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Abstract: The study provides a comprehensive bibliometric analysis of imaging and non-imaging
spectroscopy for wheat scab (INISWS) using CiteSpace. Therefore, we underpinned the develop-
ments of global INISWS detection at kernel, spike, and canopy scales, considering sensors, sensitive
wavelengths, and algorithmic approaches. The study retrieved original articles from the Web of
Science core collection (WOSCC) using a combination of advanced keyword searches related to
INISWS. Afterward, visualization networks of author co-authorship, institution co-authorship, and
country co-authorship were created to categorize the productive authors, countries, and institutions.
Furthermore, the most significant authors and the core journals were identified by visualizing the
journal co-citation, top research articles, document co-citation, and author co-citation networks. The
investigation examined the major contributions of INISWS research at the micro, meso, and macro
levels and highlighted the degree of collaboration between them and INISWS knowledge sources.
Furthermore, it identifies the main research areas of INISWS and the current state of knowledge and
provides future research directions. Moreover, an examination of grants and cooperating countries
shows that the policy support from the People’s Republic of China, the United States of America,
Germany, and Italy significantly benefits the progress of INISWS research. The co-occurrence analysis
of keywords was carried out to highlight the new research frontiers and current hotspots. Lastly, the
findings of kernel, spike, and canopy scales are presented regarding the best algorithmic, sensitive
feature, and instrument techniques.

Keywords: wheat scab; agricultural remote sensing; knowledge map; CiteSpace; co-authorship;
institution co-authorship

1. Introduction

Investigating a research field’s comprehensive academic background and knowledge
structure is a prolific method to determine the hotspots, research themes, knowledge
foundations, and research frontiers in that particular research domain at a global scale. The
comprehensive background of scientific studies can be classified by a series of different
specialties, such as collaborating authors, institutions, countries, journals, co-occurring
keywords, hot research topics, knowledge clusters, and cited references. Additionally, the
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clustering of the literature can determine the knowledge structure and domains based on
co-occurring keywords and research themes from the research papers downloaded from the
databases [1,2]. These analyses, also referred to as bibliometric or scientometric analyses,
can be conducted, and the networks can be visualized to extract knowledge maps [3,4].
This new method for analyzing scientific literature includes thorough and comprehensive
interpretations of the intellectual background of almost any research field. Additionally, it
aids in understanding cutting-edge research frontiers, author or institutional collaborations,
knowledge structures, and novel developments that are important to engineers, business
investors, and researchers. In this article, we emphasized the scab disease of the wheat
crop in the context of agricultural remote sensing (ARS).

For the first time, scab was identified as a new wheat, barley, and ryegrass disease
in England caused by Fusisporium culmorum, hordei, and Lolii W. Sm, respectively [5]. At
the end of the 19th century, it was noted as a significant disease in the United States of
America (USA). At the start of the 20th century, scab was well-known worldwide in wheat-
producing regions [6]. McMullen et al. (2012) characterized it as a re-emerging disease
due to the frequent epidemics of wheat in the USA and Canada from 1991 to 1996 [7].
China has experienced 30 fusarium head blight (FHB) epidemics since 1950, each affecting
more than 10% of the country’s land area. In 2012, a massive outbreak of wheat disease
affected about 10 mha land of wheat production and resulted in a yield loss of more than
2 million tons [8]. Lower Yangtze River Valley and Heilongjiang Province are two of China’s
most frequently hit regions in the east. Also noteworthy is that damage has spread north
and west, devouring the Huang-Huai River Valley, China’s largest wheat-growing region.
Approximately 17 percent of world wheat is produced in China, where scab has the most
significant impact, causing yield losses of 10 to 20% in moderate epidemics and up to 50%
in severe epidemics [9]. In addition, Japan, Korea, and the far east of Russia adjacent to
Heilongjiang Province, China, were also severely affected by scab. The outbreak of 1963 in
Japan affected 71.5% of the wheat acreage and resulted in a yield loss of 53.5% [10].

The involvement of two species from the genus Microdochium and multiple species
from the genus Fusarium is referred to as a scab disease complex. The primary distinction
between these two is that Microdochium species do not produce mycotoxins, while Fusarium
species do [11]. In contrast, Fusarium graminearum is the most common pathogen of scab
worldwide [7,12,13]. However, various studies revealed that other Fusarium species may
significantly contribute to this disease in various parts of the world with various climatic
conditions. For example, F. graminearum, F. avenaceum, F. culmorum, F. tricinctum, F. poae,
and M. majus were Europe’s dominant species [14,15]. While in Canada, F. avenaceum,
F. graminearum, F. poae, F. equiseti, and F. sporotrichioides were the most frequent species
during the last two decades [16]. FHB is a monocyclic disease; ascospores, macroconidia,
and microconidia are all forms of the pathogen that can survive in the debris (Figure 1) of
a previous crop within sexual structures called perithecia. These spores are regarded as the
disease’s primary inoculum. These spores are considered the main inoculum of the disease.
Besides serving as hosts, both gramineous and non-gramineous weeds are known sources
of the inoculum for scab. When weather conditions are favorable and in the anthesis stage,
the inoculum is spread by wind or splashed by rain and lands on the open wheat kernels.
The spores germinate on the spikelet tissue and form germ tubes [13,17].
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Figure 1. Illustration of the life cycle of scab (A) and damaged or shriveled grains (B), modified
from [18].

Scab is critical as it causes colossal damage to crops—often causing damage or crop
failure [19,20]. However, inappropriate fungicide application, control, and disease quantifi-
cation employing inadequate measures are the leading factors causing substantial yield
losses annually [21]. To this end, different optical sensor technologies have been introduced
for several precision agriculture measures in phenotyping, phytopathology, and pedol-
ogy [22–24]. The frontiers and hotspots of the study can explain the current scab study
development under ARS advancements. This study conducted a bibliometric investigation
of the advanced research conducted in ARS for wheat scab detection. The relevant scientific
data published between 2000 and 2022 in high-quality journals were retrieved from the
Web of Science core collection (WOSCC). The co-citation, co-occurrence, co-authorship, and
cluster analyses were performed in CiteSpace. The objectives of the current study are as
follows:

(a) Highlight the major research efforts in the domain of ARS for wheat scab detection at
the level of contributing authors, institutions, and countries.

(b) Evaluate the contribution of key journals in the same area.
(c) Classify and interpret the obtained literature and knowledge into brief knowledge

clusters using co-occurring keywords.
(d) Determine the research frontiers, knowledge foundation, and hot topics in the field of

ARS for wheat scab detection for future studies.
(e) Review the conducted studies for scab detection at different scales (grains, spike, and

canopy) of wheat crops.

