. Based on these findings, the 10 s window interval was selected
for subsequent data processing.
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3.3.2. Comparative Analysis of Yield Prediction Using Different Regression Methods

In order to explore the potential of the CNN-attention-LSTM model in yield prediction
using alternative regression methods, this study conducted comparative experiments
by replacing the ElasticNet layer with multiple linear regression (MLR), random forest
regression (RF), support vector machine (SVM), and backpropagation (BP) [33].

Among these models, MLR exhibited the lowest R2 value of 0.42 when using the data
from the initial part of the V period and the later parts of the V, R, and M periods as inputs
in the training area. RF achieved the highest R2 value of 0.71 and an rRMSE of 13.4%,
demonstrating higher stability and accuracy. However, the CNN-attention-LSTM model
with an ElasticNet layer outperformed all the other models, achieving an R2 value of 0.78
and an rRMSE of 8.27%. The comparative results of the multiple regression models are
presented in Table 6.

Table 6. Yield prediction results of different models.

Yield Forecasting Models R2 RPD rRMSE

ElasticNet 0.78 2.31 8.27%
MLR 0.42 1.26 34.6%

RF 0.71 1.89 13.4%
SVM 0.63 1.64 19.7%
BP 0.53 1.47 25.6%

When an ElasticNet layer was used, the CNN-attention-LSTM model consistently
showed superior performance in yield prediction compared to the other methods through-
out the entire growth period. This suggests that the combination of ElasticNet and the
fused multimodal data leads to better adaptability and improved yield prediction results.

3.4. Yield Prediction Results of Multimodal Data Fusion

Building upon the findings from Sections 3.2.1 and 3.2.2, this study incorporated NDVI,
NDRE, SAVI, and EVI data from the entire growth period, as well as point cloud data from
the later parts of the V, R, and M periods. Furthermore, meteorological data were integrated
as input variables in the yield prediction model. The fusion of these three modalities
yielded an R2 value of 0.78 and an rRMSE of 8.27% for yield prediction. These results
demonstrate the strong predictive capability of the multimodal yield prediction model,
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making it an effective tool for maize yield estimation. The fusion of multiple datasets
significantly improved the R2 value compared to using single-type remote sensing data
alone. Additionally, the multimodal fusion outperformed the combination of single-type
remote sensing data with meteorological data, highlighting the complementary nature of
different modalities when fused together.

Table 7 illustrates the yield prediction results obtained by combining different modal-
ities of data. The training outcomes indicate that fusing multitemporal VI data with
meteorological data produces superior results compared to fusing LIDAR point cloud data
with meteorological data. Moreover, the prediction accuracy using single multitemporal
VIs data surpasses that of using single LIDAR point cloud data. This discrepancy arises
because multitemporal VI data influence various yield-related indicators such as SPAD,
LAI, and AGB, thereby exerting a greater impact on yield prediction. In contrast, LIDAR
point cloud data have a relatively smaller influence on yield prediction, as they primarily
affect LAI and CHM. Meteorological data, on the other hand, affect the crop’s growth status
during the growing season, providing an advantage to yield predictions that incorporate
both meteorological and corresponding remote sensing data. The multimodal fusion of
multispectral, LIDAR, and meteorological data surpasses any single modality or combina-
tion, underscoring the enhanced predictive capabilities of multimodal data fusion. Hence,
this study selected the multimodal fusion of multispectral, LIDAR, and meteorological
data for maize yield prediction. Figure 8 illustrates the maize yield prediction results
based on the CNN-attention-LSTM model using the fusion of multispectral, LIDAR, and
meteorological data, achieving an impressive R2 value of 0.78.

Table 7. Yield prediction results from different modal fusion methods.

Different Modal Combinations R2 RPD rRMSE

Multispectral data 0.67 1.83 15.7%
LIDAR data 0.62 1.87 19.6%

Multispectral data, LIDAR data 0.74 2.23 10.1%
Multispectral data, meteorological data 0.71 2.05 13.5%

LIDAR data, meteorological data 0.66 1.98 16.6%
Multispectral data, LIDAR data, meteorological data 0.78 2.31 8.27%
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4. Discussion
4.1. Correlation Analysis between UAV Remote Sensing Data and Maize Growth

