
Citation: Vaienti, B.; Petitpierre, R.;

di Lenardo, I.; Kaplan, F.

Machine-Learning-Enhanced

Procedural Modeling for 4D

Historical Cities Reconstruction.

Remote Sens. 2023, 15, 3352. https://

doi.org/10.3390/rs15133352

Academic Editors: José L.

Amaro-Mellado, Daniel Antón,

Silvana Bruno and Marinos

Ioannides

Received: 1 June 2023

Revised: 25 June 2023

Accepted: 28 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Machine-Learning-Enhanced Procedural Modeling for 4D
Historical Cities Reconstruction
Beatrice Vaienti * , Rémi Petitpierre , Isabella di Lenardo and Frédéric Kaplan

Digital Humanities Institute, EPFL, Swiss Federal Institute of Technology in Lausanne,
1015 Lausanne, Switzerland; remi.petitpierre@epfl.ch (R.P.); isabella.dilenardo@epfl.ch (I.d.L.);
frederic.kaplan@epfl.ch (F.K.)
* Correspondence: beatrice.vaienti@epfl.ch

Abstract: The generation of 3D models depicting cities in the past holds great potential for documen-
tation and educational purposes. However, it is often hindered by incomplete historical data and the
specialized expertise required. To address these challenges, we propose a framework for historical city
reconstruction. By integrating procedural modeling techniques and machine learning models within
a Geographic Information System (GIS) framework, our pipeline allows for effective management of
spatial data and the generation of detailed 3D models. We developed an open-source Python module
that fills gaps in 2D GIS datasets and directly generates 3D models up to LOD 2.1 from GIS files.
The use of the CityJSON format ensures interoperability and accommodates the specific needs of
historical models. A practical case study using footprints of the Old City of Jerusalem between 1840
and 1940 demonstrates the creation, completion, and 3D representation of the dataset, highlighting
the versatility and effectiveness of our approach. This research contributes to the accessibility and
accuracy of historical city models, providing tools for the generation of informative 3D models. By
incorporating machine learning models and maintaining the dynamic nature of the models, we
ensure the possibility of supporting ongoing updates and refinement based on newly acquired data.
Our procedural modeling methodology offers a streamlined and open-source solution for historical
city reconstruction, eliminating the need for additional software and increasing the usability and
practicality of the process.

Keywords: procedural modeling; 4D urban reconstruction; 4D city modeling; GIS; HBIM; historical
maps; machine learning; 3D building modeling; CityJSON; vectorization

1. Introduction

The generation of 3D models depicting cities in the past holds great potential for
documentation and educational purposes. On the one hand, they can be used to improve
heritage accessibility for the general public, profiling themselves as spatial and temporal
aggregators, and showing documents and information that would otherwise be difficult
to explore [1]. On the other hand, these models can be seen as the scholarly outcome of a
process of historical spatial synthesis, introducing a new form of academic publication for
researchers [2]. Moreover, their creation could open new avenues for spatial quantitative
analyses such as population estimations [3] and visibility assessments [4]. Similar use
cases are diffused in contemporary urban 3D representations [5]. Despite evident benefits,
the creation of such models is often hindered by the substantial time investment and
specialized expertise they demand, as well as by specific challenges related to working
with historical data.

This paper aims to propose a set of tools, in the form of an open-source Python library,
to help practitioners in generating informative and scientific 3D or 4D urban models in an
easy and documented way. The main challenges related to this objective will be presented
and addressed point-by-point along with existing solutions and the proposed methodology.

Remote Sens. 2023, 15, 3352. https://doi.org/10.3390/rs15133352 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15133352
https://doi.org/10.3390/rs15133352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2379-2974
https://orcid.org/0000-0001-9138-6727
https://orcid.org/0000-0002-1747-9164
https://orcid.org/0000-0002-6991-5730
https://doi.org/10.3390/rs15133352
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15133352?type=check_update&version=1

Remote Sens. 2023, 15, 3352 2 of 24

Data Incompleteness. Firstly, it is crucial to acknowledge that historical information
inherently tends to be incomplete by default. Historical data are usually fragmented,
missing, or conflicting, compelling researchers to amalgamate and interpret multiple
sources, while occasionally resorting to educated guesses to fill in the gaps.

In fact, when aiming at creating a 3D representation of a building, to ensure the creation
of an accurate spatial representation, it is imperative to possess all the necessary data. For
instance, without the inclusion of building height information, it would be impossible to
generate an extrusion of the footprint and accurately depict the 3D structure. This process
must be executed in a manner that preserves the informative value of the model and
ensures transparency when guesses are operated. Meanwhile, at an architectural scale, we
may resort to educated guesses; one way to solve this contradictory objective in large-scale
scenarios is to use statistical machine learning methods to infer the most probable values
in an objective way, based on available data. While deep learning techniques are well
suited to process remote sensing data [6,7], already vectorized GIS datasets represent an
easier case that can effectively be tackled by classical machine learning algorithms. Within
this category, we favor the use of ensemble methods over regression or nearest neighbor
algorithms, because of their ability to deal with missing values in input parameters.

The concept has been investigated by various studies that concentrate on urban recon-
struction and the modeling of 3D cities. Biljecki et al. [8] analyzed how to fill their dataset
with height information by predicting the number of floors, and selected Random Forest as
the best algorithm. They then used the completed information to construct a Level of De-
tail 1 (LOD1) 3D model of the city, i.e., a spatial extrusion of the footprints. The prediction of
the number of floors was also addressed by Roy et al. [9], focusing on residential buildings
and selecting instead the Gradient Boosting algorithms. Similarly, other examples focused
on the prediction of roof types [10], type of building [11], constructive technique [12], and
year of construction [13,14]. On the point of view of historical applications, Farella et al. [15]
presented a methodology for inferring missing height information in 2D datasets obtained
from historical maps, considering the performances of various machine learning models
and using the obtained information to create a LOD1 3D model. These machine learning
approaches proved to be effective in enhancing the completeness of the resulting model,
providing a more comprehensive representation of the urban environment.

Cultural specificity. One of the main challenges of historical city reconstruction is
that every case study is unique. Not only is the architecture changing in every culture and
every region, but the available data contributing to the remodeling can be very disparate.
The solution to this challenge is two-fold. In order to achieve generality, an approach
must prioritize easy customization and flexibility. Our proposed framework, founded on
procedural modeling, offers complete parameterization, allowing for seamless adaptation
and extension to address a wide range of modeling challenges. We also provide strategies
to deal with parameters that might be totally unavailable for a specific city. Second, any
purposely generic solution should be open-source. Indeed, the unique nature of cities
and the multiplicity of research project objectives compels technical solutions to constant
adaptation and evolution. In this regard, we consider closed commercial solutions to be a
dead end, as no tool is anywhere close to comprehensiveness. The ability to alter and adapt
the code to the need of multiple projects and approaches is fundamental.

Iterative nature of scientific projects. When working on historical data, we may not
only be confronted with the initial problem of incompleteness, but we might also consider
the possibility for additional information to become available in the future. Indeed, the
collection of urban historical data is generally iterative, and the ability to incorporate new
data into the system, and thus dynamicity, is therefore absolutely essential.

We achieve a fully dynamic model by designing a system where geometry is generated
based on footprints and documented parameters. In this approach, the partial availability
of data and the associated uncertainty no longer constitutes an obstacle to the creation of
an informative model. Instead, the model remains editable without compromising any
previously completed operations, as the geometry is treated as a temporary representation

Remote Sens. 2023, 15, 3352 3 of 24

of the available information. Furthermore, we voluntarily favor the use of relatively
frugal machine learning models to predict missing data. This allows us to retrain the
machine learning models whenever new information becomes available, leading to real-
time estimates, and a scalable resource-efficient framework. The ability to continuously
update and refine the machine learning models based on newly acquired data ensures
that our historical representations remain up to date and reflective of the most accurate
information available, while continuously documenting the process used to infer missing
values. We value the use of interpretable machine learning algorithms to ensure traceability.
Incidentally, such models can provide new insights on the studied city by handing a
data-driven dependency scheme across parameters.

Subjectivity of the reconstruction and interpretation. Recent research studies in
cartography often consider the map as an artifact culturally constraint, rather than a mere
projection of the territory [16]. The process of mapping itself is made of arbitrary choices,
based on cultural factors and intentional decisions. Maps and other sources can thus offer
a different or even contradictory description of the city.

