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Abstract: In intelligent traffic control systems, the features extracted by loop detectors are insufficient
to accurately impute missing data. Most of the existing imputation methods use only these extracted
features, which leads to the construction of data models that cannot fulfill the required accuracy. This
deficiency is the main motivation to propose an enrichment imputation method for loop detectors
namely EIM-LD, in which the imputation accuracy is increased for different missing patterns and
ratios by introducing a data enrichment technique using statistical multi-class labeling. It first
enriches the clean data by adding a statistical multi-class label, including C1. . . Cn classes. Then,
the class of samples in the missed-volume data is labeled using the best data model constructed
from the labeled clean data by five different classifiers. Experts of the traffic control department in
Isfahan city determined classes of the statistical multi-class label for n = 5 (class labels), and we also
developed subclass labels (n = 20) since the number of samples in the subclass labels was sufficient.
Next, the enriched data are divided into n datasets, each of them is imputed independently using
various imputation methods, and their results are finally merged. To evaluate the impact of using
the proposed method, the original data, including missing volumes, are first imputed without our
enrichment method. Then, the proposed method’s accuracy is evaluated by considering two class
labels and subclass labels. The experimental and statistical results prove that the proposed EIM-LD
method can enrich the real data collected by loop detectors, by which the comparative imputation
methods construct a more accurate data model. In addition, using subclass labels further enhances
the imputation method’s accuracy.

Keywords: intelligent traffic control system; intersection traffic; loop detector; missed-volume data;
multi-class; imputation method

1. Introduction

Traffic control of intersections in metropolises is essential, and has remained a constant
consideration with the expansion and development of urbanization. Many intelligent
traffic control systems, such as Sydney coordinated adaptive traffic system (SCATS), split
cycle offset optimization technique (SCOOT), InSync, and urban traffic optimization by
integrated automation (UTOPIA) have been proposed using artificial intelligence methods
to control intersections efficiently [1–4]. These intelligent systems control the traffic of
intersections using vehicle traffic count data referred to as volume, generated by loop
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detectors. Although loop detectors are useful in generating traffic volume using a simple
magnetic field embedded in the roadway, they are not entirely accurate and are prone to
errors [5].

Data preprocessing, which is a crucial step in data analysis [6], becomes particularly
important when dealing with inaccurate data, including incorrect and outlier data that
arises when the actual value does not correspond to the calculated value by the detector in a
certain period. Inaccurate data could lead to suboptimal traffic control decisions and longer
wait times at intersections, which can cause frustration for drivers and increase air pollution
due to idling cars. Additionally, inaccurate data could lead to safety concerns, such as
increased risk of accidents due to congested intersections or incorrect signal timing [7,8].
The data of traffic loop detectors were tested using video data, and the results show that
these detectors incorrectly count the number of vehicles, and in some cases, the number of
vehicles is more than the actual number. The transmitted data from 25% of loop detectors
include more than 20% error [9]. Furthermore, the detected errors for moving lines are
usually less than theirs for mixed lines and rotation directions [7].

Effective imputation methods have been developed to increase the data quality in
different applications [10,11]. Some imputation methods use the time relationship of single
detectors regardless of their technique, such as probabilistic principal component analysis
(PPCA), an autoregressive integrated moving average (ARIMA), Markov chain Monte Carlo
(MCMC), multiple imputation, and k-nearest neighbors (KNN) [12–19]. Common methods
in pattern-neighboring interpolation include the KNN model [14,20–23] and the local least
squares model (LLS) [24,25]. Nguyen et al. [26] used the average values of historical data
to estimate the missing data. These methods do not enrich features extracted by loop
detectors, and most of them cannot fulfill the need of an accurate data model especially,
when the missing ratio is high or the missing time is more than a few days or months. Some
other imputation methods simultaneously utilize both temporal and spatial relationships
of single and neighbor detectors, such as kernel PPCA (KPPCA), kernel regression, and
mean matching multiple imputation method [27–32]. Smith et al. [33] applied historical
data or data from surrounding periods or places to calculate missing data. Tang et al. [34]
utilized the traffic flow hypothesis of similar distribution patterns at time intervals and
spatial relationships with other upstream and downstream detectors. In the mentioned
study, the fuzzy C-means (FCM) method is used, in which a genetic algorithm is applied
to optimize the parameters. Pattern neighboring-based methods neglect the stochastic
variation of traffic flow. As a result, once there is no record of a proper pattern, the chosen
pattern is not similar enough to the original one and their shapes cannot match well [5].

Within intelligent traffic control systems, the extracted features are deemed inadequate
for building an accurate data model to impute missing data. Many currently available
imputation methods rely solely on these extracted features, resulting in the construction of
data models that fail to meet the necessary level of accuracy. The motivation of this study
is to propose an effective imputation method by introducing data enrichment technique for
missing data of loop detectors named EIM-LD in intelligent traffic control systems. This
article critically assesses the limitations of the existing imputation methods in handling
missing data and highlights the need for a more accurate approach. The EIM-LD method
is distinguished by two unique features that set it apart from other approaches. The first
details using statistical labeling, to add and assign a specific traffic class to each sample. By
precisely tagging each sample with a traffic class using this method, the data model in the
imputation process can be trained more accurately. The data can be divided into n datasets
depending on the assigned label or traffic class, and a data model is constructed for each
dataset as the second innovative element of the EIM-LD method. Constructing the data
model of each traffic class individually can enhance the overall accuracy of imputation. For
statistical labeling, first, EIM-LD splits the original data into the clean and missed-volume
datasets. The missed-volume dataset includes all samples with missing, incorrect, and
noisy volumes detected using the Chebyshev inequality. The labeled clean dataset is then
built by adding a statistical multi-class label, including C1. . . Cn. First, five (n = 5) traffic
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classes known as class labels consisting of very low (VL), low (L), medium (M), high (H),
and very high (VH) are determined by experts of the traffic control department in Isfahan
city. Next, the traffic class of samples in the missed-volume dataset is also labeled using
the best data model constructed by five different classifiers from the labeled clean dataset.
After that, the labeled clean and labeled missed-volume datasets are merged to build the
enriched dataset. Finally, the enriched dataset is divided into n datasets Dc1. . . Dcn and each
of them is imputed independently using various imputation methods, and their results
are merged to build the most accurate imputed datasets. Since the number of samples
collected in this study is sufficient to consider small classes in statistical labeling step, we
also develop statistical labeling with n = 20 traffic classes named subclass labels expectantly
to reduce the imputation error.

To validate the main contribution in Section 5, the required experiments are designed
to assess the proposed EIM-LD method and the impact of its introduced data enrichment
technique. Initially, the original data, which includes missing volumes, is imputed without
data enrichment. Subsequently, the missing volumes are imputed using the data enrich-
ment technique, considering both class labels and subclass labels. The data imputation is
performed using the best data model with the highest accuracy.

The remainder of this study is organized as follows: The state-of-the-art is discussed in
Section 2. The preliminaries are presented in Section 3. The proposed method is described
and evaluated in Sections 4 and 5, respectively. Ultimately, discussion, conclusions and
future works are given in Sections 6 and 7.

2. State-of-the-Art

In the field of urban traffic, missing traffic data poses a major challenge for intelligent
traffic control systems, as incomplete data can lead to inaccurate traffic models and poor
management decisions. To address this issue, researchers have proposed a variety of
methods, ranging from simple interpolation techniques to complex statistical models
and machine learning algorithms, to impute missing traffic data. This section provides
a comprehensive overview of the state-of-the-art research in this field, examining the
challenges of missing traffic data and the various proposed solutions.

