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Abstract: Multitemporal crop classification approaches have demonstrated high performance within
a given season. However, cross-season and cross-region crop classification presents a unique transfer-
ability challenge. This study addresses this challenge by adopting a domain generalization approach,
e.g., by training models on multiple seasons to improve generalization to new, unseen target years.
We utilize a comprehensive five-year Sentinel-2 dataset over different agricultural regions in Slovakia
and a diverse crop scheme (eight crop classes). We evaluate the performance of different machine
learning classification algorithms, including random forests, support vector machines, quadratic
discriminant analysis, and neural networks. Our main findings reveal that the transferability of
models across years differs between regions, with the Danubian lowlands demonstrating better
performance (overall accuracies ranging from 91.5% in 2022 to 94.3% in 2020) compared to eastern
Slovakia (overall accuracies ranging from 85% in 2022 to 91.9% in 2020). Quadratic discriminant
analysis, support vector machines, and neural networks consistently demonstrated high performance
across diverse transferability scenarios. The random forest algorithm was less reliable in generalizing
across different scenarios, particularly when there was a significant deviation in the distribution of
unseen domains. This finding underscores the importance of employing a multi-classifier analysis.
Rapeseed, grasslands, and sugar beet consistently show stable transferability across seasons. We
observe that all periods play a crucial role in the classification process, with July being the most
important and August the least important. Acceptable performance can be achieved as early as June,
with only slight improvements towards the end of the season. Finally, employing a multi-classifier
approach allows for parcel-level confidence determination, enhancing the reliability of crop distribu-
tion maps by assuming higher confidence when multiple classifiers yield similar results. To enhance
spatiotemporal generalization, our study proposes a two-step approach: (1) determine the optimal
spatial domain to accurately represent crop type distribution; and (2) apply interannual training to
capture variability across years. This approach helps account for various factors, such as different
crop rotation practices, diverse observational quality, and local climate-driven patterns, leading to
more accurate and reliable crop classification models for nationwide agricultural monitoring.

Keywords: multitemporal classification; Google Earth Engine; within-season crop mapping; domain
adaptation; agricultural monitoring; crop monitoring

1. Introduction

The open data policy of the Sentinel-2 mission has revolutionized field-level crop map-
ping. The application of diverse machine learning classifiers that can effectively capture
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crop-specific spectrotemporal characteristics, ultimately enhancing the performance of mul-
titemporal crop classification for a given season and region [1]. Nevertheless, cross-season
and cross-region crop classification presents a unique challenge. These scenarios require
models that can effectively generalize across different growing conditions, agricultural
practices, and phenological patterns. This challenge has been a topic of interest in the
remote sensing community for quite some time. In the field of data science, this issue has
often been addressed by domain adaptation, which focuses on adjusting a source model to
operate effectively within a specific target domain [2]. For example, recent studies solving
crop mapping without labels have utilized the harmonization of varied crop phenology
between source and target domains in order to test the transferability of crop classification
models across regions [3] or seasons [4]. Another study by Lin et al. [5] adjusted the source
and target domains based on the topology of different crops in the spectral feature space to
generate crop labels in an unseen target year and applied the trained classification model
to these labels for crop mapping.

In our study, we implemented a domain generalization approach, which aims to
train a model on multiple source domains, often with diverse characteristics, so that it can
generalize well to new target domains without requiring any fine-tuning or adaptation.
In fact, this approach is intrinsically linked to remote sensing-based land cover mapping
addressing large geographical areas or temporal scales, and early attempts to address this
challenge were referred to as signature extension or generalization [6]. Recently, numerous
crop mapping studies have emerged, using various terms related to this subject, such
as transductive transfer learning (TTL) [7], random forest transfer (RFT) [8], temporal
extendibility mapping [9], or transferring decision boundary (TDB) [5]. To minimize
terminology misunderstandings, we will refer simply to model transferability or domain
generalization capabilities in our study. This defines the desired feature of trained models,
which means that even if the test validation data are captured from different years or
different geographical regions [10]. Table 1 summarizes various crop classification studies
that have utilized satellite products similar to Landsat or Sentinel and investigated the
transferability of crop classification models across different datasets.

Table 1. List of the crop classification transferability studies using Sentinel-2 like products. When
multiple cases were explored in a single study, only the best-case scenarios were reported.

Transfer
Scenario

Satellite
Platform

Source
Domain

Target
Domain

Geographical
Location

Crop Configuration/
Nomenclature

Classifier/
Method Accuracy Reference

Spatial Sentinel-2 England,
France 10 Countries Europe 4 crops RF 89% [7]

Spatial Sentinel-2 Zeeland
region

Flevo-land,
Friesland Netherland 10 crops

Dynamic
Time

Warping
69–75% [3]

Temporal Landsat 2006–2010 a 2006–2010 Kansas 3 crops RF 83.4% [9]

Temporal Sentinel-2 2017–2018 2019

Midwest US,
NE China,
Hauts-de-

France

3, 4, 8 crops RF 90.7; 89.8;
83.7% [5]

Temporal Sentinel-1/
Sentinel-2 2020 2019

Hetao
Irrigation
District

6 crops RF 92% [11]

Temporal Sentinel-1/
Sentinel-2 2017 2018 Heilongjang 4 crops RF 91% [12]

Temporal Sentinel-2 2016–2019 2020 16 States
across USA 3 crops RF 71.3 b [13]

Temporal Landsat 2010–2015 2016 c 9 States
across USA 3 crops RF 70% [8]

Temporal Landsat 2000–2014 2015 Illinois 2 crops DNN 96% [14]
a The cross-year setup was not generalized across multiple years; instead, one year’s data was used for training
and another year’s data for testing. This was done for all combinations of train/test years, resulting in 25 cross-
year classifications. Thus, the overall accuracy represents the mean of all overall accuracies. b Sentinel-2 data only.
c The cross-year setup was not generalized across multiple years; instead, one year’s data was used for training
and 2016 for testing.
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In our study, we address limitations of the previous Landsat-based studies, such
as lower temporal frequency and the absence of red-edge spectral bands, by employing
temporal composites of Sentinel-2 spectral reflectance products. In particular, we capitalize
on a 5-year series of Sentinel products and reference data, enabling a more in-depth explo-
ration of the potential of Sentinel-2 data in across-year crop mapping. Certain studies have
reported generalization workflows in relatively homogenous conditions with a relatively
simple crop scheme, involving only two or three dominant classes [14]. In our study, we
aim to test the performance of classification models in a more diverse agricultural setting
that includes all relevant crops, resulting in an 8-class nomenclature. This will provide
a more comprehensive understanding of the generalization abilities of the algorithms in
complex and varied agricultural landscapes. Lastly, some notable studies, such as Johnson
et al. [13], investigated generalization capacity across various spatial domains. However,
they focused on using only one machine learning algorithm, namely random forest, which
may not provide a comprehensive understanding of the impact of different algorithms on
the generalization issue. Therefore, in our study, we aim to test multiple machine learn-
ing algorithms to determine whether the choice of algorithm is crucial for classification
performance in different transferability scenarios.

In summary, our overarching goal is to develop a robust, efficient, and accurate crop
mapping workflow with strong cross-year and region generalization capabilities, ultimately
enabling effective nationwide crop monitoring. Accordingly, the specific objectives of this
study can be defined as follows:

1. Developing an effective workflow for broad-scale crop mapping using machine learn-
ing techniques that can be easily deployed for nationwide agricultural monitoring.

2. Investigating the transferability capacities of the developed crop classification models
in both temporal and spatial aspects.

3. Providing analysis-ready datasets to the remote sensing community for further testing
and supporting the on-going development of improved methods.

2. Materials and Methods
2.1. Study Area

The two study regions encompass the most agriculturally productive areas in Slovakia,
significantly influencing agro-commodity prices and maintaining crucial supply chain
connections. Combined, they account for approximately 63% of the total arable land in
Slovakia, with the Danubian Lowlands covering around 52% and the eastern Slovakian
Lowlands covering approximately 11%.

The Danubian Lowland (later referred to as “Danube”), a part of the greater Pannonian
Basin, is located in southwestern Slovakia and covers an area of 9820 km2 (Figure 1). It
consists of two parts: the Danubian Upland, with slightly undulating hilly relief in the
north, and the Danubian Flat Depressions, with a predominantly flat relief in the south.
The region is the warmest in Slovakia, with an average annual temperature between 9 and
10 ◦C and a mean annual rainfall between 550 and 700 mm [15]. Favorable climatic and
geomorphological conditions, combined with fertile soils, make intensive agriculture the
prevailing land use type. The land cover consists mainly of croplands and compact rural
settlements. The region’s soil cover is unique within Slovakia, featuring a dominant fluvial
relief with extensive areas of Chernozems and Fluvisols. The alkalinity of the region’s
soils is due to the presence of carbonate parent materials and groundwater, with soils
predominantly rich in carbonates. The soil texture is primarily loamy.
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The eastern Slovakian lowland (later referred to as “East”), covering 2500 km2, is
the northeastern extension of the Tisza plain and consists of the eastern Slovakian flat
depression and the eastern Slovakian upland. The flat depression (1800 km2) is a tectonic
depression with a young structural plain formed by river accumulation during the Pleis-
tocene and Holocene and shaped by aeolian activity, loess deposition, and windblown
sands. The Upland (700 km2) features gently hilly terrain with flat ridges separated by
shallow valley-like depressions formed by water-course accumulation. The eastern Slo-
vakian lowlands have Slovakia’s most continental climate, characterized by significant
temporal weather variability. Long-term meteorological observations indicate suitability
for intensive crop cultivation with low irrigation requirements. However, the low gradient
and weak water permeability of some soils impede rapid water runoff, causing stagnation
in depressions. High groundwater levels influence extensive areas, leading to soil waterlog-
ging, gleiing, and salinization [16]. The majority of soils in the region are used for intensive
agriculture. Hydromorphic soils, including Fluvisols, Pseudogleys, and Gleys. Gleiing
processes are driven by the dense river network and high groundwater levels. Although
the eastern Slovakian lowland lacks highly productive arable soils, it remains a productive
agroecosystem. However, soil parameters make crop cultivation more challenging in terms
of agronomic and economic aspects.