For this reason, it is essential to document the metadata associated with the recon-
structed models (i.e., all the attributes that describe the modeled object and the respective
sources) and maintain a record of the decisions and hypotheses that were assumed by
researchers during the (automatic or manual) reconstructive process. This concept is also
addressed as paradata [17,18]. Maintaining this methodology is of utmost importance to
ensure transparency and scientific rigor, as well as to enable future users to understand the
sources used, the underlying assumptions, and the decision-making process involved in
the modeling process [2,19,20].

This need of comprehensive documentation calls for the use of a well-structured for-
mat to encode the 3D urban representation. In this context, 3D GIS shows the capability to
support the informative nature of the model and facilitate spatial approaches [21]. Among
the standards that are available to encode 3D GIS datasets, CityGML [22] emerges as a
prominent XML-based format for the geometric and semantic representation of cities. How-
ever, while CityGML offers great power and functionality, its adoption can be challenging.
To address this concern, we turn our attention to CityJSON [23], a compact and developer-
friendly JSON encoding of CityGML. CityJSON serves as a compelling alternative for
generating semantic and georeferenced 3D city models while maintaining interoperability
with CityGML. An advantage of CityJSON relies in its support for the easy creation of exten-
sions to the core data model. Such modularity proves particularly beneficial for addressing
the specific needs of historical models, as researchers may have different requirements for
data representation based on their unique study cases. To address the need for effective
communication regarding the level of detail in 3D city models and their adherence to reality,
Biljecki et al. [24] proposed an improved system to classify the Levels Of Detail (LODs)
based on the taxonomy developed for CityGML. This system introduces 16 LODs, which
refine the original five main categories by adding four subgroups (0.0, 0.1, 0.2, 0.3) to each
original category (1, 2, 3, 4). In our project, we adopt this improved system, and specifically,
we refer to our LOD2 modeling as LOD2.1, as it includes roof overhang and additional
details beyond the LOD2.0 level of modeling.

In our research, we aimed to adapt the CityJSON format to our needs by incorporating
the necessary fields to accommodate all the parameters needed for the procedural modeling
scripts. Furthermore, we included fields to track the provenance of the parameters, ensuring
transparency and traceability. To achieve this, we developed our own CityJSON extension,
referred to as Historical CityJSON [25]. This extension underwent further refinement to
align the attributes with the needs of the previously described LOD 2.1 level of modeling,
which offers a higher level of detail in the representation of city elements.

By using this structure as the basis for the procedural modeling process, we can
ensure both structured data and dynamism. The combination of GIS and procedural
modeling has already been used in cases dealing with historical representations [26,27],
and for contemporary representations [28–30]. Moreover, the availability of open-source

Remote Sens. 2023, 15, 3352 4 of 24

and commercial tools for large-scale procedural modeling, such as, respectively, the BCGA
Blender Addon and ArcGIS CityEngine, has significantly contributed to the accessibility of
GIS-based 3D reconstructions. These tools contribute to making the methodologies more
accessible to a broader user base. However, it is worth noting that even with open-source
tools, like the BCGA Blender Addon, users may need to split their pipeline and generate
the spatial geometry within a dedicated 3D modeling software. This fragmentation can
add complexity to the workflow, and requires users to possess a certain level of expertise in
multiple tools.

With these goals in mind, and also with the objective of avoiding reliance on pro-
prietary software or requiring users to navigate through 3D modeling applications, we
developed a set of tools in the form of an open-source Python library. This toolset addresses
two main steps: (1) filling the gaps in 2D GIS datasets by letting the user choose which
fields he/she is interested in filling, and which fields should be employed as predictors for
the inference; (2) a set of procedural modeling functions that make it possible to transform
the completed 2D geodata in a 3D CityJSON containing multiple LODs. As highlighted by
Biljecki et al. [24,31], there is not an intrinsic higher value in higher LOD models, since we
may prefer lower LODs for a specific quantitative analysis, hence the interest in keeping all
the three available LODs (LOD0, LOD1.0, LOD2.1) encoded in the model. This article aims
to provide an in-depth exploration of the library’s features and present various use cases to
illustrate its practical applications. Our proposal offers a streamlined approach, allowing
for the direct generation of 3D LOD2.1 models (including modeled roofs) from GIS files,
and eliminating the need for additional software such as Blender.

Our pipeline can be initiated from any cartographic source. However, in order to
showcase the effectiveness of our framework, we present a practical case study. Specifically,
we use a set of footprints of the Old City of Jerusalem from 1840 to 1940, which was pri-
marily extracted from a series of 10 maps. Footprints were first recovered using semantic
segmentation, then translated into vector geometries. In order to be usable for 3D model-
ing, automatically extracted vector data were cleaned and simplified, using a dedicated
algorithm to keep only the main orientations, while keeping sharp corners and avoiding
the appearance of slivers between buildings. The data were then enriched with secondary
sources. The result of this process is a GIS dataset similar to many other historical datasets.
We show how our library is able to seamlessly complete the dataset, and generates its 3D
representation using CityJSON as a format capable of retaining the hierarchical structure
of information. Four typologies of roofs are supported, and were determined on the basis
of the needs of the case study: flat roof, lowered dome, hip roof, gable roof. We release
these scripts as an open-source library, which opens the possibility for the community to
integrate them with new typologies.

2. Methodology and Approach

In this section, we will present the set of tools that were developed, following a step-
by-step approach. We also demonstrate the actions performed on our dataset. In fact,
although our library has been designed to be usable with any geodata, in Section 2.1, we
will describe the features of our dataset and the process that we employed to create it.
In Section 2.2, we will then present the parameters that are employed by the procedural
modeling scripts, and in Section 2.3, we will describe our strategy to overcome data incom-
pleteness. This step is crucial to ensure that all the necessary parameters for procedural
modeling are available and accurately documented. Among the strategies, we propose a
machine learning approach to fill gaps in fields that are partially present in the dataset:
in Section 2.4, we will delve into this first set of tools. Our tools offer the advantage of
being generic, allowing the user to choose the target fields and their related predictors, thus
enabling greater customization in the prediction process. We will present the techniques
employed to infer missing information, and discuss the significance and performances of
this statistical data completion process. Being aware of the strong dependency of these

Remote Sens. 2023, 15, 3352 5 of 24

quantitative results with the available data, we will compare the performances of the
algorithms on our dataset, avoiding quantitative comparisons with different case studies.

Finally, in Section 2.5, we will present the operations applied to transform a GIS dataset
into a 3D CityJSON file using our library. We will provide a detailed description of the
algorithms that we implemented for the generation of hip and gable roofs.

2.1. From Cartographic Sources to a GIS Dataset

To create the vector data, we employ semantic segmentation to automatically extract
building footprints from 10 historical maps, published between 1838 and 1947. Then, we
vectorize the footprints as high-quality vector data, by designing an algorithm especially
adapted for 3D modeling. We combine the 10 maps in a diachronic vector dataset by
detecting the first and last appearance of the polygons. To further enhance the database,
we incorporate additional details, such as the number of floors, construction materials, and
roof types, from a secondary source [32].

In our case study, the 10 maps are first georeferenced manually using a GIS software.
The second step is to semantically segment the Jerusalem maps. Our primary objective is to
obtain a diachronic dataset that captures the temporal information regarding the initial and
final occurrences of building footprints. Since the latest maps exhibit higher cartographic
precision, we use them as references for the vector footprints, and compare them with the
other vectorized maps. This allows us to detect the appearance of buildings in time while
using the best available quality for the footprints.

In particular, the building footprints are obtained from two specific maps: one depict-
ing the Old City in detail (scale 1:2500, from 1947) [33], and one depicting its surroundings
(scale 1:5000, from 1938) [34]. Indeed, solely relying on the 1:5000 map would be insufficient:
this 1938 map from the survey of Palestine, divided into four sheets, presents excellent-
quality descriptions of the area outside the walls, but lacks detail inside them. The revised
map from 1947, realized at a scale of 1:2500, focuses on the Old City with greater detail,
which makes it possible to also segment adjacent buildings.