Reviewing the previous missing data imputation methods shows that there have been
many methods proposed, and as shown in Figure 1 they can be classified into three cate-
gories: prediction methods, statistical learning methods, and interpolation methods [12,29].
In the prediction imputation methods, the missing data are imputed with their predicted
values using data modeling and traffic volume forecasting methods such as autoregressive
integrated moving average (ARIMA) [35], feed-forward neural network (FFNN) [36–38],
support vector regression [39,40], and Bayesian network (BN) [41,42]. These methods
predict the amount of missing data based on the relationships between past historical
data [15,43]. Each missing data point is imputed in a time series based on previous data.
Despite the acceptable accuracy of most of these methods, if a large part of consecutive data
is lost, their imputation accuracy decreases. On the other hand, in these types of methods
the collected data are not entirely used to impute the missing data.

Tekler et al. [44] introduces the ROBOD dataset, which focuses on room-level occu-
pancy and building operation data. The authors propose a method to collect and curate this
dataset, which includes gathering real-world data from sensors installed in buildings. The
dataset provides detailed information on occupancy patterns, such as occupancy counts,
duration, and activities performed in each room. Additionally, it includes data on HVAC
system performance, such as temperature, humidity, and energy consumption. Its avail-
ability can facilitate the development of more accurate and efficient building simulation
models. Briedis et al. [8] investigated the factors that affect the accuracy of loop detectors
at 10 intersections in Canberra, Australia. In order to check the accuracy of the data, field
statistics of intersections were compared with the results of the SCATS system, and then,
using statistical methods, the average percentage of change and standard deviation of the
data were obtained. Li et al. [45] investigated loop detector error using vehicle GPS data at
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13 intersections in Changsha, China. Their study investigated the validity and accuracy of
the performance of loop detectors by analyzing the percentage of vehicles in adjacent lanes.
According to the results of studies, the data sent from 25% of loop detectors had more than
20% error.

In statistical learning methods, such as probabilistic principal component analysis
(PPCA) [12,46,47], Bayesian principal component analysis (BPCA) [48], Markov chain
monte carol (MCMC) [19], and ANN method [49] use iterative methods to impute prob-
ability distribution parameters by considering the probability distribution of traffic data.
These methods use the observed data to impute the missing data with acceptable values.
Although imputing with statistical learning methods is simple and can be used for missing
data in most applications, estimating traffic data’s temporal–spatial dependence is the main
challenge [48]. Li et al. [50] imputed missing values of Santa Clara traffic data over 43 days
using different imputation methods. In their study, the participant methods were compared
in terms of statistical behaviors, execution speed, and reconstruction errors. The obtained
results show that when the percentage of missing data is high, the PPCA method is more
efficient than the nearest neighbor and LLS method in terms of execution speed. In addition,
since the nearest neighbor methods, LLS, and PPCA methods have good statistical features,
they are recommended more than predictive methods and MCMC when the percentage of
missing data is high.

Stekhoven and Buhlmann [51] introduces MissForest, a non-parametric approach for
imputing missing values in datasets with mixed data types. MissForest employs a random
forest algorithm to estimate missing values based on observed values and other features
in the dataset. This method offers a robust solution to handle missing data, allowing for
accurate and reliable analysis. The authors demonstrate the effectiveness of MissForest
through experimental evaluations and comparisons with other imputation techniques.
The paper by Yoon et al. [52] presents a method called GAIN for imputing missing data.
GAIN utilizes generative adversarial networks (GANs) to impute missing data. It consists
of two main components: an imputation network and a discriminator network. The
imputation network estimates missing values, while the discriminator network evaluates
the quality of the imputed data. The proposed approach achieves promising results in
imputing missing data and demonstrates the potential of GANs in this task. Low et al. [53]
propose a novel approach to estimate parking durations. The authors employ a generative
adversarial network to impute missing values and improve the accuracy of predictions.
This approach offers a reliable solution for estimating parking durations and enhances the
overall performance of transportation system management.

In the third categorization, using interpolation methods, the missing data are replaced
by the average or weighted average of known data related to similar patterns in two
ways: temporal-neighboring method and the pattern-neighboring method [5,54,55]. In
the temporal-neighboring method, data are collected from the same detector in the same
time period on neighboring days [39,48,55]. In the pattern-neighboring method, data are
collected from the same time interval of similar detectors on other days with the same
pattern of daily flow change [18,54]. The historical mean model is a temporal-neighboring
interpolation-based method that imputes missing data using the average historical data col-
lected from the same place over the same time period in few days [56]. Pattern-neighboring
interpolation methods often estimate missing data using the mean weighted average of
known data from neighboring detectors [16]. Chen et al. [30] investigated, detected, and
corrected data related to California loop detectors. They used data from thousands of
loop detectors in six districts of California. In the mentioned study, in addition to a more
accurate estimation of lost data rather than historical data, the relationship between volume
and occupancy of neighboring detectors is shown using linear regression. The results
show that after the implementation of the algorithm, the determined data does not have
suitable accuracy. Weijermars et al. [57] proposed a method for detecting inaccurate data of
loop detectors in the city of Almelo in the Netherlands. Data quality assessment at both
microscopic and macroscopic levels based on the minimum and maximum flow thresholds
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has led to the identification of incorrect data. According to the results of studies in assessing
the quality of microscopic data, 8% of the correct data were introduced as incorrect. The
results show that 47% of the errors reported by the detectors of each station were equal to
the data quality reports.

Liu et al. [14] have examined the compatibility of existing imputation methods for the
holidays in Alberta, Canada, and according to the results, the nearest neighbor method
shows sustainable performance for the holidays. The results of the comparison between
methods show that the nearest neighbor method has the lowest rate of traffic forecasting
error. Lu et al. [58] developed a portable error correction tool in California. This system
can detect errors by identifying the type of error and analyzing the available data. In the
proposed system, the instrument produced at the level of intersections was used to detect
any types of inductive detector error. Tang et al. [34], in Harbin, China, have endeavored to
impute missing data from loop detector using the FCM method. First, the data structure is
transformed into a matrix structure, and then using a genetic algorithm, the parameters
related to the weight factor and cluster sizes are optimized. Their study worked on data
with MR algorithm. The existing correlation between traffic flow data was analyzed, then
the parameters were optimized using genetic algorithm. To evaluate the efficiency of
imputation methods, four methods, ARIMA, MLR, FCMGA, and Historical method, were
compared with each other, and the accuracy of the methods was investigated. According
to the results, the FCMGA method had the best performance in imputing data during
weekdays compared to other methods.

Xiao et al. [59], in Changsha, China, with the SCATS data and GPS taxis, developed
a methodology for estimating missing flow rates. Their proposed methodology was
divided into three methods based on historical patterns, schedule, and location of the
identifier, as well as FCD data. According to the results of the first and second methods
in the east and west approaches, in contrast to the southern approach, they showed good
performance, which could be due to the uncertainty and fluctuation of the flow pattern
of the southern approach. Tak et al. [32] have attempted to impute the missing data by
considering spatial–temporal correlation with the nearest neighbor method. This method
differs from the previous conventional methods due to the selection of routes with similar
traffic characteristics by correlation analysis. The efficiency of the nearest neighbor method
is compared with Bootstrap-based Expectation (B-EM) and Nearest History (NH) methods,
and using statistical methods; each has been measured separately in terms of loss pattern,
percentage of loss, type of day, and traffic situation. Bae et al. [60] used cokriging to
imputed data on traffic flow velocity. They used the distance-temporal cokriging method;
imputation data on RTMS and HERE data sources were performed, and different missing
data patterns were investigated. According to the results, in the MCAR data model, SK and
OK methods, and MNAR data model, the SCK method had better performance than other
methods. Table 1 summarizes the comparison of previous works in terms of advantages
and disadvantages, volume of data, and accuracy calculation method.
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Table 1. Comparison of the previous missing data imputation methods.

Ref Method Used for
IMPUTING

Volume
of Data

Volume of
Missing

Data
Advantages Disadvantages

Tekler
et al. [44]

Random
Forest-based
imputation
algorithm

52,128 2684

The ROBOD dataset helps
building managers save

energy, reduce waste, and
cut expenses by providing

detailed usage and
operation information.