Differences between the Danubianl lowland and the eastern Slovakian lowland can be
observed in soil texture and climate conditions [17]. In terms of soil texture, the Danubian
lowland soils are predominantly loamy, with sandier and partially silty fractions in the
C-horizon and a higher carbonate content, which contributes to better soil structure. In
contrast, the eastern Slovakian lowland soils contain a higher clay fraction, making them
heavier, ranging from moderately heavy to very heavy, and often leading to waterlogging,
gleiing, and saline soil development in some areas, resulting in a less favorable soil struc-
ture. Regarding climate conditions, due to its geographical location, the eastern Slovakian
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lowland has the most continental climate in Slovakia, characterized by cold winters and
warm summers. On the other hand, the Danubian lowlands have a milder climate but are
considered one of the warmest regions in Slovakia. Variations in geographical conditions,
such as those in the eastern Slovakian lowlands, can influence the distribution and propor-
tion of predominant crops, as evident in the higher proportion of grasslands only suitable
in heavy, gleied soils (Figure 2). Additionally, specific agro-commodity trade relationships
may also play a role in shaping the crop distribution in the area, which might be the case
for soybeans and sugar beet. Specifically, sugar beet production was not carried out in
2018 and 2019 in eastern Slovakia due to the collapse of regional sugar mill companies.
However, in 2020, the farmers experienced a revival with the establishment of new supply
chain connections at Hungarian sugar mills.

Remote Sens. 2022, 14, x FOR PEER REVIEW  5  of  38 
 

 

agroecosystem. However,  soil  parameters make  crop  cultivation more  challenging  in 

terms of agronomic and economic aspects. 

Differences between the Danubianl lowland and the eastern Slovakian lowland can 

be observed in soil texture and climate conditions [17]. In terms of soil texture, the Danu-

bian lowland soils are predominantly loamy, with sandier and partially silty fractions in 

the C-horizon and a higher carbonate content, which contributes to better soil structure. 

In contrast,  the eastern Slovakian  lowland soils contain a higher clay  fraction, making 

them heavier, ranging from moderately heavy to very heavy, and often leading to water-

logging, gleiing, and saline soil development in some areas, resulting in a less favorable 

soil structure. Regarding climate conditions, due to its geographical location, the eastern 

Slovakian  lowland has  the most  continental  climate  in Slovakia,  characterized by  cold 

winters and warm summers. On the other hand, the Danubian lowlands have a milder 

climate but are considered one of the warmest regions in Slovakia. Variations in geograph-

ical conditions, such as those in the eastern Slovakian lowlands, can influence the distri-

bution and proportion of predominant crops, as evident in the higher proportion of grass-

lands only suitable in heavy, gleied soils (Figure 2). Additionally, specific agro-commod-

ity trade relationships may also play a role in shaping the crop distribution in the area, 

which might be the case for soybeans and sugar beet. Specifically, sugar beet production 

was not carried out in 2018 and 2019 in eastern Slovakia due to the collapse of regional 

sugar mill companies. However, in 2020, the farmers experienced a revival with the estab-

lishment of new supply chain connections at Hungarian sugar mills. 

 

Figure 2. Typical crop proportions (% on y-axis) in the two studied regions based on official agri-

cultural statistics. Available online www.statistics.sk (accessed on 25 May 2023). 

2.2. Satellite Data 

The data collected by  the multispectral  instrument  (MSI) onboard  the Sentinel-2A 

and Sentinel-2B satellites (later referred to as Sentinel-2) were used in the study. In partic-

ular, we used Level-2A bottom of atmosphere reflectance products (BOA), which are avail-

able  in  the  Google  Earth  Engine  (GEE)  catalog  (ImageCollection  ID:  COPERNI-

CUS/S2_SR). This product contains BOA reflectances of 13 Sentinel-2 spectral bands and 

is  accompanied  by  the  scene  classification  (SCL),  including  quality  indicators  such  as 

cloud  shadow  detection,  cloud  probabilities,  and  cirrus  mask  (https://senti-

nel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2, accessed on 

20 April 2023). The BOA reflectances were performed at their native spatial resolutions, 

depending on the spectral characteristics of the respective band. In our analyses, we used 

Sentinel-2 spectral bands B2, B3, B4, and B8 at native 10 m resolution and bands B5, B6, 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Wheat Barley Maize SunflowerRapeseed Soybean Sugarbeet Grass Other

East Danube

Figure 2. Typical crop proportions (% on y-axis) in the two studied regions based on official agricul-
tural statistics. Available online www.statistics.sk (accessed on 25 May 2023).

2.2. Satellite Data

The data collected by the multispectral instrument (MSI) onboard the Sentinel-2A and
Sentinel-2B satellites (later referred to as Sentinel-2) were used in the study. In particular,
we used Level-2A bottom of atmosphere reflectance products (BOA), which are available in
the Google Earth Engine (GEE) catalog (ImageCollection ID: COPERNICUS/S2_SR). This
product contains BOA reflectances of 13 Sentinel-2 spectral bands and is accompanied by
the scene classification (SCL), including quality indicators such as cloud shadow detection,
cloud probabilities, and cirrus mask (https://sentinel.esa.int/web/sentinel/user-guides/
sentinel-2-msi/processing-levels/level-2, accessed on 20 April 2023). The BOA reflectances
were performed at their native spatial resolutions, depending on the spectral characteristics
of the respective band. In our analyses, we used Sentinel-2 spectral bands B2, B3, B4,
and B8 at native 10 m resolution and bands B5, B6, B7, B8A, B11, and B12 at native 20
m resolution. Three Sentinel-2 tiles were used to fully cover the extent of the study area,
namely the 33UYP tile (covering 72.52% of the study area), the 33UXP tile (covering 24.84%
of the study area), and the 33UYQ tile (covering 2.64% of the study area) in the case of
the Danubian lowland region, and two tiles—34UEV (47.34%) and 34UEU (52.66%) in the
eastern Slovakian lowland region. Only products produced between April and August
were used to prevent any quality concerns that might have occurred outside of this time
period. At the same time, this time range could properly fit the seasonal development of
the crops. As a result, we chose all Sentinel-2 products that were accessible on the GEE
platform between 2018 and 2022 (totaling 771 images covering Danubian lowland and
215 images covering eastern Slovakia lowland). Our decision to use a 5-year period for
this study was primarily due to the availability of consistent, harmonized Sentinel-2 data

www.statistics.sk
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2
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collection for our targeted research areas—the Danubian lowland and the eastern Slovak
lowland—from 2018.

2.3. Methodology

The general workflow (Figure 3) involved the preprocessing of Sentinel-2 satellite
products, creating input features, training different classification models, performing per-
formance analysis based on independent test data, performing feature variable importance
analysis, and applying the selected models to images.
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• Preprocessing of satellite products.
• Creating a reference dataset by extracting spectro-temporal information.
• Training different classification models.
• Analyzing performance and accuracy assessment.
• Applying models to images.
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2.3.1. Preprocessing of Satellite Products

Spatiotemporal compositing followed the obvious steps of so-called pixel-based com-
positing [18], namely selecting good observations within the compositing period, priori-
tizing, and assigning target values at the pixel level. We selected the good observations
by masking clouds, cloud shadows, and cirrus provided in Level-2A, accompanied by the
SCL (scene classification) product. A simple median compositing method was used for
producing temporal composite products over monthly time periods, beginning from April
2018 to August 2022. The median method prioritizes observations closest to the central
tendency within a given period and is more resilient against outliers (e.g., unfiltered cloud
remnants) than the mean, though it is only effective when the majority of selected observa-
tions are of good quality. In particular, we computed median values for each spectral band
and pixel separately for a given period using the GEE “imageCollection” function. The
same approach has been widely used in many crop multitemporal classification studies.
Monthly composites from April to August in a given year were used to create seasonal
time series for each year: 2018, 2019, 2020, 2021, and 2022.

2.3.2. Creating Training and Test Datasets

The land parcel information system (LPIS) serves as the spatial foundation for imple-
menting the EU Common Agricultural Policy at the national level. While some agricultural
data, including crop types per parcel, is publicly available, we selected specific data that
could effectively train the classification algorithms according to the project’s objectives.
To minimize the potential issue of crop mixture within parcels, we applied the following
filters to the LPIS data: Only parcels in which more than 90% of the declared crop types
were selected for a given year were selected, and less common crop types (less than 10%)
were filtered out. From this selection process, we identified eight crop types: rapeseed,
barley, wheat, sunflower, corn, sugar beet, soybean, and permanent grasslands. To ensure
a balanced distribution of crop classes, we conducted random sampling per year and
extracted 2000 pixels per class/year, except for 2020 and 2022, where we could extract only
1698 and 1458 pixels per class, respectively, due to observational limitations. This resulted
in a total of 9156 pixels/case. This dataset had been randomly split into training (50%) and
test (50%) datasets (for each year/class), allowing independent validation. Three main
classification scenarios were tested to explore the generalization capacities of different ML
models using the so-called held-out concept. In this approach, we held out specific subsets
of data, such as certain spatial regions or temporal periods, to evaluate how well the trained
models can generalize to previously unseen conditions and variations. Each scenario was
tested for each year. Table 2 provides an example for the tested year 2022.

Table 2. Examples of testing scenarios when target unseen year represent 2022 season.

Train Region Train Years Test Region Test Year

Scenario 1 Danube 2018, 2019, 2020, 2021 Danube 2022
Scenario 2 East 2018, 2019, 2020, 2021 East 2022
Scenario 3 Danube 2022 East 2022
Scenario 4 Danube 2018, 2019, 2020, 2021, 2022 East 2022

Scenario 1: Scenario 1 investigates the temporal generalization capacity of machine learning
(ML) classification models by assessing their inter-year performance in the Danubian
lowland region using training data from four years and reserving an unseen year for testing
purposes. Using a total of five years of data, this temporal generalization assessment was
iterated four times, each time holding out a different year for testing while training on the
remaining four years.

Scenario 2: Scenario 2 shared the same objective as Scenario 1, focusing on temporal
generalization capacity, but applied to a different region—the eastern Slovakian lowland.
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Scenario 3: Scenario 3 examined the spatial generalization capacity of ML classification
models by evaluating their performance across distinct spatial domains, training on data
from the Danubian lowlands, and testing on unseen data from the eastern Slovakian
lowlands within the same year.