UAV remote sensing data have demonstrated significant potential in crop growth
monitoring and yield prediction, offering a more convenient data acquisition process com-
pared to field-collected data. However, it is crucial to investigate whether UAV data can
accurately reflect the growth status of maize crops. Previous studies have shown that VI
features extracted from multispectral data can effectively characterize crop growth [34].
Additionally, LIDAR point cloud data have been utilized to describe changes in crop canopy
structure [14,35]. VI features exhibit distinct characteristics as maize progresses through
different reproductive stages, with each VI reflecting specific physiological conditions.
NDVI, for instance, exhibits more pronounced changes during the vegetative reproductive
stage. Its nonlinear stretch enhances the contrast and reflectance between the near-infrared
and red bands, resulting in reduced sensitivity as canopy coverage increases. On the
other hand, NDRE uses the red-edge band to reflect chlorophyll levels, making it more
sensitive during critical reproductive stages and transition periods. SAVI incorporates a
soil adjustment factor L to correct the sensitivity of NDVI to changes in vegetation cov-
erage at various reproductive stages. EVI, with narrower red and near-infrared bands,
demonstrates higher detection capability during the early stages of the vegetative growth
period. While previous studies have relied on single VIs for yield prediction, these indices
are susceptible to variations in physiological indicators and soil backgrounds across dif-
ferent reproductive stages. They also exhibit higher saturation levels only during specific
periods. Therefore, combining multiple VIs provides a more comprehensive overview of
crop reproductive stages. LIDAR point cloud data provide valuable structural information
at different stages of maize development. The point density and distribution of the point
cloud data impact the determination of canopy structure, with increased point density
enabling more specific descriptions of structural characteristics [36]. Notably, within a
certain range, the accuracy of canopy height prediction is influenced by the density of
point clouds. Therefore, in this study, a point density of 300 points/m2 was selected as
the standard for point cloud extraction to fulfill the requirements of feature extraction
throughout the entire reproductive period.

The comparative experiments conducted in Section 3.2 revealed that single-modality
data can only provide specific dimensional feature information for maize yield prediction.
However, the fusion of multispectral VI data, LIDAR point cloud data, and meteorological
information significantly improves the accuracy of maize yield prediction [37]. The differ-
ences in maize yield are reflected not only in the changes in VIs but also in the structural
characteristics derived from point cloud analysis. Therefore, the integration of multiple
data modalities is crucial for enhancing the accuracy of maize yield prediction.

4.2. Analysis of the Impact of Different Reproductive Stages on Maize Yield Prediction

In this study, multiple time periods of UAV data were selected and fused to evaluate
maize yield. However, it is important to analyze the specific influence of each reproductive
stage on grain yield prediction [38].

Figure 9a presents the yield prediction results for different blocks during four indi-
vidual reproductive stages. The initial part of the V period yielded an R2 of 0.36 and an
rRMSE of 40.2%. The R2 value significantly increased during the later part of the V period,
reaching 0.59 during the R period. The R2 value slightly decreased to 0.54 during the M
period, with an rRMSE of 26.1%. These experimental results indicate that the R period is
the optimal reproductive stage for yield prediction, and assigning more weight to features
from the R period can improve the accuracy of yield prediction. The overall R2 for yield
prediction across the entire experimental area was 0.78, which is 0.19 higher than the R
period alone. These findings, combined with the results from Section 3.2, demonstrate that
a single reproductive stage cannot fully capture crop growth characteristics, and the fusion
of multiple time-period features is the optimal approach for yield prediction.
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To further investigate the impact of fusing different reproductive stages on yield pre-
diction, this study conducted comparative experiments using three reproductive stages.
The results, shown in Figure 9b, indicate that the highest R2 value of 0.75 was achieved
when the independent variables included the later parts of the V, R, and M periods. The
lowest R2 value of 0.62 and the highest rRMSE of 21.3% were observed when the inde-
pendent variables included the initial part of V, the later part of the V period, and the M
period. These experimental results confirm that the R period is the optimal stage for yield
prediction, while the initial part of the V period has the least impact on yield prediction.
These findings are consistent with the results obtained from the single-reproductive-stage
experiments. The yield prediction results are closely related to the monitored parameters
during the selected reproductive stages in this study. As the maize growth cycle progresses,
the acquired multispectral data and LIDAR point cloud data also undergo changes. There-
fore, the accuracy of the proposed CNN-attention-LSTM yield prediction model may vary
accordingly. During the R period, the yield prediction performance in the validation area
is optimal and aligns with the results from the training area. However, the prediction
accuracy in the validation area is slightly lower, indicating the need to further enhance the
robustness of the model. During the later part of the V period, the rapid changes in canopy
coverage and maize pH result in the point cloud data receiving more attention from the
attention mechanism in the yield prediction model. As the maize crop enters the R period,
the emergence of tassels can alter the canopy structure, thereby increasing the correlation
between spectral features and various maize growth parameters. Consequently, this mod-
ification in the relationship between the response characteristics of remote sensing data,
such as VIs, and maize growth parameters enhances the impact on yield prediction [39].