Room-level occupancy and
building operation data are

the only focus of the
ROBOD data set.

Sensor location, adjustment,
and upkeep can affect data

reliability, resulting in
potentially incorrect or

incomplete results.

Briedis et al. [8]

Comparison of field
statistics with

statistics obtained
from SCATS system

Using statistical
methods and

graphing.

800 -

Analyzing the inductive
detector’s performance

involves comparing field
results with SCATS and
assessing factors such as
lane count, traffic type,

asphalt condition, vehicle
volume, and movement

mode.

The simultaneous effect of
two factors on the inductive

detector accuracy and the
lack of its examination.

Li et al. [45]

Comparison of field
data with system

data-error detection
algorithm

408,960 -

25% of the tested inductive
detectors had an error over
20%. This method measures

vehicle flow, monitors
queue length, and estimates

GPS-equipped vehicles.

The routes need to be
reconstructed to reduce the

driver’s disorder, which
improves the accuracy of
the flow estimation on the

route.

Li et al. [50]

Prediction methods,
interpolation
methods and

statistical learning
methods

12,384 -

PPCA yields best
performance in all aspects

and numerical tests
demonstrate that it can be
used to impute data online

before making further and is
robust to weather changes.

From a statistical
perspective, prediction and

MCMC methods are not
advisable.

Stekhoven
et al. [51]

Iterative imputation
method (MissForest)
based on a random

forest algorithm

10
datasets

10, 20 or
30%

Miss-Forest is a reliable
method for imputing high

proportions of missing data
in large datasets with many
variables and observations.

It generates multiple
imputations, enabling

consideration of imputation
uncertainty in subsequent

analyses.

Limitations for dealing with
some kinds of mixed data.

Imputed values from
MissForest can be distorted
with varying missing data

patterns.
The quality of imputed

values in MissForest
depends on parameters
such as tree number and

convergence criterion,
making optimal settings

challenging to determine.
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Table 1. Cont.

Ref Method Used for
IMPUTING

Volume
of Data

Volume of
Missing

Data
Advantages Disadvantages

Yoon et al. [52]

A machine learning
technique for

imputing missing
data using
Generative

Adversarial Nets
(GANs)

5 datasets -

The GAIN method utilizes
GANs to accurately impute

missing data, handles
diverse data types

(continuous, categorical,
mixed), and is robust

against outliers and noise,
making it suitable for
real-world datasets.

GAIN requires ample data
for effective GAN training

and may struggle with
complex data, resulting in

inaccurate imputations.
Training GAN is

time-consuming, a
drawback for time-sensitive

data.
Biased training or
inadequate model

adjustments in GAIN may
introduce bias in imputed

data.

Low et al. [53]

Missing data
imputation using

generative
adversarial multiple

imputation
algorithm

- 0.000 to
0.980

Develop a regression model
to predict the parking

duration of commercial
vehicles at the loading bays
of retail malls and identify

significant factors that
contribute to this dwell

time.

Training GANs is expensive
and time-consuming.

GAMIN can overfit, leading
to poor generalization on

new datasets.

Chen et al. [30]

DSA algorithm for
error

detection–linear
regression algorithm

42
million
sample

15%

By applying the linear
regression algorithm, it can
estimate the missing data

more accurately than using
historical data.

This way, all the sensors that
have a good neighbor will

have their data completed in
after running the algorithm

once.

Linear regression fills most
of the fields in the first run,

but the accuracy of the filled
fields decreases with each

subsequent run.

Weijermars
et al. [57]

Data quality check
method to identify

invalid data
generated by

inductive detector
and Macroscopic

quality checks
Microscopic

3000 3.4%

Minimum and maximum
flow thresholds are used to

detect erroneous data.
Macroscopic quality checks
are a useful addition to the
microscopic quality checks.

Microscopic data quality
check does not detect many
erroneous data. Flows are

inconsistent between
upstream detectors

mutually in some cases, it is
not always clear whether
the results of this quality

check are reliable.

Liu et al. [14]
Non-Parametric

regression-the K-NN
method

25,200 -
The proper performance of
K-NN method in correcting
lost data during holidays.

The ARIMA model fails to
work properly when the

traffic conditions vary
across seasons.
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Table 1. Cont.

Ref Method Used for
IMPUTING

Volume
of Data

Volume of
Missing

Data
Advantages Disadvantages

Lu et al. [58]
Spatial and
Temporal

Correlation
2880 -

This method works well for
highways or intersections

where we can get the
upstream and downstream

volume or estimate the error
by comparing the camera

data and the hardware data.

Analyzing aggregated data
at the macroscopic level is
not an effective method for

fault detection. This
approach fails for

intersections that lack data
from both upstream and

downstream sources.

Tang et al. [34] Fuzzy
C-means(FCM) 77,760 25,920

This research analyzes the
data for weekdays and

weekends separately, which
improves the accuracy of
measuring the methods’

efficiency.

NMR, MCR data patterns
are not used.

Xiao et al. [59] Historical Pattern-
Timing Plan- FCD 3744 -

The methods show reliable
results after several

iterations.

In different conditions and
approaches, the desired

results and efficiency may
not be achieved.

Tak et al. [32]

Data Driven method
based on Spatial and

Temporal
Correlation using a

modified knn
method

135,936 -

The health vector enables
the optimal computation of

the Euclidean distance
between the historical and

subject data.
KNN performance does not

differ for weekday and
weekend data.

B-EM is more effective for
single identifier data than

multiple neighboring
identifiers.

NH performance varies
based on weekdays or

weekends.

Bae et al. [60] Cokriging method-
spatial–temporal 8064 1113

The SK and OK methods
excel on the MCAR data

pattern. The SCK method is
effective on the MNAR data

pattern.

The OCK method results
may become less accurate if

there is no data from
neighboring.

3. Preliminaries

This section provides background information on the preliminaries required for the
study of urban traffic volume data analysis. It includes a detailed description of the loop
detectors data and different missing data patterns.

Loop detectors can measure various variables such as traffic volume/count, speed,
occupancy, and presence. Traffic volume/count refers to the number of vehicles that
traverse the loop within a specified time interval. The speed of vehicles passing over the
loop can also be measured. Occupancy, on the other hand, refers to the percentage of time
that a vehicle occupies the loop. Finally, loop detectors can determine whether a vehicle is
present or not on the loop at a given time, which is known as presence [61]. Furthermore,
the components of loop detectors are described in Appendix A.

Loop detectors generate non-stationary time series data including accurate, incorrect,
and outlier data. Particularly, in SCATS intelligent traffic control system, incorrect data
consist of “BAD”, “DA”, “-” which are considered as missing data. Missing data occurs
when no amount of data is observed for the traffic volume variable and its record is not
stored in the desired time interval. “DA” stands for detector alarm, which is generated
when the system detects a fault or malfunction. “BAD” is an error that occurs when the
sensor is in a saturated state, typically caused by being parked or obstructed by a physical
object for an extended period. Finally, “-” indicates missing data when the sensor fails
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to transmit any data within a specific time interval. Researchers use different methods
to detect missing values, including standard procedures in statistical software such as
SPSS, or using specialized procedures provided in SPSS Missing Value Analysis (MVA)
module [62]. Outlier data is an observation that lies at an abnormal distance from other
values in a random sample of a population. Outliers include global, contextual, and
collective data [63]. A global outlier is out of line with the rules of analysis of all traffic
volume data for a detector. According to the existing and special conditions, contextual
outliers are considered outliers. These data are only for a specific time period. A collective
outlier is not generally considered out of data, but the dataset is outdated for the existing
system.

According to the missing pattern, missing data are divided into three categories:
missing completely at random (MCR), missing at random (MR), and missing not at random
(NMR) [64,65]. In the MCR category, the missing data appear completely independent as
isolated points and are randomly distributed. In the MR category, the data are related to
their neighboring points, so the missing data appear as a small set of consecutive points and
at a particular time, which is a random distribution. In the NMR category, the missing data
occur non-randomly throughout the dataset due to long-term errors in the detectors [65].