Scenario 4: Scenario 4 assessed both temporal and spatial generalization capacities of ML
classification models by evaluating their performance across distinct spatial regions and
different years, training on five years of data from the Danubian lowlands and testing on
each year of unseen data from the eastern Slovakian lowlands.

These scenarios emulate realistic crop mapping situations where timely reference
label data might be partially or completely missing. Scenarios 1 and 2 simulate situations
where labeled data exists for certain years but not others, reflecting real-life long-term
crop monitoring constraints. These scenarios help us evaluate the temporal generalization
capacity of machine learning classifiers, which is crucial for within-season crop mapping
when current-season labeled data may be unavailable. Scenarios 3 and 4, on the other
hand, mimic conditions of spatial variability in labeled data availability. They assess the
spatial generalization capabilities of our models across diverse geographic conditions,
mirroring large-scale crop monitoring contexts. Scenario 3 represents cases with single-
year labeled data, while Scenario 4 covers instances with multiple years of labeled data.
Overall, each scenario offers valuable insights into the robustness of ML models in the
temporal and spatial dimensions of crop mapping, reflecting the challenges of real-world
crop mapping projects.

The training and testing datasets were prepared accordingly to create 4 distinct training
and 4 testing datasets, each representing a specific classification scenario for evaluating the
generalization capacities of different ML models.

2.3.3. Training Different Models

In the preliminary analysis, we evaluated the performance of various ML classifica-
tion models available in MATLAB’s Classification Learner toolbox. Based on the overall
accuracy measure estimated on the Scenario 1 dataset, we selected the following four
best-performing classification models for further analyses: quadratic discriminant anal-
ysis (QDA), support vector machines (SVM), random forests (RF), and neural networks
(NN). For all classification tasks, we employed 5-fold cross-validation and used Bayesian
optimization to automatically determine and apply the optimal hyperparameters for rel-
evant models. For all classification tasks, we employed 5-fold cross-validation and used
Bayesian optimization to automatically determine and apply the optimal hyperparameters
for relevant models [19]. This approach ensured that the selection of hyperparameters was
more objective and systematic and less influenced by individual biases or prior knowl-
edge. By using Bayesian optimization, the algorithm was able to systematically explore the
hyperparameter space and find the best combination of hyperparameters for each model
and dataset. This approach was particularly important in ensuring the reliability and
generalizability of the models. The hyperparameters selected during the training process
for all classification scenarios and years are presented in Table S1 of Supplement S2. From
this tuning process, we compiled statistics, which are outlined in Table 3. This information
can help guide the determination of plausible ranges for key hyperparameters. However,
it is important to acknowledge that, due to the complexity of hyperparameter tuning, it
should be deemed specific to a given classification problem and data.
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Table 3. Aggregated Statistics from Hyperparameter Tuning.

Algorithm Hyperparameter Type/Statistic Frequency/Value

SVM
Kernel function

Gaussian
Quadratic

Cubic

10 *
7 *
3 *

Box constraint level 1
Mean
Min
Max

445.14
4.36

961.49

Kernel scale
Mean
Min
Max

13.02
5.26

23.83

Neural Network

Fully connected
layers

Layer 1
Layer 2
Layer 3

9 *
9 *
2 *

Activation function 2
Tanh
Relu

Sigmo

12 *
6 *
2 *

First layer size
Mean
Min
Max

154
10
298

Second layer size
Mean
Min
Max

64
11

176

Third layer size
Mean
Min
Max

23
16
29

Regularization
strength (Lambda)

Mean
Min
Max

2.72 × 10−6

4.49 × 10−8

7.62 × 10−6

RF
Number of learners

Mean
Min
Max

360
32
500

Number of predictors
to sample

Mean
Min
Max

16
3

46

Max. number of splits
Mean
Min
Max

13,837
1104

39,619
1 For Gaussian function. 2 Tanh—Hyperbolic tangent activation, ReLU-Rectified linear unit activation, Sigmo-
Sigmoid activation. * Frequency depicts the number of times a given parameter was used out of the 20 classification
tasks (scenario/year).

Random forests (RF), introduced by [20], are an ensemble learning method frequently
utilized and highly popular in remote sensing applications. By combining multiple decision
trees, it creates a more accurate and robust model. This method is particularly advantageous
due to its intuitive and easily explainable nature, in contrast to more complex models like
neural networks. Random forests employ ensemble techniques such as bagging to improve
predictive accuracy and reduce overfitting. Each tree in the ensemble is built using a
random subset of the training data and a random subset of features, contributing to the
diversity of the individual trees. The random forest algorithm enhances the stability and
accuracy of classification models, addressing noise in training data and overfitting issues.
Furthermore, RF is capable of handling large datasets, missing values, and can perform
variable importance estimation, making it a versatile tool for various applications. Within
the Bayesian optimization work-flow, three hyperparameters were optimized: the number
of trees, the number of predictors, and the number of splits.

Discriminant analysis (DA) is a statistical technique used in pattern recognition and
classification tasks. It focuses on identifying linear or quadratic combinations of features
that best separate instances into different classes or groups. This method aims to maximize
the between-class variance while minimizing the within-class variance, resulting in effective
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class discrimination. There are two main types of discriminant analysis: linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA). LDA assumes equal covariance
matrices for the classes and finds a linear combination of features for optimal separation,
while QDA allows for different covariance matrices and results in a quadratic decision
boundary. Discriminant analysis is commonly employed in remote sensing to classify
and analyze data based on its underlying patterns [21]. In fact, QDA is often referred
to as maximum likelihood classification within the remote sensing community due to
its implementation in widely used image processing software. QDA captures spectral
characteristics in remote sensing data and classifies observations based on the class that
maximizes likelihood. Its ability to represent quadratic decision boundaries makes QDA
suitable for handling complex, high-dimensional data and providing accurate classification
results in diverse scenarios. In the course of the optimization process, we examined various
discriminant analysis types and covariance matrix configurations to identify the optimal
model for our classification tasks. In each case, QDA emerged as the top performer; hence,
we will refer to QDA in the remainder of the paper.

Support Vector Machines (SVM) are powerful and robust predictive methods based
on statistical learning commonly used in remote sensing applications [22]. SVM maps
training examples to points in high-dimensional space and finds the optimal separating
hyperplane, maximizing the margin between categories. This approach effectively reduces
overfitting and performs well when classes are clearly separated in the multidimensional
feature space. Additionally, SVM is known for its adaptability to diverse data distributions
and its capability to handle large feature spaces. For multiclass classification with three
or more classes, SVM divides the problem into binary classification subproblems, using
one SVM learner per subproblem. However, as a non-probabilistic classifier, SVM does not
provide probabilistic explanations for classification results. During the optimization process,
hyperparameters to be optimized include the type of kernel functions, box constraint level,
kernel scale, and multiclass strategy.

Neural networks (NN) are a set of algorithms inspired by the neural interactions in
the brain, designed to recognize patterns in data by simulating the way neurons process
and transmit information. NNs have been successful in handling a wide range of tasks,
including remote sensing and crop classification, owing to their ability to model complex
relationships and learn from large volumes of data [23]. These networks typically consist
of multiple layers, including input, hidden, and output layers, with each layer containing
a set of interconnected nodes or neurons. The choice of network architecture, such as the
number of layers and neurons, depends on the complexity of the data and the desired level
of model performance. Aside from their versatility, NNs can also be fine-tuned to adapt to
specific data types and distributions, enhancing their applicability across diverse domains.
Neural networks for classification consist of fully connected layers, each applying a weight
matrix, bias vector, and activation function. The final layer uses SoftMax activation for
classification scores and predicted labels. We left the following hyperparameters to be
fine-tuned during the optimization process: the number of fully connected layers, layer
sizes, activation functions, and regularization strength.

2.3.4. Analyzing Performance and Accuracy Assessment

After the training phase (Section 2.3.3), the models were directly applied to the entire
image (cropland-masked) using the selected hyperparameters per each case (scenario/year)
following a pixel-based approach. No additional transfer learning or tuning was employed
in this step. Subsequently, each classification output was cross-validated on tested cases,
which represent randomly selected pixels from left-aside parcels per each crop type/year,
as defined in Section 2.3.2. This validation step allowed us to assess the accuracy and
reliability of the classification results. We used overall accuracy and F1 statistics as standard
measures of accuracy and classification performance to comprehensively evaluate and
compare various classification tasks [24]. Overall accuracy is the proportion of correctly
classified instances out of the total instances, while F1 score is the harmonic mean of the
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user’s accuracy and the producer’s accuracy, providing a balance between these two met-
rics for assessing class-specific classification performance. Interpreting ML classification
models can be challenging due to their complexity. We employed feature importance
analysis to facilitate a better understanding of the model’s decision-making process and the
role of specific features in predicting crop classifications, ultimately enhancing the overall
interpretability of the results. Specifically, we used permutation-based feature importance
analysis [25], a technique that evaluates the importance of each feature by randomly shuf-
fling its values and measuring the impact on the model’s performance. Furthermore, a
specialized analysis was conducted to investigate the within-season classification perfor-
mance. In this instance, monthly composites were incrementally added as input features
to reflect the progression of the season. For example, April spectral reflectances were
first considered, followed by April and May, and then April, May, and June, and so on.
This particular approach enables the identification of the earliest time point at which a
general classifier can produce satisfactory results, which is a standard approach across the
community [12].

2.3.5. Applying Models to Images

All four classification models from Scenario 1 were applied to the Sentinel-2 monthly
composite series from 2022 to exemplify their practical application in crop mapping. Pixel-
based estimates were assigned to LPIS (land parcel identification system) parcels using a
majority rule approach, effectively regionalizing the classification results for more coherent
crop mapping. Additionally, a confidence map was generated to visualize the uncertainty
of the classification map, which was based on an ensemble of model outputs at the decision
level [26]. This was achieved by superimposing the four alternative outputs and identifying
the frequency of agreement among the models. We established three confidence levels for
parcel classification. The lowest confidence level indicates that only one model accurately
classified the parcel, the medium confidence level signifies that two or three models
successfully performed, and the highest confidence level is reached when all models
correctly classified the parcel. In addition to the standard accuracy evaluation at an
aggregated level using error matrices (Section 2.3.4), the confidence map enables a visual
plausibility check to assess the spatial pattern of misclassifications. We paid particular
attention to detecting potential spatial trends in errors, analyzing whether misclassifications
demonstrated consistent geographic tendencies or associations with specific types of terrain
or sub-regions. This allowed us to assess the spatial representativeness of our sampling
and determine whether certain subregions were consistently linked to misclassification.