The semantic segmentation aims to extract the footprints or built-up areas by recog-
nizing the contours on the historical maps. To proceed with the training for the semantic
segmentation, a total of 252 patches (each measuring 1000 × 1000 pixels) are manually
annotated from the 10 maps, and we combine them with 132 patches selected from the
Historical City Maps Semantic Segmentation Dataset [35]. Annotations are performed
following the guidelines prescribed by Petitpierre [36], and a simplified version of the on-
tology they propose. The annotation classes consist firstly of the contours of built features
(i.e., footprints), and secondly of the built-up areas themselves. This methodology makes it
possible to retrieve precise building instances, even in the case of adjacency. A separate
convolutional neural network is trained for each of these two tasks, following the same
procedure as Petitpierre [37]. We use the dhSegment framework [38] and a simple UNet
architecture [39], with a ResNet101 encoder [40].

This step creates two binary masks: the first corresponding to building contours, the
second to built-up areas. The second mask is useful, for example, for discarding closed
geometries that do not correspond to built-up areas. These could be courtyards, for instance,
or other geographical objects, e.g., squares bounded by perimeter walls.

The step of vectorizing 2D geometries is a demanding part of the 3D model creation
process. On the one hand, geometries must be simplified to avoid the aliasing effect inher-
ited from the raster output of the neural network. Secondly, it must avoid the pitfalls of
existing vectorization algorithms, such as OpenCV and scikit-image’s contour functions, or
QGIS’s raster-to-vector module. These out-of-the-box tools often compute geometries inde-
pendently for each polygon. This leads to inconsistent results, such as aliasing, neighboring
polygons not sharing edges, and undesirable slivers and overlaps. On the contrary, desir-
able qualities of a vectorization algorithm designed for 3D data generation would include
keeping sharp building corners and the ability to parameterize the level of simplification of
the vertices, without affecting the local coherence.

Remote Sens. 2023, 15, 3352 6 of 24

As the vectorization algorithm comprises a relatively large number of steps, we will
present it in a sequential form, which appears clearer. The main steps are illustrated in
Figure 1. The corresponding Python code is released along with this article.

1. Thinning. First, a thinning or skeletonization algorithm is used to obtain single-pixel-
wide contours [41].

2. Identification of the connected components. The identification of the connected compo-
nents makes it possible to assign an index to each closed geometry.

3. Removal of non-delimiting lines. Lines surrounded by the same connected component
on both sides are non-delimiting. They constitute noise in the sense that they do not
allow the demarcation of distinct building instances. Based on this criterion, they are
automatically removed.

4. Corners detection. The Harris Corner Detector is used to precisely locate prominent
building corners [42]. It is supplemented by OpenCV’s cornerSubPix function, which
refines the position to subpixel accuracy.

5. Vectorization. The vectorization algorithm treats the map as a network. First, it detects
all the nodes in the thinned image (i.e., intersections and corners detected at the
previous step). Second, it follows the edge paths to reconstruct the segment paths.
At this stage, the geometry of each segment is simplified using the Douglas–Peucker
algorithm [43]. The level of simplification is controlled by the parameterε.

6. Removing duplicated segments. This step checks that detected segments are not duplicated.
7. Reconstitution of the polygons. To reconstruct the polygons, the nodes directly adjacent

to each connected component are retrieved. The segments are adjacent to the polygon
if both their starting and their terminal nodes are adjacent to the connected component.
Then, simply following the adjacent segments one after the other makes it possible to
reconstruct the cycle of each polygon.

8. Polygon hierarchy and orientation. Polygons can encompass “donut holes”, which
should be oriented counterclockwise, according to the shapefile format convention,
while the outer cycle should be oriented clockwise. To distinguish between both,
the approximate inner area of the cycles is computed using the Shoelace formula
(Equation (1)).

A =
1
2

∣∣∣∣∣ n

∑
i=1

(xi · yi+1 − yi · xi+1)

∣∣∣∣∣ (1)

The orientation of each polygon is then calculated using Equation (2), so that the
cycles can be reoriented clockwise, or counterclockwise, accordingly.

O =
n

∑
i=1

(xi+1 − xi) · (yi+2 − yi)− (yi+1 − yi) · (xi+2 − xi) (2)

9. Semantic allocation. The area covered by each connected component is spatially com-
bined with semantic data from the built mask layer in order to add this information
as an attribute to the polygon.

10. Projection. Finally, the vector data are reprojected, according to the geographic projec-
tion of the georeferenced map image, and exported in shapefile format.

This automatic pipeline delivers high-quality vector data, ensuring efficient and
streamlined 3D modeling processes. Polygon adjacency is preserved, and neighboring
polygons share the same nodes, facilitating manual correction if necessary. What is more,
the level of geometric simplification of the vertices is easily parameterized, due to the ε
parameter. This is made possible by focusing on the vectorization of delimiting segments,
rather than the polygons themselves. Detecting corners using the Harris algorithm, and
intersections, helps maintain sharp geometries.

Remote Sens. 2023, 15, 3352 7 of 24

cba

fed

Figure 1. Illustration of the vectorization pipeline: (a) Output of the semantic segmentation of
contours. (b) Thinned contours, step 1. (c) Connected components as color gradient, step 2.
(d) Detection of corners (in yellow) and intersections (in red), steps 4 and 5. (e) Result of the
vectorization (buildings in carmine). (f) Close-up of the resulting vector data in QGIS (some polygons,
in yellow, are selected to show their points).

Subsequently, a spatial comparison between the 1940 dataset and the other vectors is
performed to determine whether the presence of the buildings persists in time. This enables
the creation of a diachronic spatial dataset. To account for minor misalignment, we apply a
buffer around the polygons. However, it is important to note that this automated process
does not detect changes in shape, but only captures the appearance and disappearance of
polygons. For this specific case study, we considered the latter an acceptable trade-off, and
intervened manually in case of macroscopic inaccuracy. The dataset is then further enriched
by operating a spatial joint with the Atlas of Jerusalem [32], a secondary cartographic
source from the 20th century, indicating the number of floors, the type of roofs, and other
architectural features. These complementary data are stored as categorical attributes.

2.2. Parameters Employed for the Procedural Modeling

Once good-quality vector data have been obtained, we can prepare them for the
procedural modeling process. As such, it is essential to encode the 2D GIS datasets in a
format that can accommodate 3D information while preserving all available attributes and
the geographic location of the features. For this task, CityJSON [23], a JSON encoding of
CityGML, has been chosen due to its readability and simplicity. To adhere to this format,
it is necessary to transfer the fields from our GIS files into a hierarchical tree structure,
and ensure their compliance with the specified format. This adaptation allows for the
inclusion of all the required fields essential for the procedural generation of 3D models.
This extension builds upon our initial proposal [25], incorporating improvements and
additional features to support the refined level of modeling proposed in this contribution.
The extension ensures compatibility between the scripts and the parameterization.

To start the 3D procedural modeling, a minimum set of parameters is required. As we
will see, they can be either provided by the user, or predicted automatically when necessary.
We will now go over them, and subdivide them according to the two levels of detail.

Remote Sens. 2023, 15, 3352 8 of 24

For LOD1, a set of three parameters is used to define the height of the extrusion:

• Height (H);
• Floor Height (H f);
• Number of Floors (N f).

The relationship between these parameters is evident. The total height (H) of the
building is calculated by multiplying the number of floors (N f) by the floor height (H f).
This relationship ensures that the extrusion process accurately represents the specified
number of floors, maintaining the proportional scaling of the building’s vertical dimensions.
This parameter interdependence becomes particularly valuable in situations where explicit
height information is missing from the dataset, but the number of floors is known (e.g., in
the case of a birds-eye-view data source). In situations where the height or number of floors
is unknown, we employ a predictive method to estimate the number of floors and/or floor
height, thereby enabling the calculation of the total height. By adopting this approach, we
generate plausible height values, even in instances where the dataset lacks precise height
information. With this approach, we generate credible height values, even when the dataset
lacks specific height information.

For LOD2.1, the roof is added to the building model. The necessary parameters vary
depending on the type of roof being modeled. For this contribution, we developed four
possible roof types: hip, gable, flat, and domed roofs. The Table 1 provides an overview of the
parameters needed for each one of them.

Table 1. Parameters needed for the procedural modeling of each type of roof.