2. Data Collection and Bibliometric Methodology
2.1. Retrieval of Data from Web of Science

The most precise literature-indexing resource is the Web of Science (WOS), which
covers scientific and social, health, and economic knowledge. Therefore, worldwide
WOS is frequently acknowledged as the best source of data collection for bibliometric
analyses [2]. The WOS core collection (WOSCC) databases retrieved the relevant data.
A large number of iterations were used to obtain an optimal searching keyword code to
download the most relevant articles related to ARS for wheat scab detection. Table 1 shows
a development series of iterative-searching keyword codes for probing WOS database
data. The most effective searching keywords were as follows: (“wheat spike”) (Topic) or
(“fusarium head blight” OR “Scab”) (Topic) and (“remote sensing”) OR (“hyperspectral
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imaging” OR “fluorescence” OR “reflectance” OR “hyperspectral reflectance”) (Topic) and
(“detection”) OR (“classification”) (Topic). It implies that the published documents were
searched for contained words in the titles, abstracts, or keywords. Only peer-reviewed,
original research articles published in English were extracted; review articles, books, and
conference proceedings were omitted. The time frame of the data collection was from
1 January 2000 to 31 December 2022, inclusive. While downloading the pertinent literature,
the research domains were limited to the sciences and technologies.

Table 1. Optimization of search keywords for finding WOS publications relevant to agricultural
remote sensing for wheat scab detection.

No. Searching Code Results Quality

1 (“Wheat spike”) (Topic) or (“Fusarium head blight”) 3560 Very rough, very generic, highly
irrelevant

2 (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) 6825 Improved, yet irrelevant

3 (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic)
and (“remote sensing”) 163 Very generic and highly irrelevant

4 (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic)
and (“remote sensing”) OR (“hyperspectral imaging”) 198 Improved, yet irrelevant

5 (“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic)
and (“remote sensing”) OR (“hyperspectral imaging” OR “Fluorescence”) 307 A little improved, yet irrelevant

6
(“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic)

and (“remote sensing”) OR (“hyperspectral imaging” OR “Fluorescence”
OR “hyperspectral reflectance”)

338 More improved, yet irrelevant

7

(“Wheat spike”) (Topic) or (“Fusarium head blight” OR “Scab”) (Topic)
and (“remote sensing”) OR (“hyperspectral imaging” OR “Fluorescence”

OR “reflectance” OR “hyperspectral reflectance”) (Topic) and
(“detection”) OR (“classification”) OR (“monitoring”) OR

(“identification”) (Topic)

238 Much improved, highly relevant.

2.2. Schematic of the Study

Based on the methodology given above, a total of 238 original research articles were
retrieved. The whole record and cited references were saved as “other file formats” results,
and plain text was chosen as the file format. The schematic reveals the steps taken to
continue the study in Figure 2.
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2.3. CiteSpace-Based Bibliometric Analyses

The more advanced capabilities for bibliometric analyses include a map or network
analyses and the visualization of the scientific literature. CiteSpace is a Java-based program
that maps and visualizes scientific domains for bibliometric analysis. Dr. Chen Chaomei
developed this at Drexel University of United States [25], and it is freely available online.
CiteSpace’s advanced features and wide range of applications allowed for the visualization
analyses of the literature maps in the field of ARS to detect wheat scab. The following
steps were used to visualize the obtained data in CiteSpace. First, a project was created
with the input of publications that were downloaded, complete with full records and cited
references in plain text. Then, as shown in Table 2, subsequent parameters were established.

Table 2. CiteSpace parameters and values for bibliometric analysis of advanced research in agricul-
tural remote sensing for wheat scab detection.

No. Parameters Definition

1 Time slicing Year span from 2005 to 2022; years per slice of 1 year for all
2 Term source Title, author, abstract, keywords, and keywords plus

3 Node type Author, cited author, cited reference, institution, country,
cited journal, and keywords

4 Selection criteria Top 15%
5 Pruning Pathfinder and pruning sliced networks
6 Links Default
7 Visualization Show merged network and cluster view-static

After defining the parameters, the co-citation analysis and keywords co-occurrence
analysis were run in CiteSpace to obtain the networks showing the co-citations among
the authors, documents, and journals (co-citation analysis) and keywords, hot research
topics, and research frontiers (keywords co-occurrence analysis), respectively. Finally, the
relevant data and mapping networks were investigated, and the corresponding results of
the current research study’s visualization investigation were presented and discussed.

3. Examination and Interpretation of Scientometrics Analysis
3.1. Bibliometric Analyses Based on Web of Science

The distribution of corresponding citations and publications in the research area of
ARS for wheat scab detection is plotted for a period from 1 January 2005 to 1 February 2022,
as shown in Figure 3. It can be observed that a considerably slow rise was observed in
the number of significant publications over the initial decade (years ranging from 2005 to
2010). A total of 13 studies were published in 2010, with a fall in the subsequent couple of
years. From 2014, the concerns were significantly increased for the research. Compared
to the statistics in 2020, the number increased in 2021, when a maximum of 34 studies
were published. Relatively few numbers of publications in the area show that the ARS for
wheat scab detection is still in its infancy, and significant efforts are required in the future
to achieve further advancements in the field. The trends are almost similar for the citations,
with a maximum of 724 in 2021.

The top 15 journals in which most articles related to ARS for wheat scab detection are
published are enlisted against the number of publications and their percentage contribution,
as shown in Table 3. Table 4 shows the top 15 institutions in the research domain of ARS
for wheat scab detection. Tables 5 and 6 show the 15 most important countries and the
most prolific authors, respectively, with the highest number of studies in the given research
domain. The distribution of the top 7 funding agencies involved in the relevant articles
extracted from the WOS in ARS research is exhibited in Table 7. Similarly, the top 15 WOS
subject categories in the research domain of ARS for wheat scab detection are shown in
Table 8.



Remote Sens. 2023, 15, 3431 6 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 26 
 

 

3. Examination and Interpretation of Scientometrics Analysis 

3.1. Bibliometric Analyses Based on Web of Science 

The distribution of corresponding citations and publications in the research area of 

ARS for wheat scab detection is plotted for a period from 1 January 2005 to 1 February 

2022, as shown in Figure 3. It can be observed that a considerably slow rise was observed 

in the number of significant publications over the initial decade (years ranging from 2005 

to 2010). A total of 13 studies were published in 2010, with a fall in the subsequent couple 

of years. From 2014, the concerns were significantly increased for the research. Compared 

to the statistics in 2020, the number increased in 2021, when a maximum of 34 studies were 

published. Relatively few numbers of publications in the area show that the ARS for wheat 

scab detection is still in its infancy, and significant efforts are required in the future to 

achieve further advancements in the field. The trends are almost similar for the citations, 

with a maximum of 724 in 2021. 