3. Results
3.1. Observational Quality

Monthly median composites of the spectral reflectance products may be less effective
when there are fewer than 3 observations per monthly compositing period. Hence, we
begin by analyzing the quality of the input data to gain insights that will inform the inter-
pretation of our results later on. Figure 4 illustrates the variability in observation quality
of the input monthly composites across different years, seasons, and regions. Generally,
summer observations are of higher quality than spring observations due to differences in
cloud cover and atmospheric conditions. Figure 4 also emphasizes the distinct regional
differences observed during specific months, such as May 2021, June 2020, and May 2019.
These differences may provide valuable insights for consideration when evaluating the
spatiotemporal transferability scenarios of crop classification models. Moreover, balancing
trade-offs between observation quality and full coverage is essential regarding the delivery
of wall-to-wall crop mapping products.
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Figure 4. Observational quality of input monthly median composites. Number of observations used
for median compositing and proportion of total coverage (% on x-axis) of the study regions.

3.2. Crop Specific Spectral Response across Regions and Seasons

Figures 5–8 display the mean spectral profiles of crops for the entire training dataset.
These figures offer a visual representation of the unique spectral characteristics of each
crop type and their interseasonal variations, helping to better understand crop-specific
spectro-temporal patterns. Cereals, rapeseed, and grass display distinct spectral differences
in the red edge (RE) and near-infrared (NIR) ranges from spring until July, when they
are harvested. After the harvest, the spectral patterns in the NIR range tend to become
noisy. However, the grass spectral response in the visible spectral range (VIS) maintains a
more consistent profile after the harvest, which may contribute to its good classification
performance. This observation holds true and remains consistent across both regions under
study. Rapeseed displays the most distinctive spectral profile, which remains consistent
across regions and seasons. The higher interseasonal variation in the NIR spectral range
in April and June may be attributed to the varied coverage of young canopies after win-
ter (particularly noticeable in eastern Slovakia) and differing maturation stages in June.
Conversely, wheat and barley exhibit relatively similar spectrotemporal patterns. April
appears to be the optimal period for distinguishing between them, especially in the RE and
NIR spectral ranges in both regions. However, noticeable differences can also be observed
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in the VIS spectral range in eastern Slovakia. This characteristic can be attributed to a
higher proportion of delayed sowing of barley in eastern Slovakia, which may be linked
to prolonged unfavorable conditions such as waterlogging. This observation may also
contribute to the higher interseasonal variability of barley’s spectral response during its
early development in May in eastern Slovakia.
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Figure 5. Long-term (2018–2022) means and Standard Deviations (SD) of spectral bands for Danubian
lowland cereal crops, rapeseed, and grasslands. y-axis represents reflectance (0–1) values multiplied
by 10,000. X axis represents Sentinel-2 spectral band for specific month.
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Figure 6. Long-term (2018–2022) means and standard deviations (SD) of spectral bands for East
Slovakian lowland cereal crops, rapeseed, and grasslands. y-axis represents reflectance (0–1) values
multiplied by 10,000. X axis represents Sentinel-2 spectral band for specific month.
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Figure 7. Long-term (2018–2022) means and Standard Deviations (SD) of spectral bands for Danubian
lowland summer crops. y-axis represents reflectance (0–1) values multiplied by 10,000. X axis
represents Sentinel-2 spectral band for specific month.
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Figure 8. Long-term (2018–2022) means and Standard Deviations (SD) of spectral bands for East
Slovakian lowland summer crops. y-axis represents reflectance (0–1) values multiplied by 10,000.
X axis represents Sentinel-2 spectral band for specific month.

On the other hand, summer crops exhibit distinct spectral differences in the red-edge
to NIR range during the summer months, starting in June. In fact, they are typically
sown from mid-April to mid-May, during which time they appear as bare soil, making
their differentiation impossible at that stage. Maize stands out as the most distinctive
summer crop, exhibiting consistently lower reflectance in the red-edge to NIR spectral
range during June and July in both regions. However, notable interseasonal variation
can be observed in July in eastern Slovakia. Sugar beet appears to be most distinctive
in the red-edge to NIR spectral range in the Danubian lowlands, although notable inter-
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seasonal variation is visible in June (Danubian lowlands). Soybean displays particularly
different spectrotemporal patterns across regions, exhibiting significantly higher reflectance
in the red edge to NIR region in eastern Slovakia compared to the Danubian lowlands.
Nevertheless, soybean also exhibits considerable interseasonal variation, which might
reduce its distinguishable characteristics across years.

Although distinctive characteristics can be discerned from the spectral mean data,
the complex distribution patterns might further affect the transferability of classification
models. For instance, we illustrate the spatiotemporal distribution patterns of the highly
variable soybean (Figure 9) and the more consistent grasslands (Figure 10), highlighting
the differences in their respective classification performances. In our study, we utilized
Sentinel 2 spectral band 6, as it was identified as one of the most important features for
classification models. We observed notable differences in its distribution both across regions
and seasons. It seems that in 2018 and 2019, certain factors, such as drought or later sowing
dates, could have contributed to lower reflectance values in this spectral region compared
to East Slovakia, where this effect was not observed. These distinct distribution patterns
may affect the spatiotemporal transferability of the classification models. In contrast, we
noticed a relatively consistent spectrotemporal pattern in the distribution of spectral band
6 for grasslands. This observation could contribute to the relatively good transferability
of classification models across seasons and regions when classifying grasslands. In any
case, we did not identify any coherent patterns related to observational quality (Figure 4),
suggesting that factors other than observational quality may play a role in influencing the
difference in spectrotemporal distributions across regions.
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3.3. Temporal Transferability

Scenarios 1 and 2 focus on examining the transferability capabilities of the classification
models. The findings from these scenarios reveal that the transferability of classification
models across years differs between regions (Figure 11). However, the interseasonal
patterns in both regions were quite similar, with the only exception being in 2018, where
a notably better performance was observed in the Danubian lowlands compared to the
eastern Slovakia region. Again, we did not identify any relationship to the observational
quality (Figure 3), suggesting that factors other than the observational quality may play a
role in influencing the difference in across year classification performance. The Danubian
lowlands demonstrate better performance, with the best-performing classifier achieving
overall accuracies ranging from 91.53% in 2022 to 94.3% (Table 4). In eastern Slovakia,
the best-performing classification model demonstrates a range of overall accuracies from
85% to 91.9% (Table 5). Regardless, the interseasonal variability in performance for the
worst-case models is proportionally higher, which highlights the importance of conducting
a multi-classifier analysis.
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Figure 11. Overall accuracies (OA in % on Y Axis) across years: Scenario 1 represents the temporal
transferability analysis in the Danubian lowland, while Scenario 2 pertains to the East Slovakian
lowland region.

Table 4. Overall accuracies (%) across years of the Scenario 1. Scenario 1 represents the temporal
transferability analysis in the Danubian lowland region.

Sc
en

ar
io

1 Train Danube
without 2018

Train Danube
without 2019

Train Danube
without 2020

Train Danube
without 2021

Train Danube
without 2022

Mean
Test Danube

2018
Test Danube

2019
Test Danube

2020
Test Danube

2021
Test Danube

2022

QDA 93.30 92.44 93.74 90.28 90.22 92.00
SVM 91.76 93.88 94.76 92.22 91.53 92.83
NN 91.57 92.22 94.14 92.01 91.39 92.27
RF 92.26 87.61 91.56 86.64 82.50 88.11

Mean 92.22 91.54 93.55 90.29 88.91
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Table 5. Overall accuracies (%) across years of the Scenario 2. Scenario 2 represents the temporal
transferability analysis in the East Slovakian lowland region.

Sc
en

ar
io

2 Train East
without 2018

Train East
without 2019

Train East
without 2020

Train East
without 2021

Train East
without 2022

Mean
Test East

2018
Test East

2019
Test East

2020
Test East

2021
Test East

2022

QDA 87.70 91.10 86.00 86.60 85.00 87.28
SVM 84.40 87.60 88.90 85.90 80.50 85.40
NN 88.20 89.10 91.90 85.40 81.10 87.14
RF 85.80 89.70 90.80 82.80 74.10 84.64

Mean 86.53 89.38 89.40 85.18 80.18

The performance of the worst-case models ranged from 74.10% to 86.0% in Eastern
Slovakia and from 82.5% to 91.6% in the Danubian lowlands. Interestingly, except for 2018
in the Danubian lowlands and 2018, 2019, and 2020 in eastern Slovakia, the random forest
classifier performed substantially worse compared to the other algorithms. In general, in
the Danubian lowlands, all classifiers except random forest performed equally well. On
the other hand, in eastern Slovakia, neural networks and quadratic discriminant analysis
consistently outperformed support vector machines and random forest classifiers.

In the Danubian lowlands, class-specific performance showed that rapeseed, grass-
lands, and sugar beet were consistently well-classified across seasons, indicating stable
transferability for these crop types (Figure 12). Other summer crops were also classified at
acceptable levels, with the exception of 2022, where classification performance was rela-
tively lower, notably for soybeans and maize. We attribute this lower performance to the
extensive drought that occurred in 2022. There is no reason to suspect the potential negative
effect of unsuitable input data, considering that there were sufficient observations for the
summer monthly composites, as evidenced in Figure 3. Given that cereals consistently
exhibited poorer performance in 2018, we investigated whether there were any patterns
of unsuitable observation conditions (Figure 3). Since we did not identify any substantial
divergence in the availability of sufficient observational data during the key months (April
and May), we believe that this performance decline was likely due to reasons other than
input data quality.