Hip Gable Flat Domed

Base floor thickness Base floor thickness Base floor thickness Base floor thickness
Slope Slope Railing height Railing height 1

Upper floor thickness Upper floor thickness Railing width Railing width 1

Eaves overhang Eaves overhang Dome horizontal
radius (%)

Dome vertical
radius (%)

For hip and gable roofs, the “Base floor thickness” parameter represents the thickness
of the roof’s base floor. The “Slope” parameter indicates the angle or pitch of the roof
expressed as a value between 0 and 1, while the “Upper floor thickness” parameter denotes
the thickness of the upper floor of the roof, i.e., the vertical thickness of the sloped surfaces.
The “Eaves overhang” parameter represents the horizontal extension of the roof beyond
the exterior walls (i.e., the amount of horizontal offset).

For flat roofs, in addition to the “Base floor thickness”, some parameters describe the
railing or balustrade around the perimeter.

For domed roofs, additional parameters come into play to reproduce the typical lowered
dome shape that can be found in Jerusalem. In particular, for each footprint, we compute
the center and radius of the maximum circle inscribed in the concave polygon. This
geometrical problem, also referred to as the “poles of inaccessibility” problem, can be
solved employing an iterative grid algorithm [44] inspired by Garcia-Castellanos and
Lombardo’s algorithm [45]. Once we obtain the maximum circumference, we can define the
value (expressed in]0, 1] of its radius to use as the base circumference for the dome. Now,
using the vertical value, we can decide whether the dome is a full dome or a lowered one.
The chosen value, within the range]0, 1], determines the height of the highest point of the
dome, where 1 represents the full dome and 0 corresponds to a null height. Subsequently,
we find the sphere passing through the base circumference and the point that we just
obtained to determine the dome shape.

As exemplified, parameters enable us to define the key characteristics of each roof
type, ensuring that the procedural modeling accurately represents the desired architectural

Remote Sens. 2023, 15, 3352 9 of 24

features. This empowers users to customize the roofs of their 3D models, and tailor the
architectural style.

However, when working with datasets of cities in the past, it is actually uncommon
to possess all the necessary information to perform procedural modeling. Data incom-
pleteness, limitations of historical records, or the stage of the data collection can prevent
researchers from proceeding. For this reason, we need to infer all missing values.

2.3. Addressing the Issue of Missing Parameters

To address the challenge of missing data, we developed a solution that takes into
account two potential cases: (1) when a parameter (e.g., roof type) is completely missing
from the dataset, or (2) when it is partially present, but incomplete.

In the case where a numerical parameter (e.g., the slope of a hip or gable roof) is
completely missing, we simply sample the value from a statistical distribution, either
informed, or based on a educated guess. The choice of the range inside which this value
should be picked strongly depends on the specific case study, and its definition could be
based—depending on the availability of information—on an educated guess, surveys and
statistical evidence, local regulations, or primary and secondary sources. For instance,
Ref. [8] reports previous works that used local regulations or architectural principles
to derive the maximum height of buildings. By default, we assume that inside of this
range, the missing numerical parameter is likely to follow a normal distribution centered
around a parameterizable mean value. The choice of using a normal distribution is based
on the ideal assumption that the missing parameter values form a Gaussian distribution
around the mean value. However, in practice, the specific distribution pattern may vary
depending on the context and nature of the parameters being considered. Further statistical
tests on the normality of parameter distributions should be conducted in the future to
validate this assumption, as 4D historical data become available for a larger number of
cities and in a variety of cultural contexts. When culturally related datasets are available,
we provide the ability to sample the values from the real distribution. For instance, Ref. [10]
present the distribution of building height in the region of Hamburg. This distribution
is, unsurprisingly, multimodal (bimodal in their case), as the building height is tightly
connected to the number of storeys. If a project were to focus on another Hanseatic city, the
distribution could prove better than a normal approximation. In this case, we provide the
ability to fill missing values by performing a random choice with replacement from any
provided distribution. When the missing parameter is categorical (e.g., the type of roof),
the logic is similar. By default, the random choice is performed using uniform probability
between all categories. However, we also let the user provide a custom probability for each
category. In the case of Hamburg, for instance, flat and hip/gabled roofs account for 2/3
and 3/10, respectively, of the roofs. In the case of Jerusalem, the proportions are similar,
with 3/5 and 1/3, respectively. However, domed roofs are predominant in Jerusalem. In
this case, the user might want to personalize the probability associated with each category.

The second case we consider is when a parameter—either numerical or categorical—
is partially present in the dataset. In this case, we propose leveraging the knowledge
available for the other buildings in the city to infer the missing values. This approach has
been successfully tested in previous work, such as the work by Farella et al. [15], where
building heights were inferred using similar techniques. In our framework, we propose
the use of a machine learning model, such as Random Forest, to infer any parameter
(whether numerical or categorical) that is incompletely present in the dataset. This requires
the selection of—among all available parameters—the explanatory variables, i.e., the
parameters we consider relevant for predicting the target variable. For instance, variables
that are assigned arbitrarily to buildings, such as the id code, need to be excluded from this
process, since their value cannot be logically related to the actual features of the building.

In the Jerusalem case study, we focused on two target variables: the number of
floors and the type of roof. Both parameters were only partially available. In Section 2.4,

Remote Sens. 2023, 15, 3352 10 of 24

we implement four different machine learning classifiers and compare their inference
performance.

2.4. Filling Gaps

We tested and compared four classifiers implemented in scikit-learn [46] to select
the most suitable one: Decision Tree, Random Forest [47], Adaptive Boosting [48], and
Gradient Boosting [49]. Each classifier was trained to predict two different target features:
the number of floors and the type of roof.

The selected models were chosen, among others, due to their ability to handle missing
values in the input, to provide interpretable decisions, and due to their training speed.
Indeed, values can be missing both in the input and in the output. While some approaches
attempt to fill missing values in the input with mean values, or simply exclude incomplete
rows, the naturally incomplete nature of historical data compels us to use algorithms that
natively manage missing values. Moreover, the training speed and the energy efficiency
of these models is crucial, as we may want to dynamically retrain the model when new
information is added to the dataset.

One additional advantage of using Decision Tree, Random Forest, or Adaptive Boost-
ing models is their interpretability. In fact, they allow us to visualize the decision-making
process and understand how the model reaches its predictions. This transparency can be
valuable in understanding the relationships between different features and the inferred
parameter values. It also provides precious insight into the dataset, and helps validate the
model’s predictions.

To identify the better-performing model, a confusion matrix was computed for both
roof type classification and number of floors. Additionally, we compared the score against
a baseline, by measuring the accuracy obtained when assigning the most frequent categori-
cal value.

Our evaluation was conducted on the presented test dataset of the city of Jerusalem
between 1840 and 1940, with the aim of predicting the values for the number of floors and
the type of roof. However, the data that the Atlas of Jerusalem provides on these two factors
cannot be directly mapped into a single value without losing or flattening information. For
instance, inside the Old City, the majority of buildings report a range of 1–3 floors, instead
of a precise numerical value. However, for the purpose of encoding in the CityJSON format,
we need to arbitrarily assign a single numerical value to use for procedural modeling. This
does not constitute an issue for the creation of a 3D CityJSON, since we can still keep track
of the nuances of the original information through paradata. However, we decided that
these values should not be taken into consideration for training the machine learning model,
as we would not want to introduce an unnecessary set of flattened data. In the same way, in
the secondary sources of Jerusalem, tall buildings are encoded as “6+” outside the walls and
“4+” inside the walls, which is rather imprecise. The information on the roof type presents a
similar issue: hip and gable roofs are, respectively, described as “gabled (tiles)” and “slanted
(other than tiles)”. Even with the help of the book accompanying the Atlas of Jerusalem, it is
not clear whether we can actually identify a specific corresponding distinction, or whether
they denote the same shape, just characterized by a different construction technique or
material. For this reason, for the purpose of evaluating the inference of values, we decided
to consider them as a single category (hip/gable).

In order to evaluate the four machine learning models, we perform the training and
inference directly on the values that were obtained from the Atlas, prior to the encoding
process. In this way, we avoid imposing unnecessary simplification on the information
that was extracted from secondary sources. However, the methodology that we present is
presumably applicable to any geodata, and to any categorical field. For the training, we
added to these columns three input features that were directly derived from the vector data:
area of the polygon, and latitude and longitude of the object centroid. These additional
features were incorporated to enhance the training process and improve the prediction

Remote Sens. 2023, 15, 3352 11 of 24

accuracy, by providing more context. To clarify the explanation, in Table 2, we present our
dataset and the initial completeness of the various fields.