4. Proposed Method (EIM-LD)

This section proposes an effective imputation method for the missing volume of loop
detectors named EIM-LD, based on the model introduced in Figure 2. This model consists
of three main phases. The first phase is data preprocessing to detect missing and noisy
data from the original data. An effective data enrichment technique is introduced in the
second phase to enrich the original data using statistical multi-class labeling, consisting
of five different steps as shown in Figure 3. The enriched data are divided into n labeled
datasets, which makes individual missing data imputation possible for each labeled dataset.
In the final phase, the missing data of each labeled dataset are imputed using five different
imputation algorithms and their results are finally merged to construct the most accurate
imputed dataset.

In fact, the proposed EIM-LD method enriches the original data by adding an infor-
mative indicator using statistical multi-class labeling. The following subsections describe
three phases of the model for developing the proposed EIM-LD method.
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4.1. Phase 1: Missing and Noisy Data Detection (Preprocessing)

In this phase, the original data are split into two datasets, clean and missed-volume.
First, we use SPSS statistical software package to detect missing values and also the
incorrect data, which are tagged as missing data. Then, the proposed EIM-LD method uses
Chebyshev inequality defined in Equation (1) [66] for different values of K to detect noisy
data, because data distribution is abnormal,

P(|X− µ| ≥ kσ) ≤ 1
k2 (1)
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where X and µ are random variable and expected value, respectively. σ and K show
standard deviation and number of standard deviations from the mean. To detect the noisy
data of each interval that through which the data are collected from the loop detectors, the
mean and standard deviation of each interval are calculated. Then, different values of k in
the Chebyshev inequality are examined to identify values that exceed the boundaries for
each specific interval as outliers. This approach is commonly used in statistical analysis
to detect noisy data and remove them from the dataset. By setting boundaries for each
interval based on its mean and standard deviation, the identification of outliers can be
performed in a systematic manner, leading to a more accurate and reliable analysis of the
data. Ultimately, this phase forms the clean dataset and also the missed-volume dataset by
considering all samples with missing and noisy data.
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4.2. Phase 2: Data Enrichment

In this phase, data are enriched by introducing an effective data enrichment technique
shown in the dashed-line rectangle in Figure 3, in which the clean dataset is statistically
labeled using class labels and subclass labels. Then, data models are constructed and as-
sessed for accuracy. Missed-volume classification and merging of labeled datasets improve
imputation accuracy. Finally, the enriched data are then split into datasets based on traffic
classes for better data modeling in the imputation phase.

− Statistical labeling: The clean dataset formed in the previous phase is statistically
labeled using multi-class C1. . . Cn. First, similar that of other studies [67,68], we
consider five (n = 5) traffic classes named class labels consisting of very low (VL),
low (L), medium (M), high (H), and very high (VH). These class labels had been
determined by experts of the traffic control department in Isfahan city based on their
experiences and historical traffic data.

− Since smaller volume ranges provide specific subclass labels within each of the five
class labels and can result in reducing the imputation error, therefore we consider
the statistical labeling with subclass labels, for instance, 10 or 20 labels. It is expected
that the data model constructed using the subclass labels will provide superior results
compared to class labels, if the number of samples in smaller classes of the subclass
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labels have also sufficient samples to train the data model accurately. Table 2 shows
the class labels and a subdivision the subclass labels of them including their ranges
used in this study. In this table, µ and σ are the mean and the standard deviation
distance.

Table 2. Class labels recommended by experts and considered subclass labels based on traffic volume.

Row Range Class Labels Volume Subclass Labels Sub-Volume

1 [0, (µ − 1.5σ)) Very Low (VL) 0–19

VL1 0–4

VL2 5–9

VL3 10–14

VL4 15–19

2 [(µ − 1.5σ), (µ − 1/2σ)) Low (L) 20–48

L1 20–27

L2 28–34

L3 35–41

L4 42–48

3 [(µ − 1/2σ), (µ + 1.5σ)) Medium (M) 49–105

M1 49–63

M2 64–77

M3 78–91

M4 92–105

4 [(µ + 1.5σ), (µ + 3σ)) High (H) 106–147

H1 106–115

H2 116–126

H3 127–137

H4 138–147

5 [(µ + 3σ), max] Very High (VH) 148 to (max)

VH1 148–173

VH2 174–198

VH3 199–223

VH4 224–max

− Data Model construction: The EIM-LD method constructs data models of the clean
dataset, using both class labels and subclass labels. The data models are built using
k-fold and different classifiers: k-nearest neighbor (KNN), artificial neural network
(ANN), Naïve Bayesian (NB), decision tree (DT), and support vector machines (SVM).
The accuracy of each data model is assessed to determine the candidate data model
with the highest accuracy.

− Missed-volume classification: In this step, the candidate data model is used to label
the samples of the missed-volume dataset to construct the labeled missed-volume
dataset. The label added to the missed-volume dataset is an informative indicator
which can increase the accuracy of the data model that is used in the imputation step.

− Constructing the labeled dataset: In this step, the missed-volume dataset labeled in
the previous step is merged with the labeled clean dataset to build the enriched data,
including multi-class C1. . . Cn. It is expected that the imputation accuracy will be
increased using this enriched data instead of using the original dataset because of
adding the label to each sample.

− Splitting enriched data: In this step, the enriched data are split into n enriched
databases DC1 to DCn. Dividing the enriched data into n databases, each represent-
ing specific traffic classes C1. . . Cn, is anticipated to yield a refined data model. This
approach holds the potential to construct more precise data models for split databases.
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4.3. Phase 3: Imputation

In this phase, missing data are imputed using various methods and the most accurate
imputed datasets are selected and merged.

− Data Imputation: Missing data in databases DC1 to DCn are imputed using five
commonly used methods: ARIMA, KF, BN, PPCA, and KNN, as suggested in the
literature. This comprehensive approach ensures a more accurate estimation of missing
data.

Then, the most accurate imputed databases are selected as IDc1. . . IDcn.

− Merging imputed databases: Finally, the EIM-LD merges imputed databases of
IDc1. . . IDcn by concatenating them to build the imputed data of traffic flow.

According to the steps mentioned above, the pseudocode of the proposed method
(EIM-LD) is shown in Algorithm 1.

Algorithm 1. Effective imputation method for missing volume of loop detectors (EIM-LD)

Input: Original traffic flow data, n.
Output: Imputed traffic flow data.

1. Begin

2.
Splitting the original data into clean and missed-volume datasets by detecting missing

and noisy data using Equation (1).
3. Building the labeled clean dataset using statistical multi-class labeling C1. . . Cn.

4.
Selecting the candidate data model constructed by several classifiers for the labeled clean

dataset.