Crop-specific classification performance is greatly affected by the uniqueness of the
spectrotemporal signatures. While certain patterns may be visible in the mean series (Fig-
ures 5–8), the spectrotemporal distribution pattern driving the classification is considerably
more intricate and challenging to visualize, as demonstrated in the soybean (Figure 9) and
grassland (Figure 10) cases. Ultimately, the separability of the multidimensional feature
space can be inferred from the misclassification error matrices, which play a crucial role
in understanding and evaluating the model’s performance and its ability to distinguish
between different crop types. As an example, we provide the error matrices for the worst-
case scenario of 2022 (Table 6) and the best-case scenario of 2020 (Table 7) from Scenario 1,
although the misclassification patterns are consistent across all scenarios (data not shown).
Here, the evident commission errors of misclassifying soybean as maize and sunflower
result in poorer F1 statistics for these classes (Table 6). In the case of the 2022 drought,
there is a possibility that soybeans affected by the drought may exhibit spectral properties
that are erroneously recognized as maize or sunflower, but this was not observed in 2020
(Table 7). On the other hand, in 2020, barley was classified erroneously as wheat, leading to
lower F1 statistics for these cereal classes and an underestimation of barley as well as an
overestimation of wheat.
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Figure 12. Crop-Specific Performance Using F1 Statistics (in % on Y Axis) for All Scenarios: Scenario
1 represents the temporal transferability analysis in the Danubian Lowland, while Scenario 2 focuses
on the temporal transferability analysis in the East Slovakian Lowland region. Scenario 3 involves
the spatial transferability scenario, using 1 year of data from the Danubian Lowland for training
and the same year of data from the East Slovakian Lowland for testing. Scenario 4 encompasses all
years (2018–2022) of data from the Danubian Lowland for training while testing each individual
year of data from the East Slovakian Lowland separately. Tabulated data are provided in Table S2,
Supplement S2.

Table 6. Error matrices of the worst-case scenario 2022 for Scenario 1. Scenario 1 represents the
temporal transferability analysis in the Danubian Lowland.

Prediction

SVM Barley Rapeseed Maize Wheat Sugar Beet Sunflower Soybean Grass ∑

R
ef

er
en

ce

Barley 975 2 2 18 1 0 0 2 1000
Rapeseed 21 977 0 1 1 0 0 0 1000

Maize 26 2 922 13 1 10 11 15 1000
Wheat 80 1 0 913 0 1 0 5 1000

Sugar beet 5 15 4 0 971 5 0 0 1000
Sunflower 8 0 4 0 1 967 8 12 1000
Soybean 16 0 193 18 1 160 603 9 1000

Grass 3 0 1 0 2 0 0 994 1000

∑ 1134 997 1126 963 978 1143 622 1037
OA 91.5
KIA 0.90
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Table 7. Error matrices of the best case 2020 for Scenario 1. Scenario 1 represents the temporal
transferability analysis in the Danubian Lowland.

Prediction

SVM Barley Rapeseed Maize Wheat Sugar Beet Sunflower Soybean Grass ∑

R
ef

er
en

ce

Barley 794 25 9 142 6 1 13 10 1000
Rapeseed 0 995 0 0 4 1 0 0 1000

Maize 0 0 971 6 3 1 16 0 1000
Wheat 9 10 3 976 1 0 1 0 1000

Sugar beet 0 0 5 0 987 3 5 0 1000
Sunflower 4 0 4 0 18 949 23 2 1000
Soybean 2 0 25 0 6 13 952 2 1000

Grass 3 6 5 15 2 4 8 957 1000

∑ 812 1036 1022 1139 1027 972 1021 971
OA 94.8
KIA 0.90

3.4. Spatial Transferability

Scenario 3 focuses on examining the transferability capabilities of the classification
models in a spatial context. The performance varied between particular years; e.g., the
best-performing classification model demonstrates a range of overall accuracies from 84.9%
in 2018 to 91.54% in 2019, while performance for the worst-case models ranged from 72.10%
in 2022 to 88.75% in 2020 (Table 8), which highlights the importance of conducting a multi-
classifier analysis. The performance of classifiers was quite similar, except for RF in 2022,
2021, and 2018, when RF achieved considerably lower overall accuracy values. Interestingly,
when all seasons from the Danube region were used for training in Scenario 4, a consistently
better performance except for 2021 was achieved compared to Scenario 3 (Figure 13). This
improvement in classification performance was particularly noticeable in 2018 and 2022
(Table 9), further emphasizing the potential benefits of incorporating interseasonal variance
in spectral data distributions when addressing spatial differences between regions. In this
scenario, the crop-specific performance also showed a slight improvement, particularly
for rapeseed, wheat, and sugar beet, as illustrated in Figure 12. Conversely, crops such as
barley, maize, sunflower, and soybean did not experience substantial benefits from this
strategy (Figure 12). In any case, similar to scenarios 1 and 2 (temporal transferability),
it was found that rapeseed, grasslands, and sugar beet (with the exception of 2020) can
be classified across regions at acceptable levels. The substantial differences in spectral
data distribution, as illustrated in Figure 9 for soybean, may contribute to the highest
misclassification rates observed among soybean, maize, and sunflower. Specifically, the
classification model tended to overestimate soybean at the expense of maize and sunflower
in 2021 (Table 10). This discrepancy could be attributed to the distinct development of
soybean in Eastern Slovakia during 2021, which may have brought its spectrotemporal
profile closer to those of maize and sunflower, thereby affecting the typical differences in
their spectrotemporal signatures as these high commission error rates were not observed in
other years (see Table 9 as an example). Moreover, similar to the temporal transferability
scenarios, wheat and barley were misclassified only between each other. Therefore, if an
aggregated “cereals” class were assigned, the transferability of the classification models
would perform well for cereals both across seasons and regions. Sugar beet generally
exhibited distinct spectrotemporal signatures, with the exception of 2020 (Table 11), when
sugar beet was overestimated at the expense of sunflower. This was not the case in other
years or in temporal transferability scenarios 1 and 2.
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Table 8. Overall accuracies (%) across years of the Scenario 3. Scenario 3 explores the spatial transfer-
ability across regions. Classifiers are trained and tested using the same years but in different regions.

Sc
en

ar
io

3 Train Danube
2018

Train Danube
2019

Train Danube
2020

Train Danube
2021

Train Danube
2022

Mean
Test East

2018
Test East

2019
Test East

2020
Test East

2021
Test East

2022

QDA 81.10 88.60 88.75 87.35 81.34 85.43
SVM 84.90 88.66 90.30 87.41 85.29 87.31
NN 82.16 91.54 90.27 87.34 83.80 87.02
RF 76.90 89.29 89.15 80.65 72.10 81.62

Mean 81.27 89.52 89.62 85.69 80.63
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Table 9. Overall accuracies (%) across years of the Scenario 4. Scenario 4 explores the spatial
transferability across regions. Scenario 4 includes all years (2018–2022) of data from the Danubian
lowland for training, while testing on each individual year of data from the East Slovakian lowland
separately.

Sc
en

ar
io

4 Train Danube
2018–2022

Train Danube
2018–2022

Train Danube
2018–2022

Train Danube
2018–2022

Train Danube
2018–2022 Mean

Test East
2018

Test East
2019

Test East
2020

Test East
2021

Test East
2022

QDA 85.70 91.40 89.50 84.00 84.30 86.98
SVM 89.90 93.10 92.70 86.52 88.70 90.18
NN 90.10 92.80 89.00 84.24 86.20 88.47
RF 85.20 90.30 89.60 82.50 78.80 85.28

Mean 87.73 91.90 90.20 84.32 84.50
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Table 10. Error matrices of the worst case 2021 for Scenario 4. Scenario 4 encompasses all years
(2018–2022) of data from the Danubian Lowland for training, while testing on each individual year of
data from the East Slovakian Lowland separately.

Prediction

SVM Barley Rapeseed Maize Wheat Sugar Beet Sunflower Soybean Grass ∑

R
ef

er
en

ce

Barley 889 0 24 0 2 15 10 60 1000
Rapeseed 16 956 2 1 0 17 4 4 1000

Maize 7 0 748 0 9 24 200 12 1000
Wheat 172 2 2 791 1 4 4 24 1000

Sugar beet 0 0 0 0 1000 0 0 0 1000
Sunflower 1 0 19 0 66 616 266 32 1000
Soybean 11 3 40 1 3 9 928 5 1000

Grass 0 0 0 0 0 0 6 994 1000

∑ 1096 961 835 793 1081 685 1418 1131
OA 86.53
KIA 0.85

Table 11. Error matrices of the best case 2020 for Scenario 4. Scenario 4 encompasses all years
(2018–2022) of data from the Danubian lowland for training, while testing on each individual year of
data from the East Slovakian lowland separately.

Prediction

SVM Barley Rapeseed Maize Wheat Sugar Beet Sunflower Soybean Grass ∑

R
ef

er
en

ce

Barley 832 2 7 2 3 1 2 0 1000
Rapeseed 12 836 0 0 0 0 0 1 1000

Maize 4 2 735 0 41 26 38 3 1000
Wheat 11 2 0 832 0 0 1 3 1000

Sugar beet 0 0 0 0 849 0 0 0 1000
Sunflower 4 0 10 8 154 606 50 17 1000
Soybean 6 0 11 4 39 3 765 21 1000

Grass 1 0 2 0 2 0 0 844 1000

∑ 870 842 765 846 1088 636 856 889
OA 92.74
KIA 0.92

3.5. Feature Importance

Analyzing feature importance aids in the interpretability of machine learning models,
leading to a better understanding of the unseen factors that drive the classifiers. By
shedding light on the key features that contribute to distinguishing crop classes, we can
gain insights into the underlying spectrotemporal characteristics that are crucial for accurate
classification. To maintain focus on the most obvious scenario, we have chosen to analyze
feature importance exclusively for scenario 1 for the last year of 2022. This scenario
represents a typical crop-type mapping situation within a region of interest, using past
labeled data to classify the upcoming year with unseen reference data. Figure 14 displays
the spectrotemporal input features that were most frequently ranked among the top 10
for each classifier. In summary, spectral band 6 from May was ranked as the most useful,
followed by band 8A from August and band 6 from July. Upon examining the spectral
characteristics of the features, it was established that the most useful ones were primarily
the narrowband red edge (B6 and B7) and near-infrared (NIR) band B8A, followed by the
B11 short-wave infrared (SWIR) band. Importantly, the broadband 8B and visible (VIS)
bands were not considered important in the classification process. Another interesting
observation from our analysis was that all periods played a crucial role in the classification
process, with July emerging as the most important and August as the least important
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among them. Additionally, we have examined the earliest period in a growing season when
reliable crop classification is achievable, enabling prompt within-season crop mapping.
Figure 15 demonstrates the trade-off between timeliness and accuracy for all classifiers,
highlighting the balance between obtaining results earlier in the season and maintaining
classification performance. Interestingly, this trade-off varied slightly among classifiers,
with noticeable problems in random forest (RF) decreasing when more drought-affected
features were incorporated later in the season. In any case, our findings showed that
acceptable performance could be achieved as early as June, with only slight improvements
towards the end of the season. However, this was the case for an anomalous drought
year, which might degrade the added value of the months with unusual spectrotemporal
responses from the summer crops. For comparison, we conducted additional analysis
using data from the “standard” year 2020 and observed a more expected pattern, with a
consistent increase in performance towards the end of the season, reaching saturation in
July (Figure 16).
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Figure 14. Frequency at which specific features are identified among the top 10 most important
features in all considered classifiers for Scenario 1 and 2022 tested year (A) and their aggregation
according to spectral bands (B) and monthly period (C).