Table 2. Completion status of the main fields in our dataset.

(Total) Number of
Floors Roof Type Material Start Year End Year

Entries
(10,833) 8405 8607 8563 10,817 10,817

Percentage
(100%) 77.59% 79.45% 79.05% 99.85% 99.85%

We evaluate the quality and speed of each of the selected models for predicting the
two aforementioned parameters. In a real use case, we would only apply the classifiers
to the instances that comprise missing values. However, for evaluation purposes, we will
simulate this situation on a subset of the dataset for which the target is known. The value
for the number of floors, for instance, is known for 8607 rows. For each experiment, we
allocated 60% of this subset for training purposes, and the remaining 40% for validation
and testing (see Table 3).

Table 3. Rows available for each of the two target parameters and number of rows resulting from the
subdivision between training and test sets.

#Rows (Number of Floors) #Rows (Roof Type)

Total (100%) 8405 8607
Training set (60%) 5043 5164

Test set (40%) 3362 3443

As anticipated, we trained four different machine learning algorithms, testing various
configurations for the most promising ones:

1. Random Forest with (a) max_depth = 5 and n_estimators = 10, (b) max_depth = 5
and n_estimators = 200, (c) max_depth = 50 and n_estimators = 200;

2. Decision Tree with (a) max_depth = 5, (b) max_depth = 50, max_depth = 100;
3. AdaBoost;
4. Gradient Boosting Classifier.

The first evaluation is based on calculating the respective accuracy of each method and
plotting a confusion matrix to visualize the results of the predictions for each experiment
(Figure 2). The score corresponds to the mean classification accuracy (Equation (1)).

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(3)

This result can be compared with the baseline accuracy, or the score that would be
obtained by assigning to all rows the most frequently encountered value (naive solution to
the problem). In Figure 2, we show the results obtained for the prediction of roof type and
the number of floors for each category. As anticipated, in order to accommodate the data
provided in the secondary source without losing information, we consider the number of
floors as categorical data as well. This is made possible due to the flexibility of the selected
models in handling both numerical and categorical information.

Remote Sens. 2023, 15, 3352 12 of 24

(a)

(b)

Figure 2. The plots are organized according to the target parameter: (a) On the top, results for the type
of roof. (b) On the bottom, results for the number of floors. Each plot reports the confusion matrix, score,
and computation time for each tested model. Rows represent the true value, while columns represent the
predicted value. Values on the diagonal going from the top-left to the bottom-right corners are correctly
predicted. The last confusion matrix in each of the two plots represents the result that we would obtain
with the naive solution (baseline accuracy). A darker colour corresponds to a higher number of values.

Remote Sens. 2023, 15, 3352 13 of 24

As anticipated, we seek a solution that maximizes the score while minimizing the
training time (Figure 3). This criteria allows us to quickly retrain the model whenever new
information is added to the dataset. This enables us to obtain more accurate predictions in a
timely manner. By optimizing both the performance and speed of the model, we can ensure
its practical applicability and adaptability to evolving datasets. This perspective can also
be considered a form of active learning, with this meaning a situation where the machine
learning model is interactively fed with new training samples. A human expert working
on the dataset could therefore progress more efficiently, by validating the predictions of the
machine learning model that are true and correcting only faulty ones.

Figure 3. Accuracy (in light-blue) and calculation time (in pink), for each experiment (x-axis). The
score is compared to the baseline accuracy. The lines at the top of the bars represent the standard
deviation.

Considering the results, Random Forest appears to be the most adequate method.
Moreover, considering the improvement shown with regard to the score obtained with the
naive solution, the approach proves to be generally relevant. However, considering the
highly specific nature of the problem, we considered it irrelevant to perform a quantitative
comparison with results obtained in other studies. Instead, we decided to focus on com-
paring the performances of the various algorithms, and to understand their robustness to
small datasets, as this can often be the case for historical case studies.

In fact, we also focused on addressing the limitations of this approach when dealing
with extremely rarefied datasets for a specific value. For instance, in the case where a target
field is rarely documented, we might have a very limited number of rows that could be
used as a training set. By progressively decreasing the number of available data points,
we aimed to determine the threshold at which a machine learning model becomes less
effective than simply filling the missing rows with the most frequent value. In order to
assess this, we randomly drew an increasingly large subset, beginning with 0.1% of the
initial (corresponding to 5 rows over the 5043 rows available for the number of floors) up to
the full dataset (100%). For each experiment, we retrained the machine learning classifiers,
repeating the operation 200 times, with various random subsets, for each scale. We then
computed the mean accuracy and the standard deviation for comparison.

As visible in Figure 4, even when few data are available, we rapidly exceed the
baseline accuracy, and even reach a reasonable performance. In our particular case, the
results already start stabilizing when we reach 1% of the dataset, or around 50 training
examples, for the number of floors. A few more samples are necessary when predicting the
type of roof.

Remote Sens. 2023, 15, 3352 14 of 24

Figure 4. Mean classification accuracy and standard deviation for the various machine learning
models, computed over 200 experiments. The x-axis shows the number of rows that were employed
for training (in logarithmic scale). For each experiment, we picked n random samples from the full
training dataset, and repeated the training process 200 times. Then, we computed the mean accuracy
and standard deviation. We plot this against the naive solution to see the improvement provided by
each method when the available training data are consistently reduced. The results obtained for the
Adaptive Boosting model and the Gradient Boosting classifier are shown in Appendix A.

2.5. Transforming 2D Geodata into a 3D CityJSON Model with dhCityModeler

The core principle of the dhCityModeler module is based on the idea that every 3D
geometry is the direct result of the combination between a footprint and a set of parameters.
By leveraging this approach, whenever new information becomes available, it is sufficient
to encode it inside our CityJSON: subsequently, the procedural modeling scripts can
be relaunched, generating new 3D geometries that reflect the newly added information.
This flexible framework allows for seamless integration of additional data, enabling the
continuous refinement and enhancement of the 3D models.

Moreover, the available procedural modeling tools are generally able to produce
models in which roofs are simplified as plain sloped surfaces, without incorporating
features such as overhang and thickness (i.e., LOD 2.0). Although these models can provide
a reasonable approximation of reality, more refined models that incorporate these features
can significantly reduce deviations from the real world, and yield better results in spatial
analyses [31]. For this reason, the scripts that we propose are able to generate the geometry
with an improved LOD equal to 2.1.

In practice, the module that we propose works as a converter: it takes as an input a
GIS file and converts it into a 3D CityJSON version of it. This process involves (1) map-
ping the available fields and geometries (LOD 0) to the Historical CityJSON extension;
(2) automatically retrieving the terrain mesh for the area of interest and encoding it in
CityJSON as a TINRelief; (3) filling the partially missing values (only the ones related to
procedural modeling) by applying a Random Forest algorithm; (4) assigning values to the
fields that are still required for modeling, but are completely absent from the dataset, by
applying a normal distribution falling within a range of plausible values; (5) moving the
footprints at the level of the terrain; and (6) proceeding with the procedural modeling and
encoding of the LOD 1.0 and LOD 2.1 geometries.

We will now go over each of these operations, explaining in detail how they work.
The initial step consists of mapping the tabular-form attributes of our GIS file to

the hierarchical structure of CityJSON, according to the fields proposed in the Historical
CityJSON extension. Before proceeding with this step, it is necessary for the user to provide
the geodata with the fields readily prepared to be correctly mapped. For instance, in our
case, we first proceeded with converting the values obtained from the secondary source in
the correct format: the categories that we had for the number of floors had to be converted
to a numerical value, while recording the original value in the comments of the paradata.
In particular, where the number of floors was indicated as “1–3”, we randomly picked
a value between three, assigning a slightly higher probability for values equal to 1 or 2

Remote Sens. 2023, 15, 3352 15 of 24

(p = 0.35). Similarly, where, for the type of roof, a value could correspond either to a hip or
gable roof, we decided to randomly assign one of them.

In this preliminary step, the geometry is simply encoded as an LOD 0 Multisurface
positioned at a null height. As a result of this preparatory step, we achieve a straightforward
and direct conversion from a shapefile or GeoJSON format to a CityJSON file.