 

Figure 3. Publications and citations of total articles in agricultural remote sensing for wheat scab 

detection from 2005 to 2022. 

The top 15 journals in which most articles related to ARS for wheat scab detection are 

published are enlisted against the number of publications and their percentage contribu-

tion, as shown in Table 3. Table 4 shows the top 15 institutions in the research domain of 

ARS for wheat scab detection. Tables 5 and 6 show the 15 most important countries and 

the most prolific authors, respectively, with the highest number of studies in the given 

research domain. The distribution of the top 7 funding agencies involved in the relevant 

articles extracted from the WOS in ARS research is exhibited in Table 7. Similarly, the top 

15 WOS subject categories in the research domain of ARS for wheat scab detection are 

shown in Table 8. 

Table 3. Top 15 journals in the research domain of agricultural remote sensing for wheat scab de-

tection. 

No. Journals Records % of Total 

1 REMOTE SENSING 14 7.568 

2 COMPUTERS AND ELECTRONICS IN AGRICULTURE 7 3.784 

3 FRONTIERS IN PLANT SCIENCE 7 3.784 

4 BIOSYSTEMS ENGINEERING 6 3.243 

5 MOLECULAR BIOLOGY REPORTS 4 2.162 

Figure 3. Publications and citations of total articles in agricultural remote sensing for wheat scab
detection from 2005 to 2022.

Table 3. Top 15 journals in the research domain of agricultural remote sensing for wheat scab detection.

No. Journals Records % of Total

1 REMOTE SENSING 14 7.568

2
COMPUTERS AND
ELECTRONICS IN

AGRICULTURE
7 3.784

3 FRONTIERS IN
PLANT SCIENCE 7 3.784

4 BIOSYSTEMS
ENGINEERING 6 3.243

5 MOLECULAR
BIOLOGY REPORTS 4 2.162

6 PHYTOPATHOLOGY 4 2.162

7 PLANT
PATHOLOGY 4 2.162

8 SENSORS 4 2.162
9 BMC GENOMICS 3 1.622

10 CROP PASTURE
SCIENCE 3 1.622

11

EUROPEAN
JOURNAL OF

PLANT
PATHOLOGY

3 1.622

12
PLANT

BIOTECHNOLOGY
JOURNAL

3 1.622

13 PLANT DISEASE 3 1.622

14 PLANT
PHYSIOLOGY 3 1.622

15 PLANTA 3 1.622
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Table 4. Top 15 institutions in the research domain of agricultural remote sensing for wheat scab detection.

No. Affiliations Records % of Total

1 CHINESE ACADEMY OF SCIENCES 22 11.892
2 ANHUI UNIVERSITY 13 7.027
3 UNITED STATES DEPARTMENT OF AGRICULTURE USDA 12 6.486
4 UNIVERSITY OF CHINESE ACADEMY OF SCIENCES CAS 11 5.946
5 CHINESE ACADEMY OF AGRICULTURAL SCIENCES 8 4.324
6 NORTHWEST A F UNIVERSITY CHINA 8 4.324
7 CHINA AGRICULTURAL UNIVERSITY 7 3.784
8 INSTITUTE OF CROP SCIENCES CAAS 7 3.784
9 INSTITUTE OF GENETICS DEVELOPMENTAL BIOLOGY CAS 7 3.784
10 INRAE 6 3.243
11 NANJING AGRICULTURAL UNIVERSITY 6 3.243
12 AGRICULTURE AGRI FOOD CANADA 5 2.703
13 BIOTECHNOLOGY AND BIOLOGICAL SCIENCES RESEARCH COUNCIL BBSRC 5 2.703
14 CONSEJO NACIONAL DE INVESTIGACIONES CIENTIFICAS Y TECNICAS CONICET 5 2.703
15 TUSCIA UNIVERSITY 5 2.703

Table 5. Top 15 countries in the research domain of agricultural remote sensing for wheat scab detection.

No. Countries Records % of Total

1 CHINA 73 39.459
2 USA 37 20.0
3 GERMANY 18 9.730
4 ITALY 12 6.486
5 CANADA 11 5.946
6 FRANCE 9 4.865
7 ENGLAND 7 3.784
8 SOUTH KOREA 7 3.784
9 BELGIUM 6 3.243
10 ARGENTINA 5 2.703
11 AUSTRALIA 5 2.703
12 JAPAN 4 2.162
13 RUSSIA 4 2.162
14 BRAZIL 3 1.622
15 CZECH REPUBLIC 3 1.622

Table 6. Top 15 authors in the research domain of agricultural remote sensing for wheat scab detection.

No. Authors Records % of Total

1 Huang WJ 10 5.405
2 Ma HQ 9 4.865
3 Dong YY 8 4.324
4 Liu LY 7 3.784
5 Huang LS 6 3.243
6 Cruz CD 5 2.703
7 Chen G 4 2.162
8 Chibbar RN 4 2.162
9 Favaron F 4 2.162
10 Gu CY 4 2.162
11 Hong MJ 4 2.162
12 Li LH 4 2.162
13 Schafer W 4 2.162
14 Sella L 4 2.162
15 Seo YW 4 2.162
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Table 7. Top 15 funding agencies in the research domain of agricultural remote sensing for wheat
scab detection.

No. Funding Agencies Records % of Total

1 National Natural Science Foundation of China NSFC 53 22.269
2 National Key Research and Development Program of China 21 8.824
3 National Key R D Program of China 9 3.782
4 UK Research Innovation 9 3.782
5 Biotechnology and Biological Sciences Research Council 7 2.941
6 China Postdoctoral Science Foundation 7 2.941
7 National Basic Research Program of China 7 2.941
8 Youth Innovation Promotion Association Cas 6 2.521
9 Beijing Nova Program of Science and Technology 5 2.101
10 Chinese Academy of Sciences 5 2.101
11 Natural Sciences and Engineering Research Council of Canada 5 2.101
12 United States Department of Agriculture 5 2.101
13 Canada Research Chairs 4 1.681
14 Deutscher Akademischer Austausch Dienst Daad 4 1.681
15 French National Research Agency 4 1.681

Table 8. Top 15 WOS subject categories in the research domain of agricultural remote sensing for
wheat scab detection.