3.6. Confidence Map

Applying classification models to satellite products enables the creation of spatially
comprehensive crop maps, providing a detailed representation of crop distribution across
study regions. Firstly, we employed classification models on input monthly composites
using a pixel-based approach. Subsequently, we utilized known parcel boundaries to ag-
gregate pixel-based outputs according to declared parcel boundaries, employing a majority
rule method. In this study, we showcase the worst-case example from scenario 1 in 2022 to
provide a conservative perspective on the mapping results, allowing for a more cautious
assessment of the model’s performance and potential limitations. Clearly, the mapping
coverage is constrained by the quality of observations throughout the entire season. In the
case of 2022, coverage reached approximately 80% of the total arable land in both regions.
The classification maps generated in our study appeared to be consistent with expected
spatial patterns of crop distribution (Figure 17). There were no implausible spatial trends
observed, indicating that the classification models were able to effectively capture and
represent the spatial distribution of the different crop types in the study area. Upon closer
examination of Figure 18, it is evident that there are no noticeable erroneous spatial clusters
present. This further supports the effectiveness of the classification models in accurately
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capturing the spatial distribution of crop types without introducing spatial errors or biases
in the input data. However, we need to notice several factors contributing to crop misclas-
sification, and understanding these factors is essential for improving the transferability
of crop classification models. Some of these factors include natural drivers, such as crop
phenology, and climate extremes such as drought, heatwaves, or prolonged rain causing
waterlogging, which can impact interseasonal classification accuracy. Within-class variabil-
ity due to genetic differences among crop varieties, including their variable response to
drought, can result in spectral variability, making it challenging to distinguish between
similar crops. This variability can be further exacerbated by irrigation infrastructure and
patterns, introducing additional complexity to classification efforts, particularly for summer
crops. Lastly, variations in agronomic practices, like sowing and harvest dates, or factors
such as pests, diseases, or other disturbances can alter the spectral properties of crops,
potentially leading to misclassification. These factors introduce uncertainties throughout
the whole classification workflow. We have tried to address these uncertainties through the
methodology we implemented, which includes balanced spatial sampling, Bayesian opti-
mization for hyperparameter selection, and an ensemble of multiple models. In particular,
the use of a multi-classifier approach enables the determination of parcel-level confidence
in mapping. By assuming that higher confidence arises when multiple classifiers provide
similar results, this approach enhances the reliability of the crop distribution maps. This
practical solution is particularly suited for decision-makers in operational applications.
In any case, a comprehensive uncertainty assessment would be beneficial; however, this
would require a specific experimental design for each source of uncertainty and extend
beyond the scope of this study.
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Figure 15. Evolution of overall accuracies (OA in % on Y Axis) with sequential increases in input
features within the season 2022.
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Figure 16. Evolution of overall accuracies (OA in % on Y Axis) with sequential increases in input
features within the season 2020.
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Figure 17. Spatial distribution of crops for 2022 in Danubian lowlands and Eastern Slovakia. The
classification model for Danubian lowlands followed the Scenario 1, e.g., the train data included
reference crop labels in Danubian region spanning years 2018, 2019, 2020, and 2021. The classification
model for eastern Slovakia followed Scenario 2, e.g., the train data included reference crop labels
in eastern Slovakia’s lowlands spanning years 2018, 2019, 2020, and 2021. Hence, year 2022, with
prolonged summer drought, was not used for the training.



Remote Sens. 2023, 15, 3414 26 of 35Remote Sens. 2022, 14, x FOR PEER REVIEW  28  of  38 
 

 

 

Figure 18. Spatial distribution of misclassification errors and parcel-based confidence levels for Sce-

nario 1 in tested year 2022 in Danubian lowland region. The confidence levels range from lowest to 

highest, where the lowest confidence level indicates that only one model correctly classified the par-

cel, the medium confidence level indicates that two or three models correctly classified the parcel, 

and the highest confidence level indicates that all models correctly classified the parcel. The mis-

classification errors are displayed in parcels where none of the models correctly classified the given 

parcel. Spatial distribution of misclassification errors and parcel-based confidence  levels  for Sce-

nario 1 in tested year 2022 in Danubian lowland region. The confidence levels range from lowest to 

highest, where the lowest confidence level indicates that only one model correctly classified the par-

cel, the medium confidence level indicates that two or three models correctly classified the parcel, 

and the highest confidence level indicates that all models correctly classified the parcel. The mis-

classification errors are displayed in parcels where none of the models correctly classified the given 

parcel. 

4. Discussion 

4.1. Spatiotemporal Generalization 

The concept of spatiotemporal generalization emphasizes the need to balance both 

spatial and temporal aspects when developing models to ensure they can effectively han-

dle variations in both dimensions. By carefully considering these factors, we can gain a 

deeper understanding of the limitations and opportunities for enhancing the generaliza-

tion capabilities of crop classification models. Sykas et al. [27] conducted a study that con-

cluded that the transfer of crop classification models across years or regions was not fea-

sible. They trained their models using data from only two years. They then applied these 

models to large regions of France and Catalonia. These regions had distinct climates, ag-

ricultural practices, and crop growth patterns. The same issue might arise even in smaller 

regions. Therefore, a detailed investigation is essential to understand the generalization 

capabilities. These capabilities, associated with the spatiotemporal variability of domain 

Figure 18. Spatial distribution of misclassification errors and parcel-based confidence levels for
Scenario 1 in tested year 2022 in Danubian lowland region. The confidence levels range from lowest
to highest, where the lowest confidence level indicates that only one model correctly classified
the parcel, the medium confidence level indicates that two or three models correctly classified the
parcel, and the highest confidence level indicates that all models correctly classified the parcel. The
misclassification errors are displayed in parcels where none of the models correctly classified the
given parcel. Spatial distribution of misclassification errors and parcel-based confidence levels for
Scenario 1 in tested year 2022 in Danubian lowland region. The confidence levels range from lowest to
highest, where the lowest confidence level indicates that only one model correctly classified the parcel,
the medium confidence level indicates that two or three models correctly classified the parcel, and the
highest confidence level indicates that all models correctly classified the parcel. The misclassification
errors are displayed in parcels where none of the models correctly classified the given parcel.

4. Discussion
4.1. Spatiotemporal Generalization

The concept of spatiotemporal generalization emphasizes the need to balance both
spatial and temporal aspects when developing models to ensure they can effectively han-
dle variations in both dimensions. By carefully considering these factors, we can gain a
deeper understanding of the limitations and opportunities for enhancing the generalization
capabilities of crop classification models. Sykas et al. [27] conducted a study that concluded
that the transfer of crop classification models across years or regions was not feasible. They
trained their models using data from only two years. They then applied these models to
large regions of France and Catalonia. These regions had distinct climates, agricultural
practices, and crop growth patterns. The same issue might arise even in smaller regions.
Therefore, a detailed investigation is essential to understand the generalization capabilities.
These capabilities, associated with the spatiotemporal variability of domain distributions,
are crucial for designing effective nationwide EO-based crop monitoring applications. We
addressed this by training our models using data from multiple years and different regions.
This approach may guarantee the inclusion of diverse spectrotemporal responses from
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different crops. Our aim is to achieve the required generalization of the spectrotemporal
feature space. We employed a simple empirical approach using accuracy measures as
indicators of the classification models’ ability to transfer in both spatial and temporal
contexts. Although it is challenging to directly compare different studies, Table 1 presents
accuracy measures from similar research to provide a rough benchmark for performance in
crop classification transferability studies. Clearly, performance statistics differ substantially
based on factors like scale, crop complexity, and the datasets employed, with performance
estimates from our study aligning well with the identified benchmark of 90%. Accordingly,
our results can be considered promising for the crop classification task, as they demon-
strate the potential to effectively classify unseen labels from different regions and years.
This suggests that our approach may offer valuable insights for nationwide agricultural
monitoring. However, it is important to discuss certain considerations and limitations in
more detail to provide guidance for applying similar workflows elsewhere.