The second preparatory step involves integrating the terrain mesh into the CityJSON
file and adjusting the elevation of the building footprints. The footprints, now encoded as
Multisurfaces, need, in fact, to be translated vertically to match the elevation data.

Initially, we calculate the geographic bounding box for our dataset, and use the Google
Elevation API or OpenTopoData to retrieve elevation data. These grid elevation data are
then used to generate a Triangulated Irregular Network (TIN) using the Pydelatin python
library [50]. The delatin algorithm, based on the paper by Garl and Heckbert [51], is em-
ployed for approximating a height field using Delaunay triangulation. The resulting mesh
is then encoded in the CityJSON format as a TINRelief, following the prescribed standard.

Subsequently, we look for the vertical value at which every footprint should be
positioned. In order to do so, for each footprint, we calculate the elevation of the projection
of the vertices onto the terrain mesh. By employing Delaunay triangulation, we can locate
the triangle containing the projected point, and then interpolate the elevations of the
triangle’s vertices to obtain the sought value. The smallest elevation, among the ones
obtained for each vertex, is employed to then translate the footprint vertically. The new
LOD0 geometries are saved in CityJSON, now positioned at the correct height with respect
to the terrain information. The next step involves inferring the missing values for CityJSON,
and then proceeding with the procedural generation of LOD1 and LOD2 geometries.

By applying the methodology described in Section 2.4, we are able to infer partially
missing parameters. In particular, if a parameter that is required for the successive phase of
procedural modeling is partially missing, we use a Random Forest algorithm to complete
the dataset. When a value is completely missing from the dataset, however, we simply
select it using a normal distribution in a plausible range (when the value is numerical), or
by randomly selecting it from a list of options (when categorical), with the possibility of
personalizing the probabilities for each category, as anticipated.

For the purpose of our research, of the many typologies of procedural modeling, we
decided to employ Constructive Solid Geometry (CSG). The CSG approach is based on the
successive application of Boolean operators on simple solid shapes to obtain more complex
ones. In order to do so, we employed CadQuery [52], a Python module designed for
building parametric 3D CAD models with the capabilities of dealing with BREP geometries
and performing spatial queries on geometry to ease the modeling procedures.

The generation of LOD1 simply consists of extruding the footprints of a given quantity.
In particular, as presented in Section 2.2, we derive height to use for extrusion by com-
bining the number of floors and the floor height, depending on the information available
in CityJSON.

The creation of the LOD 2.1 model consists of adding the roof shape to the previously
generated LOD 1 model. So far, our module can deal with the generation of four types
of roofs: (1) hip roofs, that is, a roof that presents sloped surfaces on every side; (2) gable
roofs, i.e., a roof that presents at least one vertical side (constituted by a portion of a wall);
(3) flat roofs, which may or may not have a balustrade around their perimeter; and (4)
domed roofs, i.e., flat roofs that also have a lowered dome on their surface (a category that
was added to take into account the specificities of the case study).

To illustrate this point, we will briefly present the algorithms concerned with the
generation of hip and gable roofs. The generation of hip roofs in particular is directly
connected to the straight skeleton identification [53]. In our case, we directly employ 3D
Boolean operations to compute the straight skeleton, proposing a volumetric approach to
the solution of the problem that also works in the presence of concave angles. In Figure 5,
we illustrate graphically the steps of our algorithm applied to each vertex iteratively. The
algorithm is based on subtractions from a central shape. To retrieve the shape to subtract

Remote Sens. 2023, 15, 3352 16 of 24

each time, we calculate the offset distance that is necessary to avoid self-intersections that
would cause errors when computing the 3D lofts.

Figure 5. Illustration of the process followed to create the subtraction shape corresponding to each
vertex. On the top row, we illustrate what happens when the angle in B is convex, while on the
bottom row, the process follows the situation where the angle is concave. The iterative process, using
B as the middle point, follows these steps: (1) We select the three consecutive points (A, B, C) and the
side segments joining them. (2) For each side segment (AB and BC), we calculate the length of the
segments from A and C that are perpendicular to the side segments, and intersect the bisector passing
in B (AA’, CC’). This length can be calculated by multiplying the length of the considered side for the
tangent of β/2, where β is the angle in B (AA′ = AB ∗ tan(β/2)). We employ the minimum between
the two lengths as the offset distance. Note that when the angle is concave, we employ an arbitrarily
large distance M, since self-intersection is not an issue in this case. (3) By applying the obtained
length as the module of v1 and v2 (vectors that are perpendicular to AB and BC), we retrieve the
length of the bisector in B that should be used as an offset vector for the sides. However, we use the
vectors v1 and v2 to trim this offset, and finally find the shape of our subtraction. (4) The subtraction
volume is obtained through a loft operation. (5) The subtraction volume is finally employed against
the initial extrusion of the roof base shape with a Boolean subtraction.

Gable roofs are generated starting from the correspondent hip roof, as shown in
Figure 6. Given a polygonal base shape, we identify the sloped sides that present only
three vertices. This is particularly easy with CadQuery, due to the available geometric
filtering capabilities that make it possible to select only the faces that are sloped and present
only three points, with the additional condition of having two points on the polygon’s
boundary (this constraint is necessary to avoid corner cases where a triangular face is not
on the perimeter of the polygon). Then, we construct the volumes that are needed to fill the
roofs, and we perform a Boolean union operation.

Figure 6. Illustration of the process of creation of the base shape for gable roofs. (1) First, we detect
the faces that are positioned along the perimeter, and present three vertices (highlighted in pink).
(2) Then, we create the solid shapes required to fill the gable roof, by finding its vertices and then
creating the faces joining them. (3) We apply a Boolean union and obtain the desired shape.

The result of this process corresponds to a simple set of sloped faces (i.e., LOD 2.0), but
we actually want to obtain a more realistic representation of the roof, with overhangs and
thickness (LOD 2.1). To this end, we leverage the querying operations of Cadquery to select

Remote Sens. 2023, 15, 3352 17 of 24

the faces that we need at each step and create a shell, which we apply on top of our base
roof shapes (either hip or gable). In Figure 7, we illustrate the methodology employed to
generate the shell. In particular, the process entails the following steps: (1) We take the base
polygonal shape of the roof and apply an horizontal offset equal to the selected overhang.
(2) We generate the corresponding hip or gable roof shape using the previously described
functions. (3) We query the ridge lines of the base roof and the one we just generated and
compute their vertical distance. We filter the sloped faces of the second roof and translate
them vertically back at the height of the base roof, using the quantity that we just found.
(4) We extrude the faces vertically of a given roof thickness.

Figure 7. Illustration of the generation of the shell for gable and hip roofs. By adding the shell
(highlighted in pink), we push the LOD of our models from LOD 2.0 to LOD 2.1.

3. Resulting Model

In this study, we performed a process of data completion of a 2D dataset and success-
fully transformed it into a 3D CityJSON representation. The tools that were presented make
our pipeline robust to missing data. In this way, the production of a high-LOD model is
not hindered by common incompleteness in the dataset. Our approach thus makes visual-
ization possible, while providing a simple tool to convert a 2D dataset into a 3D format
that supports a hierarchical structure for encoding additional information. In particular,
in Figure 8, we show the detailed view of the model that is obtained using the proposed
procedural modeling scripts. The level of detail (LOD 2.1) in the 3D representation of roof
shapes we achieve is satisfactory.

Figure 8. Detailed view of the LOD 2.1 model resulting from the application of the described
methodology over every building of the dataset. Image rendered using Blender.

Remote Sens. 2023, 15, 3352 18 of 24

The resulting model is also not limited to geometric information. While the final
result of traditional 3D modeling consists of a geometric model, the methodology we
propose is designed to create an informative model. In fact, the advantage of combining
the 3D format with a hierarchical data structure lies in the possibility of keeping track not
only of the parameters that were used, but also of their origin, and the assumptions or
even hypotheses that were made. In particular, by employing the CityJSON extension we
proposed in [25], we are able to keep track of the provenance of each attribute, using the
CityJSON hierarchical structure (Figure 9).

Thus, the outcome of our work consists of an informative model that maintains all the
initial attributes mapped from the original geodata.

Figure 9. In the image, we can see part of the attributes that characterize a selected building (in
yellow). The visualization was performed using the CityJSON webviewer Ninja [54].