5.
Determining the class of samples of the missed-volume dataset using the candidate data

model.
6. Merging labeled missed-volume and labeled clean datasets to build the enriched data.
7. Splitting the enriched data into n databases DC1 to DCn.
8. For i:1 to n
9. Imputing DCi using several imputation techniques.
10. Considering imputed results with the highest accuracy as IDCi.
11. End
12. Merging imputed databases IDc1. . . IDcn to build ID.
13. Return ID as the imputed traffic flow data.
14. End

5. Evaluation of the Proposed Method (EIM-LD)

In order to evaluate the proposed EIM-LD method and its introduced data enrichment
technique in missing data imputation, a comprehensive experimental design consisting of
four experiment sets is considered. The evaluation is conducted on one-year traffic flow
data collected from the SCATS intelligent traffic control system of Isfahan city. The first
experiment set is to assess the imputation without data enrichment, in which the original
data, including different missing patterns with different missing ratio is imputed using
different algorithms. The second and third experiment sets are to evaluate the proposed
method with data enrichment using two different class labels and subclass labels. Finally,
the fourth experiment set is to analyze the impact of using our innovative data enrichment
technique, based on multi-class labeling against clustering. In these experiments, we
consider some scenarios with different missing data ratios and missing patterns. In each
scenario, the considered ratio of missing data is randomly selected by a missingness
mechanism, and three different missing patterns NMR, MR, and MCR are considered. In
all experiment sets, the proposed method is compared with other comparative algorithms
regarding the root mean square error (RMSE). The experimental and statistical results
prove that the proposed EIM-LD method using the introduced data enrichment technique,
especially with subclass labels, can construct a more accurate data model, and the missing
volumes can be imputed with less RMSE.
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5.1. Experimental Environment

All experiments were intently executed under fair conditions. Thus, all algorithms
were implemented on MATLAB 2018a and Rapid miner 5, and experiments were executed
on a Windows 7 operating system by an Intel Core (TM) i7-10520U 1.8 GHz processor and
12.00 GB RAM. We have used k-nearest neighbor (KNN), artificial neural network (ANN),
Naïve Bayesian (NB), decision tree (DT), and support vector machines (SVM) to learn the
data.

5.2. Data Description

To evaluate the EIM-LD method, one-year data of the SCATS intelligent traffic control
system of Isfahan megacity in Iran has been collected. The data were categorized into four
approaches: north, south, west, and east. Related detectors in each approach can be seen
in Figure 4, where numbers 1–10 denote 10 different detectors. Detectors 1 to 3 are in the
south approach, detectors 4 to 6 are in the north approach, detectors 7 and 8 are in the west
approach, and detectors 9 and 10 are in the east approach. This study exclusively examines
the data obtained from detector No. 3, with the aim of utilizing the proposed methodology
to address the issue of missing volume data imputation for this specific detector. The raw
data received from SCATS software are shown in Figure 5. The traffic volume data obtained
from the detectors of this intersection in intervals of 15 min during a day and night were 96
times and 35,040 as data recorded during a year. Figures 6–8 show the time series diagrams
of the one-year, one-month, and one-week detectors. As can be seen in Figures 9 and 10,
according to the changing mean and variance of data over one year, the time series are
considered non-stationary.
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The collected traffic flow data includes different features: volume, time, season, month,
day of week, day of month, the holiday status, and rainy status. To illustrate, given record
#27 (35, 6:30, Autumn, OCT, Saturday, 13, 0, 0), in which volume, time, season, month, day
of week, and day of month are extracted from one-year data of the SCATS intelligent traffic
control system of Isfahan city. The holiday status is obtained from the official calendar, and
the rainy status is obtained from the city weather database. The traffic volume sensed by
each detector is periodically sent in 15 min periods; therefore, the traffic volume sent by
each detector is 35,040 records during a year. In the collected data, volumes received in the
forms of “BAD”, “DA”, and “-”, are identified as missing values. The collected dataset has
621 records or 2.2% with missing values.

Table 3 shows features used for data model construction in statistical labeling and their
information gain. The time and rainy features have the highest and the lowest information
gain in the collected dataset. In the EIM-LD method, test data are separated from training
data for both class labels and subclass labels data using 10-fold division.

Table 3. Features of dataset and their information ratio.

Feature Info. Gain Gain Ratio Gini

Time 0.381 0.058 0.094

Month 0.158 0.044 0.027

Season 0.098 0.049 0.016

Weekday 0.004 0.001 0.001

Date 0.003 0.002 0.001

Holiday 0.002 0.003 0.001

Rainy 0.001 0.002 0.000

To determine noisy data, the data distribution was examined in different intervals of 96
per day. According to the histogram diagram and P-P detector plot No. 3 in Figure 11, the
data distribution is uncommon between 5:00 to 5:15. By observing the results in Figure 11,
the plotted points have deviated from the diagonal line, which suggests that the observed
data did not follow a normal distribution.
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5:15.

The Chebyshev inequality, as defined in Equation (1), is used to detect noisy data for
different values of K. In the EIM-LD method, the mean and standard deviation of each
interval differ from the yearly averages. Table 4 presents the total noise data detected for
each K value within 96-day intervals over 365 days, along with separate calculations for
each interval. For instance, when K = 1, the Chebyshev inequality identifies 3864 noise
data points, which accounts for 14.097% of the dataset. Additionally, the table showcases
the accuracy achieved by various classifiers for each K value in relation to the Chebyshev
inequality. The results show that the highest accuracy of the models was associated to k = 1
in the Chebyshev inequality through which more accurate samples are considered to form
the clean dataset that can construct a more accurate data model.

Table 4. The results of noise detection using Chebyshev inequality.

K Outlier (n) Outlier (%) Acc. KNN Acc. ANN Acc. NB Acc. DT Acc. SVM

1 3864 14.097 71.40% 80.48% 79.46% 78.32% 70.64%

sqrt(2) 2221 8.103 68.84% 75.84% 75.59% 72.72% 68.19%

1.5 2028 7.399 68.30% 75.36% 75.17% 72.46% 68.10%

2 1230 4.488 66.30% 73.74% 73.51% 70.65% 66.83%

3 639 2.332 65.24% 72.99% 72.32% 69.32% 65.52%

4 388 1.416 64.67% 72.35% 71.71% 68.94% 64.96%

5 251 0.916 64.31% 72.54% 71.50% 68.56% 64.54%

6 148 0.54 64.22% 72.28% 71.42% 68.42% 64.41%

7 105 0.384 64.08% 72.04% 71.38% 68.35% 64.37%

8 90 0.329 64.08% 71.75% 71.36% 68.35% 64.41%

9 77 0.281 64.06% 72.20% 71.32% 68.33% 63.92%

10 70 0.256 64.06% 71.83% 71.31% 68.14% 64.39%

5.3. Imputation without Data Enrichment (IWDE)

In this experiment set, the original data, including missing volumes, is imputed
without data enrichment using ARIMA, KF, BN, PPCA, and KNN algorithms. Table 5
shows RMSE of the imputation using these algorithms for different missing data ratio and
missing patterns. The highest imputation error rate was observed for ARIMA algorithm
with 76.15 for 50% missing ratio in MCR missing pattern. The results show that the PPCA
algorithm has the lowest imputation error rate for all patterns and missing ratio compared
to all other algorithms.
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Table 5. Average square error of imputation using different algorithms without data enrichment for
different types of missing patterns.

Missing
Ratio

ARIMA KF BN PPCA KNN

NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR

10% 61.33 60.07 63.33 50.33 48.32 52.23 46.32 44.10 48.32 42.23 41.59 45.15 58.83 55.15 60.06

20% 64.19 63.65 65.89 53.15 51.32 53.91 47.50 45.81 51.03 44.51 43.51 46.71 60.32 58.09 62.04

30% 67.32 65.59 69.00 55.55 54.00 55.03 49.17 47.32 52.51 47.03 44.91 48.19 63.23 61.02 65.59

40% 69.04 67.25 72.17 58.91 56.61 59.17 52.02 50.00 54.05 48.92 47.05 51.32 65.00 62.88 68.32

50% 73.15 71.10 76.15 60.01 58.17 61.39 54.15 52.15 56.17 50.17 48.15 53.15 67.19 65.39 69.99

5.4. EIM-LD Using Data Enrichment with Macro Classification (EMAC)

In this experiment set, as the proposed method explained in Section 4, the original
dataset is enriched by adding an informative label to each sample and constructing the
enriched dataset using the class labels statistical labeling, which we refer to as enrichment
with macro classification (EMAC). In the class labels, experts recommended five classes,
including, very low (VL), low (L), medium (M), high (H), and very high (VH) based on the
volume range existing in the collected real data. Then, this enriched dataset is split into
five datasets DC1 to DC5 and each of them is imputed using different imputation methods,
including ARIMA, KF, BN, PPCA, and KNN. The most accurate imputed datasets are then
selected as IDc1. . . IDc5 and are merged to construct the final imputed data of traffic flow.
As explained in Section 4, to enrich the original data, first samples with missing volume
must be detected to build the clean and missed-volume datasets. Considering different
kinds of incorrect data in the missed-volume dataset can affect the data model accuracy in
the statistical labeling. Table A1 in Appendix B shows the impact of considering different
kinds of missing data on the accuracy of the data models using class labels.