No. WOS Subject Categories Records % of Total

1 Plant Sciences 64 34.595
2 Agriculture Multidisciplinary 29 15.676
3 Agronomy 29 15.676
4 Food Science Technology 19 10.27
5 Geosciences Multidisciplinary 15 8.108
6 Remote Sensing 15 8.108
7 Environmental Sciences 14 7.568
8 Imaging Science Photographic Technology 14 7.568
9 Biochemistry Molecular Biology 12 6.486

10 Biotechnology Applied Microbiology 12 6.486
11 Genetics Heredity 12 6.486
12 Horticulture 10 5.405
13 Agricultural Engineering 9 4.865
14 Chemistry Applied 9 4.865
15 Computer Science Interdisciplinary Applications 7 3.784

3.2. Co-Citation Analysis

A co-citation relationship exists among two or more authors or documents if they are
cited simultaneously by a third author or document [26]. CiteSpace performed three basic
types of co-citation analyses to identify documents’ relationship and mapping structures, co-
citing authors and journals. The co-citation analysis is a powerful tool for determining the
degree of inter-relationship between journals, authors, and articles by creating a mapping
structure and tracking the progress of scientific research fields [27].

3.2.1. Document Co-Citation Analysis

The articles or documents are the major constituents of the repository or databases of
knowledge in ARS for wheat scab detection. The reference co-citation analysis or document
is an effective method to assess the mapping and evolution of any research area [28].
A visualization network for cited documents was developed after the scientometric analysis
in CiteSpace was run, as shown in Figure 4. The connections between the nodes serve as
indicators of the co-citation relationships between the references or cited articles, whereas
the nodes represent the cited documents. A larger node represents a more important
document, and documents frequently cited by other documents are closely linked. Figure 4
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shows that Alisaac et al. (2018) and Jin et al. (2018) are the most important studies conducted
in the domain. The modularity Q and weighted mean silhouette S were 0.6262 and 0.8854,
respectively, for the document co-citation analysis.
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tural remote sensing for wheat scab detection.

The topmost fifteen cited articles are presented in Table 9, along with order and
position (considering citation counts), citation counts, first author, publication year, journal
name, volume number, pages, and DOIs. It can be observed that Jin et al. (2018) and
Alisaac et al. (2018) were the leading authors with the highest co-citations, 12 and 11,
respectively. Some other distinguished authors (and their co-citations) were Barbedo (10),
Ropelewska (8), Zhang (8), etc. The knowledge structure of ARS for wheat scab detection
can be gradually reshaped with the help of document co-citation analysis, as it facilitates
the determination of the highly cited documents and significant research articles, which
comprise the knowledge databases or domains of the field under consideration.

Table 9. Top 15 effective co-cited documents on agricultural remote sensing for wheat scab detection.

Sr. No. Count Year Cited References

1 12 2018 [29]

2 11 2018 [23]

3 10 2015 [30]

4 8 2018 [31]

5 8 2019 [32]

6 7 2020 [9]

7 7 2018 [33]

8 7 2019 [34]

9 7 2016 [35]

10 7 2018 [36]

11 6 2019 [37]

12 6 2017 [38]

13 6 2019 [39]

14 6 2020 [40]

15 6 2019 [41]
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3.2.2. Author Co-Citation Analysis

The distribution of authors with a greater number of citations in that specific field of
study was also examined using the author co-citation analysis, which is used to identify
the most productive authors in a field. Additionally, the co-citation analysis allows for
visualizing similar authors’ research areas and subject areas. The author’s co-citation
analysis for the study on ARS for scab detection in wheat was completed, and the resulting
visualization network is shown in Figure 5. The connecting lines between two nodes
demonstrate their co-citation relationship, whereas the nodes represent the authors. The
number of citations for a given author in the network increases as a node’s size increases,
making that author more important.

Similarly, the distance between two consecutive nodes or authors is inversely corre-
lated with how frequently each author is cited by the other. The research interests of these
authors are more closely correlated with the size of the gap between the nodes. Detailed
analysis of the visualization network reveals that the degree of collaboration among most
authors is very good, as justified by author co-authorship analysis. The modularity Q
and weighted mean silhouette S were 0.6262 and 0.8854, respectively, for the author’s
co-citation analysis.
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Figure 5. The visualization map for the author co-citation network of literature related to agricultural
remote sensing for wheat scab detection.

The top fifteen highly co-cited authors are ranked concerning the citation counts of
their publications and are listed along with counts of citations, year of citation counts, and
the respective authors in Table 10. The statistics reveal that the mentioned authors’ work
contributed critically to the field of ARS for wheat scab detection, making them highly
influential contributors to the upcoming development of agricultural disease detection
research. From the results, the authors, including BAURIEGEL, MAHLEIN, and BARBEDO,
were the most prolific in the research domain.
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Table 10. Top 15 most effective co-cited authors of the agricultural remote sensing for wheat scab
detection.

Sr. No. Count Year Cited Authors

1 21 2010 BAURIEGEL E
2 16 2019 MAHLEIN AK
3 16 2017 BARBEDO JGA
4 14 2019 ZHANG JC
5 13 2006 DELWICHE SR
6 13 2019 ALISAAC E
7 13 2019 JIN X
8 11 2019 GITELSON AA
9 11 2019 WHETTON RL
10 10 2020 HUANG LS
11 9 2013 DAMMER KH
12 9 2020 ZHANG DY
13 9 2015 DELWICHE STEPHEN R
14 9 2020 MA HQ
15 9 2009 GAMON JA

3.3. Co-Occurrence Keywords Analysis

In an article, keywords give details about the subject or broad category to which it
specifically belongs. It also represents the primary information in the research papers.
Overall, the hotspots and research frontiers can be identified with the aid of keyword co-
occurrence analysis. The keywords with the highest citation bursts represent the hotspots
frequently cited over time or will be considered in future research. Figure 6 displays the
outcomes of the CiteSpace keyword co-occurrence analysis in the form of a visualization
network. The nodes represent the keywords, and the size of each node corresponds to the
frequency of co-occurrence of each keyword.
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Figure 6. The visualization map for the keywords co-occurrence network of agricultural remote
sensing for wheat scab detection.

The topmost twenty keywords graded by the number of counts in the field of ARS for
wheat scab detection are listed in Table 11. The keywords with the highest co-occurring
frequencies (and their counts) were Fusarium head blight (20), hyperspectral imaging (16),
resistance (15), and identification (13).
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Table 11. Top 20 effective keywords of agricultural remote sensing for wheat scab detection ranked
by usage frequency.