4.2. Observation Quality Consideration

Firstly, the quality of the input temporal composites from Sentinel-2 data might cause
a potential degradation in transferability performance. Factors such as cloud cover, atmo-
spheric interference, and limited clear observations could impact the accuracy of median
reflectance. This, in turn, could affect machine learning model performance across various
regions or time periods. We used monthly median composites that appeared to strike
an effective balance between monitoring unique crop phenology (Figures 5–8) and en-
suring the availability of wall-to-wall data (Figure 4). However, median compositing is
mainly effective when there are more than three observations per compositing period.
With a higher number of observations, median composites can better represent the central
tendency of the data, minimizing the influence of noise, clouds, and other disturbances.
We made the simple assumption that the median composites could be degraded when
fewer than three observations per pixel were used. However, we did not identify any
coherent relationship between the patterns of observational quality and the year-to-year
classification performance. For instance, June 2020 in the Danube region had one of the
poorest observational qualities, yet the performance of Scenario 1 in 2020 was the best. This
suggests that other factors may play a more significant role in influencing classification
performance. Similarly, in Scenario 3, May 2019 for both regions exhibited substantially
lower observational quality. However, the spatial transfer of 2019 still achieved acceptable
performance. This suggests that factors other than the quality of median compositing
may influence the spatiotemporal capabilities of the classification models. While median
compositing has proven effective in similar geographical locations [28], it is worth con-
sidering alternative preprocessing methods. In future research, we should ensure that
the most suitable approach is employed for preparing input features in transferable crop
classification studies. For instance, other candidate methods exist for pixel based temporal
compositing of Sentinel like time series, including medoid compositing [29], weighted score
compositing [18], or phenology-adaptive compositing [30]. Furthermore, an alternative
approach for representing the spectrotemporal feature space as inputs in classification mod-
els could involve using the modeled parameters of fitted spectral-temporal curves [31] or
derived phenometrics [11]. These metrics have been suggested to maintain consistency in
an inter-seasonal context (e.g., [4,9]), offering potentially valuable features for transferable
crop classification. However, these approaches might also introduce uncertainty, depend-
ing on the raw data pattern, and could potentially degrade spectral information when
spectral indices are used. Hence, conducting an in-depth assessment and comparison of
these alternative methods could be beneficial in identifying the most effective approach for
representing spectrotemporal features as inputs in transferable crop classification models.

4.3. Effect of Anomaly Seasons

Factors such as climate variability and extreme weather events can significantly in-
fluence the transferability of crop classification models. It is crucial to consider how these



Remote Sens. 2023, 15, 3414 28 of 35

changes might affect model performance. Predicting inter-seasonal variations and extreme
events is challenging. Longer-term analyses could be advantageous for understanding
complex interannual patterns of crop phenology and extreme weather effects. So far, the
most pertinent domain generalization study has been carried out by Cai et al. [14], who
utilized a 15-year Landsat series dataset. Their experiment design includes an assessment
of accuracies for independent testing data in 2015, with the model trained on data from all
years before 2014. The study showed that a greater amount of training data can enhance
classification performance. Including more years of data can lead to higher performance in
classifying crop types for the next year. This can even reach best-case overall accuracies
of 96%. Their findings demonstrated that incorporating one to five seasons in training
significantly improved classification performance on unseen years, but adding more years
beyond that range caused the increasing trend to decelerate and eventually saturate. How-
ever, they also observed that outliers in performance occurred during drought years or
when data availability was limited. In our study, we found that if a model is trained on data
covering four seasons within the same region, it can effectively generalize across different
years while maintaining an acceptable level of performance. It appears that the “com-mon”
interannual variability of climate, which affects crop phenology, can be effectively tracked
by the models. This outcome may be attributed to the effective aggregation of gradual
crop development in monthly median composites, which could help minimize abrupt year-
to-year differences in phenology. The most challenging situation occurred in 2022, when
an unusual drought emerged during the summer. Naturally, we assume that with denser
Sentinel-2 data series, the model can learn from a broader data space and become more
efficient in handling such complex situations. We anticipate that this will be the case over
the upcoming years as the Sentinel-2 data series continues to expand and become denser.
In any case, the across-year transferability performance varied substantially across different
regions, with notably lower performance in the eastern Slovakian lowlands. Similarly,
Johnson et al. [13], employing four years of Sentinel-2 seasonal composites (2016–2019) in
16 region-specific multiseasonal transferability tasks, reported a wide range of overall accu-
racies, from 52% to 88%. Hence, we further demonstrate that in a multi-seasonal transfer
scenario for crop classification, making it region-specific can be beneficial to minimize the
impact of factors other than interannual variability. By tailoring the classification model to a
specific region, the model can better account for unique regional characteristics, such as soil
conditions or agronomic practices. The complexity of the crop classification task represents
another factor that needs to be considered when applying transferable crop classification
models. Clearly, the complexity of crop classification tasks increases when applied to more
intricate crop nomenclature, as opposed to simple crop configurations involving only two
or three crops [14,32]. In our study, we employed a challenging 8-class crop configuration,
which necessitated addressing increased complexity within the spectrotemporal feature
space. The increased number of classes means that the model must discern and learn
more intricate relationships between spectral and temporal features, as well as the unique
patterns and characteristics associated with each crop type. In any case, in the context
of model transferability, it is important to explore whether these spectrotemporal differ-
ences among crops are independent of season and region. Understanding the interplay
between crop spectral variance, seasons, and regional factors is crucial for developing
reliable transfer learning models for crop classification. We observed that different crops
respond differently to interannual climate variability. For example, rapeseed and sugar beet
are consistently classified more accurately than maize or soybean. This can be attributed
to various factors. For rapeseed, its spectral uniqueness, which reflects the early spring
phenophase, may contribute to better classification performance regardless of interannual
variation during this period, and it remains unaffected by other subsequent periods. For
sugar beet, its distinct spectral signature might be less sensitive to climate-related factors
like drought, which in turn results in a more consistent classification accuracy over time
despite variations in environmental conditions. On the other hand, summer crops like
maize, sunflower, and soybean exhibit greater interannual spectral variations, which may
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explain their higher misclassification rates when these complex responses are not effec-
tively captured or represented in the model structure. This highlights the importance
of considering the unique spectral and temporal characteristics of each crop type when
developing classification models, especially in the context of climate variability and its
potential impacts on crop spectral signatures.

4.4. Regional Variability Consideration

Luo et al. [7] proposed and implemented an alternative approach to address inter-
seasonal climate variability by including larger regions with highly diversified climatic
characteristics, driven in part by altitudinal gradients, such as in France. They conducted
purpose-specific sampling from French crop types, which covered most climate types
found in their study area. To do so, they aimed to capture phenological differences in
other regions, like Italy and Germany. However, this approach may introduce additional
variability due to site-specific conditions, such as soil types, different crop configurations,
or agronomic practices. In our study, we found transferability across regions to be less
effective than across seasons for multicrop classification tasks. Furthermore, the observed
spatial generalization exhibited noticeable year-to-year variability. This could be attributed
to various factors, such as the longitudinal effect, which includes the influence of a more
continental climate, site-specific factors like soil conditions and agronomic practices, or
a combination of all these factors. For example, specific site conditions in the eastern
Slovakian lowlands, characterized by a high proportion of heavy hydromorphic soils, can
lead to typical early spring waterlogging, causing delays in sowing and increasing scattered
patterns of crop development. Indeed, a more challenging situation arises when both spatial
and temporal variability must be accounted for simultaneously. In contrast to Luo et al. [7],
we tested an opposing approach in scenario 4. We attempted to account for complex
variability across regions. Our method involved training the model on several seasons from
the source region, the Danubian lowland. We assumed this would more effectively capture
complex crop spectral responses under various climatic and site conditions in the target
region, the eastern Slovakia lowland. This approach was different from using a single-year
spatial transfer. We obtained a slight improvement in its overall performance in predicting
crop classifications in an unseen region. This particular scenario could be relevant in
situations where dense multi-year monitoring of crop reference data exists for one region
but is unavailable in another region. Similarly, in the across-season transferability scenario,
performance across regions was found to be crop-specific. For example, rapeseed and sugar
beet were effectively classified across regions. By implementing scenario 4, cereals also
appeared to be classified more effectively. However, similar to the across-year scenario,
summer crops proved to be the most challenging to classify using across-region transfer.
This highlights the importance of considering crop-specific factors when evaluating the
transferability performance of classification models in different regions.

Drawing from our study and related literature, we propose a two-step approach for
spatiotemporal generalization of crop classification models: First, determine the optimal
spatial domain where the model can accurately represent crop type distribution; then, apply
interannual training to capture and account for variability across years. The identification
of the optimal spatial domain should be carried out using data from multiple seasons.
Johnson et al. [13] demonstrated a considerable degree of variability in the interseasonal
transferability of models across 16 counties, highlighting the complexity and challenges
associated with the application of spatiotemporal transfer learning. This approach helps
account for various factors, such as different crop rotation practices and local climate-driven
patterns, at a detailed scale within the region (e.g., waterlogged soils). Indeed, it is not
solely the extent but also the spatial heterogeneity of the agricultural landscape that plays
a significant role. For example, we demonstrated differences in across-year performance
in scenario 2, where the transfer of classification models performed well only in 2 out of 5
years, even though the eastern Slovakia region was smaller than the Danubian lowland. By
incorporating data from multiple seasons, researchers can gain a deeper understanding
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of the nuances of the region and, more importantly, differentiate between spatial and
interseasonal variability drivers. Our findings emphasize the importance of considering
the unique characteristics of agricultural landscapes. Such characteristics might include
crop configurations, soil types, and the local climate. These factors should be taken into
account when assessing the transferability of crop classification models across different
regions and time periods.

4.5. Feature Importance

The variable importance analysis revealed the added value of incorporating multi-
temporal information in the form of seasonal monthly series. This was evidenced by the
inclusion of all monthly periods in the classification models. This finding is intuitive and
aligns with previous research, as documented in studies such as those by Vuolo et al. [1].
The use of multitemporal data allows for a more comprehensive understanding of crop
phenology and growth patterns, ultimately leading to improved crop classification models.
However, we found that in certain situations, such as during prolonged summer droughts,
including these months in the classification models might not be beneficial if the training
data does not reflect these conditions. This highlights the importance of considering the
impact of extreme weather events on the transferability capabilities of crop classification
models. Our specific analysis of the sequential inclusion of monthly composites as features
in classification models aimed to provide insights into the potential implementation of
a within-season crop mapping concept. Some crops, such as rapeseed, can be classified
relatively early in the season; however, a tradeoff between accuracy and timeliness must
be considered for other crop types, which ultimately depends on the specific agricultural
application (e.g., yield prediction or crop status monitoring). In the case of complex crop
classification tasks, it appears that the end of June is optimal for the earliest full crop
classification with acceptable levels of accuracy. Add examples. This finding helps inform
the development of crop classification models that balance both accuracy and timeliness
in various agricultural monitoring contexts. In any case, this might be valid in our geo-
graphical conditions, and this timeliness might vary in other regions [5,33]. Furthermore,
the variable importance analysis (Figures 9 and 10) highlights the well-reported added
value of Sentinel-2 red edge spectral bands for crop classification [34,35]. In particular,
spectral bands 6, 7, and 8A have been identified as important for creating transferable
classification models. This can be explained by the unique properties of red edge bands,
particularly their narrow spectral width, which makes them highly sensitive to vegetation
characteristics. Additionally, compared to spectral bands from the visible range (such as
B2, B3, and B4), which were ranked as less important for classification models, red edge
bands might be less sensitive to atmospheric conditions inferred in input composites.