4.3. Correlation Analysis between UAV Remote Sensing Data and Maize Growth

The results of previous experiments clearly indicate that different spectral features and
three-dimensional point cloud vector features have distinct effects on maize yield prediction.
While remote sensing data are widely used in yield prediction, there are challenges in
selecting the optimal parameter variables due to issues such as single modality and finding
the best parameter combinations for accurate maize yield prediction. Therefore, it is crucial
to analyze the impact of different-dimensional data on yield prediction to guide the rational
selection of multimodal remote sensing data [6]. The experimental findings from Section 3.2
demonstrate that different reproductive stages exhibit diverse correlations between VIs,
three-dimensional structural information, and yield. Notably, the transition from the initial
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part of the V period to the later part of the R period introduces significant changes in maize
tassel structures that directly influence the representation of the maize canopy. The use of
UAV imagery enables the effective monitoring of the impact of VIs and three-dimensional
structural changes in the maize canopy on yield.

To summarize, the correlation between remotely sensed information obtained from
multiple sensors and maize growth parameters surpasses that obtained from a single sensor
acquiring image features [40]. Additionally, considering the influence of meteorological
variations on captured image features, it is necessary to incorporate key meteorological
information as input variables in the model [41].

4.4. Potential of Multimodal Data Integration with Deep Learning for Maize Yield Prediction

This study proposes the field-scale CNN-attention-LSTM model for maize yield pre-
diction by integrating multispectral data, LIDAR point cloud data, and meteorological data
from the initial part of the V period, the later part of the V period, the initial part of the
R period, the later part of the R period, and the M period of maize growth. The experi-
mental results demonstrate the accurate prediction capability of the CNN-attention-LSTM
model for maize yield. Furthermore, the results verify that the fusion of multimodal data
outperforms any single-modality data in terms of prediction accuracy, which is consistent
with the findings of Fei et al. [21] and Sun et al. [42]. Compared to other methods such as
MLR, RF, SVM, and BP, the CNN-attention-LSTM model based on deep learning achieves
higher accuracy in yield prediction and demonstrates better generalization ability (Table 7).
Additionally, deep learning techniques effectively capture the impact of canopy structure
changes in yield prediction. Ziliani et al. [6] used high-resolution satellite imagery to
determine the linear regression between simulated LAI and simulated yield using APSIM,
resulting in optimal yield prediction. Xiuliang Jin et al. [43] were able to achieve maize yield
estimation at the county level in China by combining multiple remote sensing metrics and
machine learning algorithms. The estimated R2 reached 0.78 in the first 24 days of harvest.
However, the multimodal fusion estimation of UAV remote sensing data is more applicable
to yield prediction at the field scale. Previous studies have often relied on manual feature
extraction methods for multimodal feature fusion, which require large-window data and
do not align with the practicality of field-scale crop information collection. Moreover,
large-window data are less compatible with small-scale variations in data, and can only be
effectively utilized when there are significant changes in multidimensional features due
to substantial differences in nitrogen content. However, the CNN-attention-LSTM model,
which enables the automatic extraction of multimodal features, simultaneously processes
different modalities using CNN, allowing the use of relatively smaller window data to im-
prove yield prediction performance under different nitrogen treatments. The finer feature
extraction and fusion techniques facilitate a more effective utilization of multidimensional
maize structures [44].

In summary, the extraction of multimodal and multitemporal crop features, along with
the adaptive assignment of weights to different modalities using self-attention mechanisms,
enables the organic fusion of multimodal data, resulting in more accurate yield prediction.
Therefore, the combination of multimodal data and deep learning has become an important
approach for field-scale maize yield prediction.

5. Conclusions

This study presents the development of a CNN-attention-LSTM network that inte-
grates multitemporal and multimodal UAV data for field-scale maize yield prediction.
This model exhibits high accuracy and robustness in predicting yield. Field experiments
were conducted to validate the model’s performance, considering different nitrogen fer-
tilizer treatments. The experimental results demonstrate that the CNN-attention-LSTM
model outperforms existing models in maize yield prediction, achieving an R2 value of
0.78 and an rRMSE of 8.27% [18,45]. The fusion of multimodal data also outperforms indi-
vidual modalities. The self-attention mechanism in the model allows for the assignment



Remote Sens. 2023, 15, 3483 20 of 22

of varying weights to different features. In comparison, the CNN-LSTM model without
self-attention achieves an R2 value of 0.73 and an rRMSE of 13.2%. These results indicate
that self-attention effectively balances the information from multiple dimensions.

Based on these findings, this study enables the accurate monitoring and yield predic-
tion of maize at the field scale, contributing to the advancement of precision agriculture.
However, there are certain limitations in practical field operations to consider. Firstly,
the field experiments focused on a single crop variety, and the collected data exhibited a
degree of randomness. Secondly, this study utilized multispectral and LIDAR UAV sensors,
neglecting the potential of hyperspectral technology, which has proven valuable in yield
prediction [46].

Future research should focus on improving the training dataset to enhance the gener-
alizability of the model. Additionally, given the demonstrated feasibility of multimodal
fusion in yield prediction, further investigation into different fusion methods for various
modalities is warranted. Despite its limitations, this study holds practical significance for
field-scale maize yield prediction.
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