The use of the CityJSON hierarchical structure makes it possible to embed the di-
achronic information inside the model and extract the desired time model from the full
dataset (Figure 10).

Remote Sens. 2023, 15, 3352 19 of 24

Figure 10. Complete view of nine temporal phases corresponding to our 4D model of the city
of Jerusalem.

4. Discussion

The conversion from a 2D GIS file to a 3D CityJSON involved several preparatory steps,
including mapping the attributes to the CityJSON tree structure and the incorporation of a
terrain mesh from Google API or OpenTopoData. This provides the user with a simple tool

Remote Sens. 2023, 15, 3352 20 of 24

that makes it possible to transform any 2D geolocated dataset to a 3D geolocated CityJSON
that incorporates three different levels of detail. Our procedural modeling scripts addressed
the current limitations of tools that offer this kind of service, improving the representation
of roofs with thickness and overhang. Moreover, the generated 3D models incorporate
detailed information about building footprints, parameters, and their sources, ensuring
traceability, and therefore, transparency.

In addition to the technical tools that were developed, our first contribution consists of
proving the advantages of employing computationally efficient machine learning models
for data completion even in the case of small datasets and with categorical data. We selected
Random Forest as the algorithm that best suited our case, both with respect to speed and
accuracy. The latter confirms previous results obtained by Farella et al. for the prediction of
building height (and thus, a numerical value) [15]. A great advantage of using Random
Forest lies in the possibility of training the model even in the presence of missing input
values, as well as in the possibility of visualizing the decision trees that make up the
Random Forest classifier.

Indeed, we consider other advantages of deploying machine learning methods. The
fact that, from a limited number of available fields, it is still possible to fill up a dataset
automatically in a significant way could mean that machine learning could help leveraging
some of the hidden patterns that connect attributes in the sparse dataset. Furthermore, as
users, we can actively refine the results by adding new information when available, or by
confirming the result of an inference by applying an educated guess. Moreover, compared
to previous studies, our tools offer the advantage of being generic, enabling the user to
select the target feature along with the desired predictors.

For this reason, one of the main advantages of the proposed approach lies in its
adaptability to the growth of the dataset. When dealing with historical data, in fact, we
often have to cross-examine different sources, and new pieces of information may become
available in time. However, traditional methods for 3D reconstruction, especially if dealing
with manual modeling, do not present the flexibility to incorporate new information. In the
proposed approach, not only do we present a system that is capable of actively learning,
but we also handle the procedural modeling as a result of the information present in the
dataset and the footprints. As a consequence, the 3D geometry only corresponds to a
temporary geometric representation of the data, rather than an alleged final output. Due
to these two elements, the model can grow incrementally without risking any data loss,
while bootstrapping the reconstructive process. The possibility of using versioning [55] in
CityJSON files further enhances the idea of 3D reconstructions as ever-growing models,
rather than final outputs, ultimately opening the way to collaborative usage.

5. Conclusions

In this article, we have tackled the challenges for the generation of informative 3D or
4D urban historical reconstructions. Our methodology was specifically designed to address
the recurring issues related to the creation of such models: data incompleteness, cultural
specificity, the iterative nature of scientific projects, and the subjectivity of reconstruction
and interpretation. By facing each of these issues, we present a comprehensive framework
that introduces a set of open-source tools for transforming 2D GIS datasets into 3D CityJSON
representations automatically.

We showcase the operations implemented to generate the initial 2D geodata from a
collection of digitized historical map images. This demonstration underscores the versatility
of the suggested pipeline, showcasing its potential for application in other comparable
historical case studies. This process consisted of the semantic segmentation of the digitized
maps and their vectorization with an algorithm especially designed to produce simplified
yet sharp and continuous vector geometries, adapted to procedural modeling.

Machine learning techniques have been integrated into our framework to allow for
intelligent completion of missing values in the dataset, with the aim of facing the issue
of data incompleteness. Among the various methods, Random Forest achieved the best

Remote Sens. 2023, 15, 3352 21 of 24

results for the prediction of categorical information. Moreover, these algorithms present
additional advantages: they are inherently resilient to empty fields in the input data, and
they provide transparent and interpretable models. The visualization of decision trees, for
instance, could provide valuable insight for the theory of architecture. Moreover, these
light, low-resource models can be trained in real time, paving the way for active learning
approaches and interactive interfaces.

The completed dataset was then structured in the CityJSON format, from which we
generated the 3D model of the city with multiple LODs (0.0, 1.0, 2.1). The resulting models
provided a more accurate and detailed representation of the built environment, enabling
better spatial analyses and simulations. The CityJSON extension that we employed, which
records the sources and paradata for each parameter, ensures traceability and enhances
data provenance, thus tackling effectively the challenge of subjectivity of interpretation by
making the reconstructive process transparent. The transparency and accessibility are also
ensured by making the tools open-source. Moreover, by providing a procedural modeling
library that is customizable by the user, we managed to address the cultural specificity that
is inherent in every historical reconstruction, creating a tool that can be adapted to each
case study.

The machine learning approaches we propose are deliberately simple, which allows
for dynamic and iterative retraining based on a few training samples. By combining
procedural geometry generation, we effectively meet the requirement of constructing
dynamic models that can iteratively adapt to newly acquired information. This approach
ensures the flexibility and responsiveness necessary to accommodate evolving data and
maintain the accuracy and relevance of the models. It is true, however, that larger and
more complex datasets could benefit from more advanced and computationally expensive
algorithms; to remedy this, we envision that such models could be retrained periodically,
or one could perform bootstrapping to create models for larger regional projects, while
simpler models could focus on spreading the changes to city or neighborhood scales. Other
future work includes incorporating the tools presented here into a web platform to take
full advantage of the dynamic capabilities of our framework.

In conclusion, our paper illustrates the successful transformation of 2D datasets into
3D CityJSON representations by incorporating machine learning techniques and advanced
LOD modeling. This study contributes to the advancement of generic 3D modeling tech-
niques that are very useful for urban planning and the architectural restitution of complex
sets of buildings, and their application is especially suitable for the historical reconstruction
of cities.

Author Contributions: Conceptualization, B.V. and R.P.; methodology, B.V. and R.P.; code, B.V. and
R.P.; validation, B.V.; writing—original draft preparation, B.V. and R.P.; writing—review and editing,
I.d.L. and F.K.; supervision, I.d.L. and F.K.; project administration, I.d.L. and F.K.; funding acquisition,
I.d.L. and F.K. All authors have read and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 945363, and the
College of Humanities at EPFL

Data Availability Statement: The tools that were presented are available at the following URL:
https://github.com/BeatriceVaienti/dhCityModeler.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LOD Level Of Detail
GIS Geographic Information Systems

https://github.com/BeatriceVaienti/dhCityModeler

Remote Sens. 2023, 15, 3352 22 of 24

Appendix A

Figure A1. Mean classification accuracy and standard deviation for the various machine learning
models, computed over 200 experiments. The x-axis shows the number of rows that were employed
for the training process (in logarithmic scale). For each experiment, we picked n random samples
from the full training dataset, and repeated the training process 200 times. Then, we computed the
mean and standard deviation of the obtained score. We plot this against the naive solution to see
the improvements provided by each methods even when the available training data are consistently
reduced. In this plot, the Ada Boost model and the Gradient Boosting classifier are also shown.
While the Gradient Boosting classifier exhibits good performances, but was then excluded due to
computational time, the Ada Boost model shows less reliable performances, even when adding data
to the training set. One can in fact notice a high standard deviation in the scores, with less stable
results when compared with the other predictors.

References
1. Bruschke, J.; Kröber, C.; Messemer, H. Insights into Collections of Spatialized Historical Photographs. In Proceedings of the 25th

International Conference on Cultural Heritage and New Technologies, Vienna, Austria, 4–6 November 2020.
2. Stiller, J.; Wintergrün, D. Digital reconstruction in historical research and its implications for virtual research environments. In 3D

Research Challenges in Cultural Heritage II; Münster, S., Pfarr-Harfst, M., Kuroczyński, P., Ioannides, M., Eds.; Springer: Cham,
Switzerland, 2016; pp. 47–61.