4.6. Future Prospect: Multi-Sensor Synergies

This finding becomes especially significant when considering the combination of
Sentinel-2 data with Landsat data, which lacks the red edge spectral information. Previous
research, including the study by Johnson et al. [13], has highlighted the potential improve-
ments of Sentinel 2 over Landsat data in transferable crop classification due to its increased
spatial and temporal resolution. The study suggests that Sentinel 2 data is more practical
for midseason prediction. In addition, for smaller fields or those with complex boundaries,
Sentinel-2 data shows better performance. This advantage is particularly evident when the
data is evaluated at a 10-m resolution rather than a 30-m resolution. The combination of the
two datasets, e.g., in the harmonized Landsat sentinel product—HLS30 [36] or Sen2Like
dataset [37], could benefit from the increased observational capacity, as has been demon-
strated by Griffiths et al. [38]. However, harmonizing approaches may introduce some
uncertainty regarding the different spectral configurations of the sensors. Therefore, it is
essential to carefully evaluate the trade-offs when integrating data from different sources
for a transferable crop classification task. As HLS30 data was not available for our study
region at the time of our analysis, assessing the added value and trade-offs associated with
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using harmonized datasets will be explored in future research. In addition to the optical
synergies, many studies have explored multisensory approaches that involve different sen-
sor domains, such as synthetic aperture radar (SAR) for crop classification [39]. However, in
the context of the transferability of crop classification models, there is still a notable gap in
the literature [11]. In our initial study, we chose to focus on the generalization capabilities
of Sentinel-2 data. This decision was made to reduce potential input uncertainty and
to provide a comprehensive assessment of Sentinel-2 as a primary data source for crop
classification. The potential benefits of multisensory approaches for crop classification and
transferability remain an open area for future exploration. Combining optical and radar
sensor data can improve the performance and transferability of crop classification models,
particularly in regions with limited optical data availability due to persistent cloud cover,
by accounting for wider spatial and temporal variability.

It is important to mention another possible consideration for future studies. In our re-
search, we focused on a spectral-only approach that relied solely on earth observation data.
However, recent studies employed prediction models that incorporate historical crop rota-
tion information, enabling direct crop classification in unseen years [13] or the generation of
so-called trusted labels in unseen years [32]. Johnson et al. [13] demonstrated a significant
improvement by incorporating historical crop rotation administrative information into the
classifier training. As more Sentinel-2 seasons become available, incorporating historical
crop rotation information derived from annual single-year classifications becomes possible.
By integrating these practices into classifier training, models can better account for spatial
variability in agricultural practices, ultimately leading to more accurate and region-specific
crop classification outcomes. Furthermore, incorporating additional ancillary data that
can further explain site-specific variable conditions should be explored in future research.
Although site conditions and environmental factors may be better suited for explaining
natural vegetation development in areas without abrupt agronomic interventions, their in-
clusion in crop classification models can still provide valuable insights. For instance, some
studies have examined the role of environmental similarity as a factor for label generation
under unseen conditions [40]. Indeed, meaningful environmental variables like digital
elevation models (DEM) can shed light on altitudinal phenology variations. In addition,
specific weather parameters can offer further explanation. For instance, a delay in sowing
might be attributed to prolonged rain in the early spring. More importantly, accumulated
temperature or growing degree days (GDD) have been found to be an effective predictor
that can capture the natural variability in crop growth [8,32]. Incorporating such variables
in crop classification models may help improve model performance and transferability
across different regions and time periods, leading to more accurate and robust agricultural
monitoring systems.

4.7. Future Prospect: Reference Datasets

We used the LPIS (land parcel information system). It is a valuable dataset for training
crop classification models across Europe. However, standardization between countries is
lacking. This limitation restricts its usage across European Union (EU) countries [7]. For
instance, Sykas et al. [27] reported that harmonizing contextual information across different
LPIS systems in different countries was a major challenge due to the variation in crop
type taxonomy structure. They resolved this issue by adapting a crop type classification
structure based on the Food and Agriculture Organization (FAO) system. Nonetheless,
LPIS remains a valuable resource for nationwide crop classification applications. However,
since this dataset is based on farmer declarations, there may be some uncertainties that are
not consistently assessed. In Slovakia, some issues may arise during classification model
training due to the absence of a declaration of intercropping and two cropping systems.
Intercropping has become increasingly popular in agricultural practice. Additionally,
farmers do not declare whether cereals are winter or summer, and there is no declaration for
maize on whether it is sown for silage or grain. These uncertainties can affect classification
accuracy, and researchers should take them into account when using LPIS data for crop
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classification. In any case, machine learning classification algorithms have a data-hungry
nature. In order to facilitate the application of our workflow in other regions, we have made
our crop-labeled data for each year and region publicly available. This dataset can be used
for future research or integrated into larger datasets, contributing to recent initiatives such
as Breizhcrops [41], Sen4AgriNet [27], or TimeSen2Crop [28], which aim to develop large
standardized datasets for advanced classification algorithms in agriculture monitoring.

4.8. Future Prospect: Multi-Model Consideration

All classification algorithms showed good performance when trained and validated in
the given year (data not shown). However, our main focus was on assessing their ability to
generalize to unseen temporal and regional domains. We found that quadratic discriminant
analysis, support vector machines, and neural networks consistently performed well
across different scenarios, indicating their potential for generalization in crop classification
models. In contrast, the random forest algorithm appeared to be less robust in its ability
to generalize across different scenarios, particularly when the distribution of the unseen
domains deviated significantly from that used for training. This was observed in the
transfer across years in the anomaly year 2022 as well as in the transfer across regions in
scenario 3 for 2021. These findings are important because many transferability studies,
such as those conducted by Johnson et al. [13], have exclusively used random forest
algorithms; hence, the need for multi-algorithm comparison studies is emphasized. In
this regard, the development of openly accessible toolboxes, such as the one published
by Aghababaei et al. [42], is advantageous for facilitating multi-model comparisons. The
lower robustness of the random forest algorithm in our study may be due to its sensitivity
to overfitting in complex multidimensional feature spaces [43]. This might be indicated
by the fact that RF was the only algorithm that showed improvement on the feature
reduction test when PCA was applied (data not shown) or when shrinking of the inputs
in 2022 was applied (Figure 16). The relatively good performance of simpler algorithms,
such as QDA, compared to more advanced ones like SVM or NN, indicates that the
spectrotemporal feature space of the crop types used in this study is well distinguishable.
This may be further due to thorough data processing and the pixel-based nature of the
data space, resulting in a relatively easy classification task. Considering accuracy and
computational cost, advanced algorithms like SVM and NN need more resources and time
than simpler ones like QDA. This is significant because controlling computational costs is
crucial. Using multiple algorithms offers the delivery of so-called confidence maps derived
from a decision-level ensemble of multi-output results per pixel [26]. These confidence
maps provide insight into the uncertainty of the classification results, which is valuable
for decision-making processes in agriculture and land-use management. Furthermore,
identifying potential spatial trends in error pixels across all classifiers can be useful in
detecting undersampled areas (which were not observed in our study) or incorrectly
reported crop types by farmers. We need to note that the crop map products were generated
by aggregating the results of individual pixels with the existing parcel boundaries. It should
be acknowledged that this may not be possible in other regions or countries where parcel
boundaries are not available or are not accurately defined. In such cases, alternative
methods such as segmentation-based approaches or object-based image analysis [44] may
need to be applied to generate parcel-based mapping outputs. Furthermore, alternative
workflows can utilize image-based approaches that employ deep learning methods to
fully capitalize on contextual information within image series [45]. There have been
considerable research efforts dedicated to the development of pre-trained deep networks,
including transformer-based architectures specifically tailored for crop mapping [46,47].
These networks aim to provide a solid foundation for transfer learning, enabling them
to be fine-tuned with limited data and effectively applied to new spatial or temporal
domains in crop classification tasks. Although there have been recent advancements in this
field, challenges persist, such as higher computational costs and the limited availability of
suitable training datasets for fully harnessing transfer learning in nationwide satellite-based
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crop mapping. Furthermore, the implementation of innovative verification workflows, such
as formal methods [48,49], could contribute to enhancing the reliability and interpretability
of models. These issues present opportunities for upcoming research aimed at developing
transferable crop classification models.

5. Conclusions

Our study employs a domain generalization approach using a five-year Sentinel-2
dataset across various agricultural regions in Slovakia. Our results show promise for
the crop classification task, as they illustrate the potential to effectively classify unseen
labels from different years and regions. This may provide valuable insights for nationwide
agricultural monitoring. The study emphasizes the importance of considering factors
such as interseasonal climate variability, extreme weather events, diverse crop rotation
practices, observational quality, and local site-specific factors. To tackle these challenges,
we suggest a two-step approach: (1) determining the optimal spatial domain using data
from multiple seasons; and (2) applying interannual training to capture and account for
variability across years. By implementing these steps, we can develop more accurate and
reliable crop classification models for nationwide agricultural monitoring. The growing
availability of multi-seasonal Sentinel-2 data will enhance crop classification models by
addressing challenges related to interseasonal variations and extreme weather events.
Our findings show that transferability performance varies somewhat among machine
learning classifiers, with quadratic discriminant analysis, support vector machines, and
neural networks exhibiting better generalization potential compared to random forests.
Nevertheless, it is crucial to acknowledge that future research could advance the reported
workflow and refine its application to other regions. Some directions for future research
include: 1. investigating the benefits of multisensor approaches, such as integrating
Sentinel-2, Landsat and Sentinel-1 data for crop classification transferability; 2. exploring
the incorporation of historical crop rotation information and additional ancillary data,
such as environmental variables, to improve model performance and transferability; 3.
examining alternative methods for generating parcel-based mapping outputs in regions
without accurate parcel boundaries, such as object-based approaches; and including image-
based approaches using deep learning methods for transferable crop classification models;
and 4. implementation of complex formal verification workflows in the ML based crop
model development.
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