Table 6 shows the imputation RMSE for different missing patterns using the class
labels (n = 5). Each imputation method is applied for datasets DC1 to DC5 individually, and
the average of RMSE gained for all datasets is shown in Table 6. The results show that the
PPCA algorithm in the MR missing pattern has the lower imputation RMSE for different
missing ratios. The results also indicate that EMAC reduces RMSE compared to IWDA in
all algorithms and all missing patterns.

Table 6. The average of imputation RMSE of different imputation methods using class labels C1. . . C5

for different missing patterns.

Missing
Ratio

ARIMA KF BN PPCA KNN

NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR

10% 50.95 47.73 52.58 48.59 46.29 50.16 44.77 43.20 46.82 41.22 39.47 42.89 49.48 45.59 51.15

20% 52.60 49.43 54.34 50.05 48.42 51.75 46.52 45.08 48.83 42.64 40.13 44.76 51.18 48.07 52.90

30% 55.25 52.11 56.70 52.44 50.47 54.25 48.65 47.12 50.68 44.45 42.07 46.73 53.72 50.48 54.90

40% 57.33 54.57 59.03 54.48 52.98 59.19 51.47 49.33 53.03 46.33 43.68 48.76 55.58 52.77 56.91

50% 58.94 57.26 59.22 56.21 54.61 58.33 53.07 51.19 55.35 48.27 44.82 51.85 57.62 54.50 59.39

5.5. EIM-LD Using Data Enrichment with Micro Classification (EMIC)

In this subsection, similar to the previous subsection, the initial steps are performed
to construct the enriched dataset using subclass labels, which we refer to as statistical
labeling with enrichment through micro classification (EMIC). In the proposed method,
we anticipated that due to the high volume of data, dividing the data into subclass labels
with smaller ranges shown in Table 2 would result in higher accuracy and lower error rates
for each small interval. Thus, in the second step, splitting the enriched data into labeled
subclass labels with n = 10 and n = 20 was considered. Since the results obtained by the
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subclass labels with n = 20 were better than those with n = 10, Table 7 shows the average
RMSE of different missing ratios for different imputation methods and missing patterns
using subclass labels C1. . . C20 including traffic classes: VL1...VL4, L1. . . L2, M1. . . M4,
H1. . . H4, VH1. . . VH4. To illustrate the results in different missing ratios, Table 8 outlines
the average of RMSE gained by each imputation method. The experimental results show
that the PPCA imputation algorithm in the MR missing pattern has less imputation RMSE
for different missing ratios. Moreover, the results prove that using a subclass labels with
20 classes can reduce the RMSE and impute the missing volumes more effectively for all
algorithms and the missing ratio. This is because the data model can be trained more
accurately when the class range is smaller and sufficient samples are available.

Table 7. RMSE comparison of different imputation methods using subclass labels C1. . . C20 for
different missing patterns.

Micro
Class

ARIMA KF BN PPCA KNN

NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR

VL1 47.38 45.15 49.79 44.17 43.47 46.38 43.83 41.74 46.36 42.50 39.47 44.49 45.92 44.17 47.54

VL2 46.11 44.68 49.57 44.81 43.28 46.88 44.34 41.43 46.90 42.97 39.85 44.75 46.65 44.65 47.40

VL3 47.18 44.73 49.18 44.50 43.59 46.44 44.45 42.77 40.25 42.70 40.08 43.90 47.10 44.40 48.10

VL4 47.63 44.80 50.92 45.54 43.59 48.14 44.94 43.37 46.79 43.25 41.18 45.56 46.89 44.41 48.79

L1 48.59 47.03 51.56 44.91 43.91 47.28 44.39 41.42 46.93 41.40 39.22 43.70 46.20 43.35 49.31

L2 48.98 47.53 51.00 44.38 42.37 48.08 44.14 42.26 46.15 41.57 39.16 43.99 46.59 44.38 49.30

L3 49.58 46.12 51.76 46.00 44.51 48.40 44.22 42.92 46.78 41.35 38.24 42.88 47.30 44.39 49.57

L4 48.38 46.76 51.84 45.12 43.48 48.59 42.62 41.50 45.01 40.80 38.30 42.79 46.64 44.13 49.94

M1 51.92 50.21 53.64 47.61 46.17 50.60 46.89 45.14 49.82 44.31 42.42 45.74 49.61 46.58 52.67

M2 52.63 49.24 54.30 50.24 48.58 52.03 48.00 46.79 50.51 43.77 41.60 46.28 50.90 49.92 53.94

M3 52.10 49.97 54.79 48.75 46.56 51.04 48.14 45.80 50.44 45.49 42.76 46.99 49.67 47.73 52.46

M4 51.62 49.25 54.80 48.87 45.34 49.50 46.57 45.66 48.88 43.69 41.06 46.95 49.32 46.91 52.07

H1 50.99 48.89 54.24 48.76 46.30 51.20 37.01 45.34 49.94 43.88 41.93 46.53 49.15 47.86 52.05

H2 51.28 49.64 53.99 48.49 46.11 51.45 47.49 45.39 49.03 44.23 41.63 47.78 49.09 47.07 51.66

H3 52.50 50.40 55.62 47.48 45.51 50.31 45.96 44.50 49.04 44.13 41.42 46.02 50.20 48.72 52.72

H4 53.94 50.90 56.35 48.75 46.95 52.04 47.95 45.78 50.71 43.92 40.93 46.81 51.92 49.67 54.86

VH1 52.82 52.57 55.02 47.46 44.77 50.69 46.14 44.95 47.06 42.91 40.79 45.09 49.77 46.86 51.95

VH2 52.83 50.50 55.39 47.75 46.22 49.82 46.16 42.95 47.78 44.44 43.04 46.33 51.02 48.45 53.27

VH3 51.68 49.55 55.01 48.48 45.56 51.22 46.87 45.15 48.60 43.37 42.14 46.52 50.10 48.19 52.94

VH4 52.65 49.94 55.21 49.16 47.19 52.15 48.82 46.16 51.06 45.99 43.66 48.14 50.98 49.03 54.46

Table 8. The average of imputation RMSE of different imputation methods using subclass labels for
different missing patterns and missing ratio.

Missing
Ratio

ARIMA KF BN PPCA KNN

NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR

10% 45.75 43.70 48.29 42.71 40.95 44.92 41.23 39.55 43.18 38.64 36.53 40.68 43.91 42.06 46.43

20% 48.01 45.59 50.57 44.82 42.84 47.32 43.57 41.80 45.78 41.22 38.67 43.35 46.12 43.98 48.85

30% 50.34 48.50 52.99 46.93 45.04 49.97 46.04 44.08 48.59 43.31 40.87 45.90 48.49 46.37 51.59

40% 53.04 50.74 55.80 49.09 47.25 51.85 48.42 46.29 50.75 45.65 43.27 47.91 51.30 48.97 53.50

50% 55.56 53.44 58.33 51.75 49.78 54.00 50.50 48.52 51.22 47.85 45.37 49.97 53.94 51.35 55.88
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5.6. Impact Analysis of Using EIM-LD vs. Clustering

In the previous experiment sets, we proved that using EIM-LD can decrease the
imputation RMSE, which may benefit from splitting the original dataset. However, the
main reason behind this gain is our innovative statistical multi-class labeling that can enrich
the original dataset and arm the data model training. To prove this claim, we cluster the
original dataset using the k-means algorithm with k = 5 and k = 20. Each cluster is then
imputed using all imputation methods, ARIMA, KF, BN, PPCA, and KNN used in the
previous experiments. The best-imputed datasets are merged in the same fashion. Table 9
compares the results gained from this experiment with previous approaches IWDE, EMAC,
and EMIC. The experimental results in Table 9 prove that the proposed method using
subclass labels is superior to other methods. The descriptive statistical results, including
minimum, maximum, mean, and deviation of this experiment, are shown in Table A2 in
Appendix C, in which the proposed method has the lowest RMSE imputation.