Ranking Counts Year Keywords

1 20 2006 Fusarium head blight
2 16 2009 Hyperspectral imaging
3 15 2009 Resistance
4 13 2009 Identification
5 11 2019 Yellow rust
6 11 2011 Classification
7 9 2006 Winter wheat
8 8 2006 Infection
9 7 2019 Leaf

10 6 2006 Deoxynivalenol
11 6 2009 Chlorophyll fluorescence
12 6 2010 Scab
13 6 2006 Kernel
14 6 2016 Disease
15 5 2019 Support vector machine
16 4 2010 Reflectance
17 4 2019 Reflectance index
18 4 2015 Damaged kernel
19 4 2009 Index
20 4 2020 Prediction

3.4. Hotspots and Research Frontiers

The citation frequency analysis provides a brief overview of the use of the most
frequently used keywords in a given time period and can be used to plot these keywords
on a time scale for the time period in which these keywords were most frequently used
and cited. In the current scenario, citation burst analysis based on co-occurring keywords
was performed to determine the hotspots and research frontiers in ARS for wheat scab
detection. Hotspots can be recognized as the subfields that are studied most frequently
during the development stage of a research area. On the other hand, the keywords that
can probably be the most interesting and demanded research fields in the future can be
regarded as research frontiers. The conditions, including the number of states, minimum
duration, and detection model configuration, used to determine the research limits are
shown in Figure 7.
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In Table 12, from the blue–red-colored timeline analysis, it can be noticed that all 26
keywords with the highest citation bursts were considered by the researchers for small
time periods between 2009 and 2022. The studies are being conducted in the research areas
related to these keywords. The first nine burst keywords can be regarded as hotspots that
were significantly studied before 2022. The last seven burst keywords are the research
frontiers that are still in their infancy or need further efforts for their research enhancements.

Table 12. Top 26 keywords with the most robust citation bursts in the field of agricultural remote
sensing for scab detection.

Keywords Strength Begin End 2009–2022
1 Citrus canker 1.47 2009 2013

5 Florida 1.47 2009 2013
1 Biotic stress 1.07 2009 2011

1 Venturia inaequali 0.97 2009 2013
1 Scab 1.31 2010 2015

2 Reflectance 1.19 2010 2011
1 Apple scab 1.17 2011 2013

2 Image classification 1.13 2011 2018
2 Multispectral imaging 1.08 2011 2015

1 Disease detection 1.06 2011 2013
1 Deoxynivalenol content 0.98 2015 2018

1 Damaged kernel 0.9 2015 2017
1 Graminearum 0.7 2015 2019

1 Infection 0.75 2016 2017
1 Identification 0.82 2017 2018

3 Kernel 1.49 2018 2019
1 Fusarium head blight disease 0.95 2018 2019

1 Fusarium graminearum 0.74 2018 2019
1 Yellow rust 1.93 2019 2022

2 Support vector machine 1.38 2019 2020
3 Spike 1.21 2019 2022

4 Feature selection 1.03 2019 2020
1 Fusarium head blight 1.41 2020 2022

2 Classification 1.37 2020 2022
1 Crop disease 0.94 2020 2022

1 The disease; 2 application of remote sensing; 3 scale or organ for disease detection; 4 sensitive feature selection;
5 region.

3.5. Description of Cluster Analysis

The research papers published in a given journal describe the cutting edge of the
fields covered by that journal. In contrast, the references cited in those papers represent the
body of knowledge on which those papers are based. Using CiteSpace, the most frequently
employed keywords or references can be clustered through cluster analysis and could
be helpful in determining the foundation of basic knowledge in the ARS for wheat scab
detection research. The cluster analysis was performed based on co-occurring keywords.
The results from cluster analysis are comprehensively discussed in Figure 8. The modularity
Q and weighted mean silhouette S were 0.6262 and 0.8854, respectively, for the knowledge
cluster analysis.

Furthermore, the details, including cluster ID, cluster size, silhouette, years, and the
respective LLR labels, are enlisted in Table 13. A total of 9 knowledge clusters were obtained
based on co-occurring keywords’ information and ranked in inverse chronological order.
The fact that each of the nine major clusters has a silhouette greater than 0.8 indicates
that the knowledge has been expertly clustered for the purpose of detecting wheat scab
using ARS. The latest (in 2018) cluster ranked (#3) was remote sensing, with 27 articles and
a silhouette of 0.827, followed by (#1) random forest, with 31 articles and a silhouette of
0.849 in around 2017.
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Figure 8. Co-occurring keywords-based knowledge clusters of agricultural remote sensing for wheat
scab detection based on keywords.

Table 13. Details of co-occurring keywords-based knowledge clusters of agricultural remote sensing
for wheat scab detection based on keywords.

Cluster-ID Size Silhouette Year LLR * Based Keywords

3 27 0.827 2018
Remote sensing (9.82, 0.005); hyperspectral (6.5, 0.05);

precision agriculture (6.5, 0.05); continuous wavelet analysis (6.5, 0.05); feature
selection (3.23, 0.1)

1 31 0.849 2017
Random forest (8.3, 0.005); support vector machine (4.74, 0.05);
correlation analysis (4.11, 0.05); fusarium damage (4.11, 0.05);

fusion of spectral and image (4.11, 0.05)

8 12 0.987 2017
Fusarium graminearum (7.02, 0.01); fungicide resistance (7.02, 0.01); benzimidazole
fungicides (7.02, 0.01); fusarium asiaticum (7.02, 0.01); loop-mediated isothermal

amplification-fluorescent loop primer (7.02, 0.01)

6 17 0.909 2016
Color imaging (6.14, 0.05); potato (6.14, 0.05); fluorescence resonance energy

transfer (6.14, 0.05); hybprobes (6.14, 0.05);
common scab pathogens (6.14, 0.05)

7 15 0.833 2015 Multispectral imaging (4.58, 0.05); optical wavelength selection (4.03, 0.05);
visualization map (4.03, 0.05); band selection (4.03, 0.05); plant disease (4.03, 0.05)

4 19 0.886 2014
Wheat kernel (4.03, 0.05); early detection (4.03, 0.05);

toxigenic fungi (4.03, 0.05); near-infrared spectroscopy (4.03, 0.05);
food commodities (4.03, 0.05)

0 35 0.966 2013 Hyperspectral and fluorescence data (6.39, 0.05); oculimacula spp (6.39, 0.05);
ojip (6.39, 0.05); chlorophyll fluorescence (6.39, 0.05); scab detection (6.39, 0.05)

2 30 0.826 2013 Diffuse reflectance spectroscopy (3.17, 0.1); hyperspectral image (3.17, 0.1); early
disease detection (3.17, 0.1); photosynthesis (3.17, 0.1); flour (3.17, 0.1)

5 18 0.931 2010
Disease detection (7.55, 0.01); citrus canker (7.55, 0.01);

hyperspectral reflectance imaging (5.54, 0.05); lesion size (5.54, 0.05); spectral
similarity (5.54, 0.05)

* LLR abbreviation of log-likelihood ratio used to achieve the optimal results with maximum coverage and
uniqueness.
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Although disease effects can vary yearly, they are always present and can be a signifi-
cant challenge even if they only infect certain plant parts. All parts of a plant are susceptible
to disease, and multiple diseases can infect the same plant simultaneously; as long as host
cultivars and environmental conditions are favorable, they can appear in any field. Scab
and three types of rust fungi have historically caused significant crop losses. They remain
economically important despite the widespread use of fungicides and host resistance cul-
tivars. However, many pests and diseases are known to reduce grain quality and yield
potential [21]. Therefore, scab attracts attention because of its widespread distribution and
severe impact on grain quality. However, the bibliometric review and analyses of scab
under ARS demand the significant attention of the scientific community. Although the
recent focus has been devoted to scab [40,42–45] and other plant diseases, a conclusive
methodology at a large scale is still highly needed.