Table 9. Comparison of imputation methods without using data enrichment, using data enrichment
with class labels and subclass labels, and clustering.

Method Missing
Ratio

ARIMA KF BN PPCA KNN

NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR NMR MR MCR

IWDE

10% 61.33 60.07 63.33 50.33 48.32 52.23 46.32 44.10 48.32 42.23 41.59 45.15 58.83 55.15 60.06

20% 64.19 63.65 65.89 53.15 51.32 53.91 47.50 45.81 51.03 44.51 43.51 46.71 60.32 58.09 62.04

30% 67.32 65.59 69.00 55.55 54.00 55.03 49.17 47.32 52.51 47.03 44.91 48.19 63.23 61.02 65.59

40% 69.04 67.25 72.17 58.91 56.61 59.17 52.02 50.00 54.05 48.92 47.05 51.32 65.00 62.88 68.32

50% 73.15 71.10 76.15 60.01 58.17 61.39 54.15 52.15 56.17 50.17 48.15 53.15 67.19 65.39 69.99

K-
means
K = 5

10% 55.32 54.14 57.15 49.12 47.73 51.12 45.12 45.80 47.32 42.50 41.00 43.00 53.19 51.19 54.15

20% 57.19 56.39 60.85 52.13 50.05 52.80 46.99 46.00 49.12 43.91 42.19 44.51 54.85 52.80 56.19

30% 59.32 58.18 62.15 54.95 52.19 55.00 48.80 48.01 51.52 45.95 44.00 46.51 57.15 54.82 58.83

40% 61.87 60.15 64.40 56.32 54.14 57.32 51.50 49.12 53.70 47.81 45.93 48.19 59.63 56.63 60.38

50% 63.50 62.15 66.15 58.12 57.88 60.69 53.39 51.32 55.85 49.99 47.13 51.90 61.62 58.19 64.25

K-
means
K = 20

10% 49.15 46.61 52.15 46.60 45.60 49.60 45.90 44.40 48.70 40.19 38.10 42.12 46.32 44.61 48.89

20% 51.55 48.39 54.50 48.17 47.11 50.19 47.05 45.81 50.50 42.00 40.05 45.61 47.73 45.41 50.50

30% 53.91 51.85 55.12 49.59 48.81 51.81 48.89 47.90 52.20 44.59 41.73 47.79 50.05 48.31 52.30

40% 56.61 53.30 57.89 51.59 50.19 53.70 51.32 49.05 53.15 46.61 44.50 49.60 52.15 51.00 54.19

50% 57.32 55.55 59.69 53.32 51.18 55.10 52.05 51.00 54.15 48.20 47.60 53.00 54.72 52.51 57.32

EMAC

10% 50.95 47.73 52.58 48.59 46.29 50.16 44.77 43.20 46.82 41.22 39.47 42.89 49.48 45.59 51.15

20% 52.60 49.43 54.34 50.05 48.42 51.75 46.52 45.08 48.83 42.64 40.13 44.76 51.18 48.07 52.90

30% 55.25 52.11 56.70 52.44 50.47 54.25 48.65 47.12 50.68 44.45 42.07 46.73 53.72 50.48 54.90

40% 57.33 54.57 59.03 54.48 52.98 56.19 51.47 49.33 53.03 46.33 43.68 48.76 55.58 52.77 56.91

50% 58.94 57.26 59.22 56.21 54.61 58.33 53.07 51.19 55.35 48.27 44.82 51.85 57.62 54.50 59.39

EMIC

10% 45.75 43.70 48.29 42.71 40.95 44.92 41.23 39.55 43.18 38.64 36.53 40.68 43.91 42.06 46.43

20% 48.01 45.59 50.57 44.82 42.84 47.32 43.57 41.80 45.78 41.22 38.67 43.35 46.12 43.98 48.85

30% 50.34 48.50 52.99 46.93 45.04 49.97 46.04 44.09 48.59 43.31 40.87 45.90 48.49 46.37 51.59

40% 53.04 50.74 55.80 49.09 47.25 51.85 48.42 46.29 50.75 45.65 43.27 47.91 51.30 48.97 53.50

50% 55.56 53.44 58.33 51.75 49.78 54.00 50.54 48.52 51.22 47.85 45.37 49.97 53.94 51.35 55.88

Curves shown in Figure 12 indicate that the proposed method with subclass labels
(n = 20) or EMIC outperformed other methods in all experiments using KNN, PPCA, BN,
and KF classifiers with different missing patterns, including ARIMA, NMR, MR, and MCR
with missing ratio ranging from 10% to 50%. Moreover, it shows that the proposed method
using subclass labels with the PPCA imputation method is very competitive with other
approaches using PPCA. These curves also indicate that the lowest estimation error was
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observed in the PPCA algorithm for the MR missing pattern with a missing ratio of 10%.
The highest estimation error was associated with the ARIMA and KNN algorithms in all
experiments. Increasing the missing ratio in all missing patterns led to an increase in the
estimation error for all algorithms.
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Table 10 shows the mean rank of comparative methods for different missing ratios.
The results indicate that the proposed EIM-LD method using subclass labels (EMIC) gains
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the first rank for all missing ratios. Table 11 shows the mean rank of imputation algorithms
used in the EIM-LD method with subclass labels for different missing patterns on missing
ratio = 10%. The results show that the PPCA algorithm for MR missing patterns achieves
a better rank than other imputation algorithms. In addition, Figure 13 shows the overall
ranking of comparative methods using different imputation algorithms for missing patterns
on missing ratio = 10%.

Table 10. Mean rank of comparative methods for different missing ratios.

Ranks

Missing Ratio Method Mean Rank

EMIC 1
K-means, k = 20 2

10% EMAC 3
K-means, k = 5 4

IWDE 5

EMIC 1
K-means, k = 20 2

20% EMAC 3
K-means, k = 5 4

IWDE 5

30%

EMIC 1
K-means, k = 20 2

EMAC 3
K-means, k = 5 4

IWDE 5

40%

EMIC 1
K-means, k = 20 2

EMAC 3
K-means, k = 5 4

IWDE 5

50%

EMIC 1
K-means, k = 20 2

EMAC 3
K-means, k = 5 4

IWDE 5

Table 11. Mean rank of imputation algorithms used in the proposed method with subclass labels for
different missing patterns on missing ratio = 10%.

Ranks

Algorithm Mean Rank

PPCA_MR 1
PPCA_NMR 2

BN_MR 3
PPCA_MCR 4

BN_NMR 5
KF_MR 6

KNN_MR 7
BN_MCR 8
KF_NMR 9

KNN_NMR 10
KF_MCR 11

ARIMA_MR 11
KNN_MCR 12

ARIMA_NMR 13
ARIMA_MCR 14
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Figure 13. Overall ranking of comparative methods using different imputation algorithms for missing
patterns on missing ratio = 10%.

6. Discussion

The experimental results shown in Table 7 indicate the proposed EIM-LD method can
impute all missing data patterns, including NMR, MR, and MCR, with missing ratios from
10% to 50% more accurately than other comparative methods. In Section 5.6, we prove that
the main reason is using our innovative statistical multi-class labeling that can enrich the
original dataset and arm the data model training. However, determining the proper classes
is challenging and a limitation. We determined the number of classes and their volume
ranges using several pretests. Table A1 indicates that labeling the missed-volume data can
be more accurate by removing all missing, incorrect, and noisy data from the clean data in
the multi-class labeling step. Moreover, the ANN classifier outperforms other classification
methods in the multi-class labeling step with the subclass labels. In contrast, the SVM had
the highest classification error rate. This is because the smaller number of samples in the
subclass labels is insufficient for model training by SVM.