3.6. New Trends and Recent Research Status in the Field of INISWS

The following are some of the study’s most important findings:

• Regarding INISWS research, the most productive authors at the micro level are Jin X,
Alisaac E., Barbedo J.G.A., Ropelewska, Zhang N., Ma H.Q., and others. Researchers
who have been cited frequently in INISWS include Bauriegel E., Mahlein A.K., Barbedo
J.G.A., Zhang J.C., and others.

• At the meso level, the Chinese Academy of Sciences, Anhui University, and the United
States Department of Agriculture are the most active and effective contributors to
INISWS research.

• At the macro level, China, the United States, Germany, Italy, Canada, France, and
England are the most active and effective contributors to INISWS research. China
and the United States have a much higher number of publications than the rest of the
countries on the list, and the most likely explanation for this is the more robust funding
support policy from both governments. The National Natural Science Foundation of
China (NSFC), National Key Research and Development Program of China, National
Key R D Program of China, UK Research Innovation, and others have provided the
most funding for INISWS research.

• In terms of core journals, the most valuable publications that contributed were: Re-
mote Sensing, Computers and Electronics in Agriculture, Frontiers in Plant Science, and
Biosystems Engineering.

• The essential knowledge clusters under CiteSpace analysis were hyperspectral and
fluorescence data, random forest, diffuse reflectance spectroscopy, and remote sensing.

• The hot research topics were crop disease, identification, feature selection, fusarium
head blight, and classification.

• Recent advancements in scab monitoring or detection still need to produce conclusive
findings, which are essentially needed.

Conclusively for INISWS researchers, the above results provide important information
on new trends and the most recent research status in the field.

3.7. Scab Examination in Wheat Using ARS

Scab is a devastating spike disease that has appealed the researchers to devise a remedy
for the quality and quantity concerns. Thus, several worldwide scientists worked on this,
using different ARS approaches. In this section, we reviewed the summary of conducted
investigations for scab detection in wheat kernels (Figure 9A), spikes (Figure 9B), and
canopy scale (Figure 9C,D). The below-mentioned studies were conducted using imaging
(hyperspectral imaging, fluorescence imaging) and non-imaging (hyperspectral reflectance)
instruments. This section highlights the conclusive findings about Scab disease in ARS con-
sidering the wavelength range, sensors, sensitive band selection algorithms, classification
algorithms, and sensitive bands for different studies conducted in different countries.
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Figure 9. Agricultural remote sensors and their application for scab detection (A) to quantify the
mycotoxin quantity in wheat seeds, (B) detect the wheat scab through examination of wheat spike,
(C) detect and monitor the scab at proximal canopy scale, and (D) monitor the scab at canopy and
regional scale.

3.7.1. ARS for Scab Detection in Wheat Kernels

Table 14 enlists the studies conducted for INISWS detection in wheat kernels. Numer-
ous studies have been conducted for scab detection because grain is the most useful part of
human and livestock consumption, directly affecting food and feed quality. Considering
INISWS, different algorithmic and sensors are employed for the non-destructive monitoring
of plants. Hyperspectral image (HSI) analysis with ratio analysis (RA) selected sensitive
bands 568 and 715 nm and manifested high classification accuracy with linear discriminant
analysis (LDA) [46]. In another study, texture features classified the healthy and infected
grains with PCA and support vector machine (SVM) [47]. In recent studies [48–51], HSI
and multispectral images were employed to discriminate between the scab-infected and
healthy grains through sensitive feature selection and machine learning classifiers. The
application of machine learning classifiers for discrimination among healthy and treated
plants has become the top-notch approach for the ARS community [35].

Table 14. Summary of the investigations for scab detection in wheat kernels using ARS technology.

Wavelength
Range (nm)

Spectrometer
(Sensor)

Sensitive Band
Selection
Approach

Discriminant
and Estimation

Algorithms
Sensitive Bands (nm) Location References

425–860 HSI RA LDA 568, 715 USA [46]

900–1700 HSI PCA SVM Texture features Canada [47]

1000–1600 NIR-HSI PCA LDA, QDA, MD 1284, 1316, 1347 Canada [52]

1000–1700 NIR-HSI LMM LDA 1002, 1127, 1199, 1315,
1474 USA [53]

400–1000 NIR-HSI PCA LDA, PCA 484, 567, 684, 818, 900,
950 Canada [54]

400–1700 NIR-HSI RA LDA 502, 678, 1198, 1496 USA [55]
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Table 14. Cont.

Wavelength
Range (nm)

Spectrometer
(Sensor)

Sensitive Band
Selection
Approach

Discriminant
and Estimation

Algorithms
Sensitive Bands (nm) Location References

400–1700 HSI PCA LDA, QDA, MD 870 Canada [56]

400–1000 HSI PLSR PLS-DA
450, 494, 578, 639, 678,
717, 819, 853, 883, 903,

917, 942, 950
Canada [57]

1000–1700 HSI PCA, PLS-DA,
iPLS-DA PLS-DA 1209–1230, 1489–1510,

1601–1622 Italy [58]

360–950 HSI PCA URA 875, 950 France [59]

528–1785 HSI PCA LDA 672, 1361,
1411, 1509, 1657 Brazil [30]

1000–1600 NIR-HSI PCA MD, LDA, QDA 1280, 1300, 1350 Canada [60]

820–1666 NIR-HSI GA ICA Canada [61]

405–970 MS PCA, Knn 590–890 Denmark [62]

528–1785 HSI PC 623, 672, 1361, 1411,
1509, 1657 Brazil [38]

866.4–1701.0 HSI PCA PLS-DA, SVM,
Knn

1105.3, 1199.2, 1305.3,
1321.7, 1439.3, 1458.7,

1478.1
China [63]

400–2500 HSI COR 538–572, 828–1000,
1350–2500 Germany [64]

400–1000 HSI PCA, SPA, RF SVM, RF, NB 513, 754, 836, 849, 860,
880 China [65]

900–1700 HSI PCA PLS and LDA 955, 1278, 1403, 1455,
1528, 1671, 1714 Spain [66]

400–2500 HSI GA SVM, SAE

570–710, 1050–1089,
1128–1313, 1666–1744,
1005, 1403, 1843, 1879,

1912, 1980

China [67]

350–2500 HR SPA PLS-DA, SVM 1878, 1887 China [68]