The EIM-LD method involves an initial enrichment step where data are enriched
with an additional feature. This feature is segmented into five classes from VL to VH
based on the experts of the traffic control department in Isfahan city recommendation
before data model training and subsequent fine-tuning. Following the results, subdividing
the class labels into smaller or subclass labels yields more accurate data models. This
process enriches the data models, imputing missing data within their specific intervals
using data models trained by their specific split dataset. The obtained results demonstrate
that fine-tuning using subclass labels yields superior outcomes.

The mean ranks of RMSE in Table 10 and the overall ranks in Figure 13 indicate that the
proposed EIM-LD method using subclass labels (EMIC) is superior to other comparative
methods for all missing ratios. In addition, the mean ranks in Table 11 show that the PPCA
algorithm for MR missing patterns overcomes different imputation algorithms used in this
stud. Moreover, the results shown in Table 8 reveal that the method proposed in this study
exhibited greater accuracy in predicting records associated with traffic classes, VL1. . . VL4,
L1. . . L2, M1. . . M4, and H1. . . H4 compared to those with VH1. . . VH4 labels. The inferior
performance of the data model in the latter patterns could be attributed to the adverse
effects of the higher rate of missing data, coupled with the inadequacy of the available
samples for model training. As such, the resulting model failed to perform optimally and
lagged behind its counterparts in other traffic classes.

7. Conclusions and Future Work

Intelligent traffic control systems rely heavily on accurate traffic volume data from
loop detectors. However, missing data in the traffic volumes collected by these detectors
hinders the effectiveness of these systems. Real data collected by the loop detectors have
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no sufficient features and most of the existing imputation methods do not enrich these data,
which leads to constructing data models that cannot fulfill the required accuracy. In this
study, an effective imputation method using a data enrichment technique for missing data
of loop detectors employed in intelligent traffic control systems (EIM-LD) was proposed.
At first, noisy and missing data are separated to construct two clean and missed-volume
datasets. The clean dataset is statistically labeled using subclass labels. Then, the missed-
volume dataset is labeled using the best data model constructed by different classifiers. The
labeled missed-volume dataset is merged with the labeled clean dataset and the merged
labeled dataset is split into n datasets to be separately imputed using different imputation
methods. Finally, the most accurate imputed datasets are merged to build the imputed
traffic volume data sent by the loop detector. The effectiveness of the proposed method
was evaluated using four different experiment sets on one-year traffic flow data collected
from the SCATS intelligent traffic control system of Isfahan city. The following findings can
be concluded from the obtained results:

• The proposed EIM-LD method using data enrichment technique with subclass labels
is superior to other comparative methods.

• The ANN classifier is more powerful than other classifiers to estimate the missing
volumes of traffic flow data.

• Adding the statistical label to the original flow data can increase the training accuracy
of data models in the imputing process.

In the statistical multi-class labeling step, the determining process of the classes is
challenging. In this study, the number of classes and their volume ranges were manually
determined by doing several pretests. As part of future works, the optimal classes can be
determined automatically using continuous and binary metaheuristic algorithms [69,70]
to construct better data models with lower error. In addition, the proposed method can
be used to impute missing data in different applications, such as weather, medicine, and
engineering. In this regard, each application can specifically consider the multi-class
labeling method to achieve high imputation accuracy.
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Appendix A

The components of loop detectors include a wire loop that is embedded in the pave-
ment with one or more turns of wire, a lead-in wire that runs from the wire loop to a
pull box, a lead-in cable that connects the lead-in wire to the controller, and an electronics
unit that is housed in the controller cabinet, as illustrated in Figure A1. The electronics
unit comprises an oscillator and amplifiers that stimulate the embedded wire loop. The
count error for urban traffic control system (UTCS) critical intersection control of the first
generation was within plus or minus three vehicles, with a probability of 90 percent [61].
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Figure A1. Loop detector system.

Appendix B

Table A1 shows the impact of considering different kinds of missing data in splitting
the clean data from missing data using class labels, which affect the accuracy of the data
models constructed by different classifiers.

Table A1. Impact of considering different kinds of data on the accuracy of the data models using
class labels.

Classifier

Using the Original
Data including

Missing and Noisy
Data

Using the Original
Data without Missing

Data

Using the Original
Data without Missing

and Noisy Data

Using the Enriched Data
(The Labeled Clean Data

Mereged with the Labeled
Missed-Volume Data)

KNN 50.65% 51.83% 71.40% 74.80%

ANN 61.45% 62.80% 80.48% 81.15%

NB 60.79% 61.73% 79.46% 81.02%

DT 56.74% 56.67% 76.32% 77.89%

SVM 54.03% 56.11% 70.64% 72.03%

Appendix C

Table A2 shows descriptive statistical results including minimum, maximum, mean,
and deviation for different missing ratios. The results prove that the proposed method has
the lowest RMSE imputation.

Table A2. Comparison of mean rank of different methods based on the missing ratio.

Missing
Ratio Method Mean Std.

Deviation
Minimum Maximum

Percentiles

25th 50th
(Median) 75th

IWDE 51.8240 7.44962 41.59 63.33 45.1500 50.3300 60.0600
K-means, k = 5 49.1900 5.05404 41.00 57.15 45.1200 49.1200 54.1400

10% K-means, k = 20 45.9293 3.71281 38.10 52.15 44.4000 46.3200 48.8900
EMAC 46.7260 3.88193 39.47 52.58 43.2000 46.8200 50.1600
EMIC 42.5687 3.11696 36.53 48.29 40.6800 42.7100 44.9200

IWDE 54.1087 7.74029 43.51 65.89 46.7100 53.1500 62.0400
K-means, k = 5 51.0647 5.53795 42.19 60.85 46.0000 52.1300 56.1900

20% K-means, k = 20 47.6380 3.66986 40.05 54.50 45.6100 47.7300 50.5000
EMAC 48.4467 4.01378 40.13 54.34 45.0800 48.8300 51.7500
EMIC 44.8327 3.13031 38.67 50.57 42.8400 44.8200 47.3200

IWDE 56.3640 8.28219 44.91 69.00 48.1900 55.0300 65.5900
K-means, k = 5 53.1587 5.54627 44.00 62.15 48.0100 54.8200 58.1800

30% K-means, k = 20 49.6567 3.47638 41.73 55.12 47.9000 49.5900 52.2000
EMAC 50.6680 4.20448 42.07 56.70 47.1200 50.6800 54.2500
EMIC 47.2673 3.26174 40.87 52.99 45.0400 46.9300 49.9700
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Table A2. Cont.

Missing
Ratio Method Mean Std.

Deviation
Minimum Maximum

Percentiles

25th 50th
(Median) 75th

IWDE-40% 58.8473 8.20820 47.05 72.17 51.3200 58.9100 67.2500
K-means, k = 5 55.1393 5.67917 45.93 64.40 49.1200 56.3200 60.1500

40% K-means, k = 20 51.6567 3.48023 44.50 57.89 49.6000 51.5900 53.7000
EMAC 53.0293 4.51352 43.68 59.19 49.3300 53.0300 56.9100
EMIC 49.5887 3.30705 43.27 55.80 47.2500 49.0900 51.8500

IWDE 61.0987 8.94094 48.15 76.15 53.1500 60.0100 69.9900
K-means, k = 5 57.4753 5.72749 47.13 66.15 51.9000 58.1200 62.1500

50% K-means, k = 20 53.5140 3.31737 47.60 59.69 51.1800 53.3200 55.5500
EMAC 54.7087 4.25499 44.82 59.39 51.8500 55.3500 58.3300
EMIC 51.8307 3.41097 45.37 58.33 49.7800 51.3500 54.0000
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