374–1030 HSI R-Frog Knn, CNNs 940, 678, 728, 798, 1009 China [69]

900–1700 HSI-NIR PLS, LDA PLS, LDA 1220, 1380 Spain [70]

960–1700 HSI Knn Whole spectra Canada [71]

900–1700 HSI-NIR PCA LDA, NB, PLSR 1325, 1396, 1406, 1421 Canada [72]

940–1600 HSI PCA, LDA 986, 1000, 1111, 1197,
1394, 1200, 1260, 1460 USA [73]

900–1700 HSI-NIR PCA PLS, SVM, local
PLS

970, 1200, 1365, 1430,
1623 China [50]

374–1030 HSI Relief F, R-Frog,
shuffled frog

KNN, SVM,
CNN, LeNet,

VGG-16
732, 876, 941, 988 China [51]

866–1701 HSI-NIR DCGAN CNN, SVM, DT 1150–1300, 1400–1650 China [48]

405–970 MS PCA, GA SVM, PLS, BPNN 910, 910–970 China [49]

HSI: hyperspectral images; RA: ratio analysis; LDA: linear discriminant analysis; USA: united states of America;
PCA: principal component analysis; SVM: support vector machine; NIR-HSI: near-infrared hyperspectral images;
QDA: quadratic discriminant analysis; MD: Mahalanobis discriminant; LMM: local minima or maxima; PLSR:
partial least square regression; PLS-DA: partial least squares discriminant analysis; iPLS-DA: interval partial least
squares discriminant analysis; URA: univariate regression analysis; GA: genetic algorithm; ICA: independent
component analysis; MS: multispectral; Knn: k-nearest neighbor; PC: probabilities calculation algorithm; SPA:
successive projection algorithm; RF: random forest; COR: correlation; NB: Naive Bayes; SAE: sparse autoencoder;
R-Frog: random frog; CNN: convolution neural networks; HR: hyperspectral reflectance; DCGAN: deep convo-
lutional generative adversarial network; DT: decision tree; PLS: partial least square; BPNN: back propagation
neural network.
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3.7.2. ARS for Scab Detection in Wheat Spikes

Table 15 shows the application of imaging and non-imaging spectrometers for scab
detection at spike scale in different studies and highlights the sensitive bands of differ-
ent sensors and best algorithmic approaches for scab detection at spike scale. Principal
component analysis (PCA) and spectral angle mapper (SAM) for the feature selection and
classification were used by [74], employing HSI of scab disease in wheat crops. In addition,
they also compared HSI with chlorophyll fluorescence using SAM for the classification-
wavelength range 400–1000 nm [75]. In other findings, the PLS-DA model was used
with a Euclidean distance matrix cladogram to classify the diseased and healthy spikes
at different severity levels. The VIS-NIR spectral analysis could facilitate the detection of
scab [76]. SVM for classification with non-metric multidimensional scaling (NMDS) to
analyze different vegetation indices is a good approach for scab disease detection [23]. In
HSI, a hybrid two-dimensional convolutional bidirectional gated recurrent unit neural
network (2D-CNN-BidGRU) has an accuracy of 0.75 and 0.743 for classifying the diseased
pixels compared to healthy ones [29]. Moreover, [39] compared infrared thermography
(IRT), chlorophyll fluorescence imaging (CFI), and HSI techniques to relate the temperature,
stress and spectral response of diseased spikes against healthy spikes with an accuracy of
78, 56, and 78%, respectively. Combining the IRT-HSI or CFI-HSI parameters improved
the accuracy to 89% three days after inoculation. All the scientists acquired good results
in scab detection and classification, but there was a lack of early detection approaches.
Nevertheless, a reliable method of scab detection has yet to be developed.

Table 15. Summary of the investigations for scab detection in wheat spikes using ARS technology.

Wavelength
Range (nm) Spectrometer

Sensitive Band
Selection
Approach

Discriminant
and Estimation

Algorithms

Sensitive Bands
(nm) Location References

620 FluorCam
700 MF URA Czech

Republic [77]

400–1000 HSI PCA, SAM 560–560, 665–675 Germany [74]

400–1000 HSI PCA
DCNN,

DCRNN,
DRNN

670, 665–675 China [29]

400–2500 HSI MDS SVM 430–525, 560–710,
1115–2500 Germany [23]

400–1000 HR FLDA SVM, LDA
First order

derivatives (490–530,
510–530)

China [34]

400–2400 IRT, CFI, HSI COR SVM 500, 675, 760, 1440,
1880, 2000 Germany [39]

400–1000 HSI ISI SAM 539, 417, 468 China [32]

RGB DCNN KMC, Otsu’s method China [78]

400–1000 HR URA 450–488, 500–540 China [43]

400–900 HSI

COR, Relief F,
RF, SFS-FS,
SVM-RFE,
LASSO-LR

QDA 540, 591, 696, 766, 868 USA [79]

RGB PCNN, KMC China [80]

374–1050 HSI RF URA 560, 565, 570, 661,
663, 678 China [81]

400–1000 HR CWT, COR SVM, GA-SVM MSR, SIPI, NDVI China [82]
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Table 15. Cont.

Wavelength
Range (nm) Spectrometer

Sensitive Band
Selection
Approach

Discriminant
and Estimation

Algorithms

Sensitive Bands
(nm) Location References

400–1000 HSI SPA, COR PSO-SVM
442, 491, 552, 675,
685, 693, 698, 706,
757, 767, 924, 935

China [40]

400–2500 HR CWA FLDA 471, 696, 841, 963,
1069, 2272 China [9]

400–1000 HSI PCA, GB, DT DCNN, RF,
PLSR, SVR 480, 560, 660 China [83]

RGB Mask-RCNN IS China [84]

RGB Mask-RCNN IS China [85]

400–1000 HR CWT PSO-SVM, RF,
BPNN

474, 495, 528, 582,
615, 691, 738 China [86]

RGB DCNN IS United States [87]

RGB Relief-F RF China [88]

400–1000 HR COR SVM 561, 562, 563, 581, 582,
585, 590, 597, 598, 599 China [44]

400–1000 HR and CFI Boruta KNN, SVM, RF Chlorophyll indices China [89]

SAM: spectral angle mapper; DCNN: deep convolutional neural network; DCRNN: deep convolutional recurrent
neural network; DRNN: deep recurrent neural network; MDS: multidimensional scaling; FLDA: Fisher’s linear
discriminant analysis; IRT: infrared thermography; CFI: chlorophyll fluorescence imaging; ISI: instability index;
SFS-FS: sequential feature selection—forward selection; SVM-RFE: support vector machine recursive feature
elimination; LASSO-LR: LASSO logistic regression; PCNN: pulse-coupled neural network, KMC: K-means
clustering; GA-SVM: genetic algorithm-SVM; CWT: continuous wavelet transform; MSR: modified simple ratio;
SIPI: structure intensive pigment index; NDVI: normalized difference vegetation index; PSO-SVM: particle swarm
optimization-SVM; GB: gradient boost; DT: decision tree; SVR: support vector regression; Mark-RCCN: Mask
region convolutional neural network; IS: image segmentation.

3.7.3. ARS for Scab Detection in the Wheat Canopy

Table 16 demonstrates the ARS community’s focus on employing imaging and non-
imaging spectrometers to detect wheat scab at the canopy scale, which is unfortunately
very limited in a number of studies. Given the devastating threat to food quality and
quantity posed by scab, the proxy approach to scab monitoring, classification, detection,
and quantification has yet to be studied and finalized. A recent study [45] examined
the canopy scale infection of the scab through the development of scab-specific indices
using continuous wavelet transform (CWT) and robustified their relevance using different
machine learning algorithms (RF, Knn, SVM, NN, Xgboost). Another study used the whole
spectral (400–2400 nm) analysis to quantify the scab disease at the canopy scale using SVM
algorithmic approach [90]. Likewise, partial least squares regression (PLSR) with PCA at
canopy level disease detection of scab and yellow rust diseases by HSI showed satisfactory
results [36].

Table 16. Summary of the investigations for scab detection in wheat canopy using ARS technology.

Wavelength
Range (nm) Sensor

Sensitive Band
Selection
Approach

Discriminant
and/or

Estimation
Algorithms

Sensitive
Bands (nm) Location References

400–700 MANOVA,
PCA PLSDA SA Italy [76]

400–730 PCA PLSR 500–650, 650,
700

United
Kingdom [36]
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Table 16. Cont.

Wavelength
Range (nm) Sensor

Sensitive Band
Selection
Approach

Discriminant
and/or

Estimation
Algorithms

Sensitive
Bands (nm) Location References

400–730 RGB PLSR On field United
Kingdom [33]

RGB KMS [91]

MS URA NDVI, RVI, DVI China [92]

(400–100) MS, HR URA, OLS 665, 783, 842 China [93]

MODIS DTM, RVM China [94]

450–950 HSI backward feature
selection,

URA, PLSR,
FLDA, LR, RF,
SVM, BPNN

650, 670, 690,
730, 770 China [95]

400–2400 HR SVM Spectral
analysis

Czech
Republic [90]

450–950 HSI Logistic model 550, 670, 702,
740 China [96]

400–2400 HR CWT RF, Knn, SVM,
NN, Xgboost

401, 460, 789,
840 China [45]

450–950 RF RF, BPNN, SVM 518, 666, 706,
742, 846 China [97]

MANOVA: multivariate analysis of variance; SA: spectral analysis; NN: neural net; Xgboost: extreme GB; RVI:
ratio vegetation index; DVI: difference vegetation index; OLS: ordinary least square; DTM: decision tree model;
RVM: relevance vector machine.

3.7.4. Quantitative Models for Scab Disease

Numerous studies have used univariate and multivariate quantitative models for
disease estimation in ARS for diverse plant diseases [98]. Different studies estimated the
scab disease at spike [89] and canopy scale [45] using KNN predictive model. The studies
also used SVM and RF models, but KNN outperformed the competing models. Moreover,
the studies have also concluded that the comparative performance of disease-specific
or newly developed indices for model fitting is highly improved against conventional
indices [45,89] that support different other studies [99]; based on these results, a precise
FHB monitoring program can be developed. Moreover, the better disease estimation
performance of models through disease-specific indices or bands has also been proved
by previous findings [42,99]. Another study also estimated the canopy scale scab disease
considering the optimal window size of texture features [96]. Hence, a separate detailed
study can be conducted using raw data and the application of different predictive models
for deep exploration of the features.

4. Limitations and Future Prospective

Although several sensors have been used for scab detection under ARS, a conclusive
methodology or technical instrumental setup pertinent to scab-specific detection or moni-
toring is still lacking. Tables 14–16 show the suitability as well as the chaotic behavior of
different algorithms because selected or extracted scab-specific features (wavelengths) vary
under different machine learning algorithms. However, the spectral regions (green, blue,
red, NIR) are the same among different studies. Hence, the core future perspective is to
focus on specific features that can be generalized for real-time detection, monitoring, and
quantifying scab disease from spike to canopy scale. Supportively, the burst keywords’
analysis (Table 12—last seven burst keywords) highlights the research frontiers that are in
need of further research enhancements.
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Regarding reviewing the different scab studies, the future suggestion could be that
further research and data analysis is required to extract quantitative information on disease
levels. Integration of hyperspectral sensor-based information, such as sensitive bands and
vegetation indices, into pesticide application maps is very likely. Even more technological
advancement is required for online systems. It is needed to be simplified with automated
calibration and processing to compensate for different plant parameters, suitable for spe-
cialists and non-specialists, and for practical applications of sensor systems and algorithms
to analyze hyperspectral data.

5. Conclusions

This study conducted a scientometric analysis of the scientific literature on imaging
and non-imaging spectroscopy for wheat scab (INISWS). INISWS research published
between 2005 and 2022 was extracted from the Web of Science (WOS) using co-citation,
co-authorship, and co-occurrence analysis of keywords. The new knowledge structures,
developments, authors or institutional collaborations, hot topics, and research frontiers in
INISWS-related research were all taken into consideration. However, despite the significant
findings from the visualization analysis of INISWS-related articles, the current study has
a number of shortcomings. Only English-language publications are included in the WOS
core collection databases, so there is a small amount of residue in terms of citations.

In comprehensive conclusion, while remote sensing as a technique provides the poten-
tial for high-accuracy diagnosis, monitoring, and management of scab diseases in wheat,
there exists a need for further research with a focus on identifying scab-specific features
applicable across sensors and algorithms. This would enable more accurate and reliable
detection, monitoring, and quantification of scab, thereby improving crop management
practices, mitigating economic losses, and ensuring food security. Integration of hyperspec-
tral sensor-based information into pesticide application maps, accompanied by technologi-
cal advancement for simplified and automated processing and calibration, is envisaged
as an essential step to enable practical applications of sensor systems and algorithms to
analyze hyperspectral data in wheat crops. However, to develop comprehensive decision
support systems, research needs to focus on extracting quantitative information on disease
levels using hyperspectral data. To achieve reliable and accurate data results, researchers
must use appropriate sensors, concentrate on green, blue, red, NIR spectral regions, and
develop machine learning algorithms tailored explicitly for scab disease detection. With
these developments, remote sensing and analysis of scab disease will greatly help improve
agricultural productivity worldwide.
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