3. Biljecki, F.; Arroyo Ohori, K.; Ledoux, H.; Peters, R.Y.; Stoter, J.E. Population Estimation Using a 3D City Model: A Multi-Scale
Country-Wide Study in the Netherlands. PLoS ONE 2016, 11, e0156808. [CrossRef] [PubMed]

4. Wu, Z.; Wang, Y.; Gan, W.; Zou, Y.; Dong, W.; Zhou, S.; Wang, M. A Survey of the Landscape Visibility Analysis Tools and
Technical Improvements. Int. J. Environ. Res. Public Health 2023, 20, 1788. [CrossRef] [PubMed]

5. Biljecki, F.; Stoter, J.E.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D City Models: State of the Art Review. ISPRS Int.
J. Geo Inf. 2015, 4, 2842–2889. [CrossRef]

6. Buyukdemircioglu, M.; Kocaman, S.; Kada, M. Deep learning for 3D building reconstruction: A review. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2022, XLIII-B2-2022, 359–366. [CrossRef]

7. Pepe, M.; Costantino, D.; Alfio, V.S.; Vozza, G.; Cartellino, E. A Novel Method Based on Deep Learning, GIS and Geomatics
Software for Building a 3D City Model from VHR Satellite Stereo Imagery. ISPRS Int. J. Geo Inf. 2021, 10, 697. [CrossRef]

8. Biljecki, F.; Ledoux, H.; Stoter, J. Generating 3D city models without elevation data. Comput. Environ. Urban Syst. 2017, 64, 1–18.
[CrossRef]

9. Roy, E.; Pronk, M.; Agugiaro, G.; Ledoux, H.T. Inferring the number of floors for residential buildings. Int. J. Geogr. Inf. Sci. 2022,
37, 938–962. [CrossRef]

10. Biljecki, F.; Dehbi, Y. Raise the roof: Towards generating Lod2 models without aerial surveys using machine learning. ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-4/W8, 27–34. [CrossRef]

11. Hecht, R.; Meinel, G.; Buchroithner, M. Automatic identification of building types based on topographic databases—A comparison
of different data sources. Int. J. Cartogr. 2015, 1, 18–31. [CrossRef]

12. Zhou, P.; Chang, Y. Automated classification of building structures for urban built environment identification using machine
learning. J. Build. Eng. 2021, 43, 103008. [CrossRef]

13. Biljecki, F.; Sindram, M. Estimating Building Age with 3D GIS. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W5,
17–24. [CrossRef]

14. Rosser, J.F.; Boyd, D.S.; Long, G.; Zakhary, S.; Mao, Y.; Robinson, D. Predicting residential building age from map data. Comput.
Environ. Urban Syst. 2019, 73, 56–67. [CrossRef]

http://doi.org/10.1371/journal.pone.0156808
http://www.ncbi.nlm.nih.gov/pubmed/27254151
http://dx.doi.org/10.3390/ijerph20031788
http://www.ncbi.nlm.nih.gov/pubmed/36767160
http://dx.doi.org/10.3390/ijgi4042842
http://dx.doi.org/10.5194/isprs-archives-XLIII-B2-2022-359-2022
http://dx.doi.org/10.3390/ijgi10100697
http://dx.doi.org/10.1016/j.compenvurbsys.2017.01.001
http://dx.doi.org/10.1080/13658816.2022.2160454
http://dx.doi.org/10.5194/isprs-annals-IV-4-W8-27-2019
http://dx.doi.org/10.1080/23729333.2015.1055644
http://dx.doi.org/10.1016/j.jobe.2021.103008
http://dx.doi.org/10.5194/isprs-annals-IV-4-W5-17-2017
http://dx.doi.org/10.1016/j.compenvurbsys.2018.08.004

Remote Sens. 2023, 15, 3352 23 of 24

15. Farella, E.M.; Özdemir, E.; Remondino, F. 4D Building Reconstruction with Machine Learning and Historical Maps. Appl. Sci.
2021, 11, 1445. [CrossRef]

16. Harley, J.B. Deconstructing the map. Cartographica 1989, 26, 1–20. [CrossRef]
17. The London Charter Organisation. The London Charter for the Computer-Based Visualisation of Cultural Heritage; The London Charter

Organisation: London, UK, 2009.
18. Beacham, R. Defining our Terms in Heritage Visualization. In Paradata: Intellectual Transparency in Historical Visualization;

Bentkowska-Kafel, K., Denard, H., Eds.; Research in the Arts and Humanities Series: Ashgate, UK, 2012; pp. 7–11.
19. Börjesson, L.; Sköld, O.; Huvila, I. Paradata in Documentation Standards and Recommendations for Digital Archaeological

Visualisations. DCS 2020, 6, 191–220. [CrossRef]
20. Denard, H. A New Introduction to the London Charter. In Paradata: Intellectual Transparency in Historical Visualization; Bentkowska-

Kafel, K., Denard, H., Eds.; Research in the Arts and Humanities Series: Ashgate, UK, 2012; pp. 57–71.
21. Gregory, I.N.; Geddes, A. Introduction: From Historical GIS to Spatial Humanities: Deepening Scholarship and Broadening

Technology. In Toward Spatial Humanities: Historical GIS and Spatial History; Gregory, I.N., Geddes, A., Eds.; Indiana University
Press: Bloomington, IN, USA, 2014; pp. ix–xxii.

22. Gröger, G.; Plümer, L. CityGML—Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33.
[CrossRef]

23. Ledoux, H.; Ohori, K.; Kumar, K.; Dukai, B.; Labetski, A.; Vitalis, S. CityJSON: A compact and easy-to-use encoding of the
CityGML data model. Open Geospat. Data Softw. Stand. 2019, 4, 4. [CrossRef]

24. Biljecki, F.; Ledoux, H.; Stoter, J. An improved LOD specification for 3D building models. Comput. Environ. Urban Syst. 2016, 59,
25–37. [CrossRef]

25. Vaienti, B.; Guhennec, P.; di Lenardo, I. A Data Structure for Scientific Models of Historical Cities: Extending the CityJSON
Format. In Proceedings of the 6th ACM SIGSPATIAL International Workshop on Geospatial Humanities, GeoHumanities’22,
Seattle, DC, USA, 1 November 2022.

26. Morlighem, C.; Labetski, A.; Ledoux, H. Reconstructing historical 3D city models. Urban Inform. 2022, 1, 11. [CrossRef]
27. Saldaña, M. An Integrated Approach to the Procedural modeling of Ancient Cities and Buildings. Digit. Scholar. Humanit. 2015,

30, 148–163. [CrossRef]
28. Girindran, R.; Boyd, D.S.; Rosser, J.; Vijayan, D.; Long, G.; Robinson, D. On the Reliable Generation of 3D City Models from Open

Data. Urban Sci. 2020, 4, 47. [CrossRef]
29. Badwi, I.; Ellaithy, H.; Youssef, H. 3D-GIS Parametric modelling for Virtual Urban Simulation Using CityEngine. Ann. GIS 2022,

28, 325–341. [CrossRef]
30. Adão, T.; Magalhães, L.; Peres, E. Ontology-Based Procedural Modelling of Traversable Buildings Composed by Arbitrary Shapes, 1st ed.;

Springer Briefs in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 1.
31. Biljecki, F.; Ledoux, H.; Stoter, J.E.; Vosselman, G. The variants of an LOD of a 3D building model and their influence on spatial

analyses. ISPRS J. Photogramm. Remote Sens. 2016, 116, 42–54. [CrossRef]
32. Amiran, D.H.K.; Karmon, M. The Hebrew University of Jerusalem. Department of Geography. In Atlas of Jerusalem, 1st ed.; De

Gruyter: Berlin, Germany, 1973.
33. Jerusalem, S.F.J. The Old City Compiled, Drawn Printed under the Direction of F.J. Salmon, Commissioner for Lands Surveys,

Palestine. 1936. Revised from Information Supplied by Dept. of Antiquities 1945. Modified Reprint May 1947. 69.5 × 58 cm.
Available online: https://www.nli.org.il/en/maps/NNL_MAPS_JER002654902/NLI (accessed on 1 May 2023).

34. Survey of Palestine. Jerusalem. Survey of Palestine. 1938. 71 × 61 cm. Available online: https://www.nli.org.il/en/maps/NNL_
MAPS_JER002366984/NLI (accessed on 15 May 2023).

35. Petitpierre, R. Historical City Maps Semantic Segmentation Dataset. Version 1.0. Zenodo 2021. [CrossRef]
36. Petitpierre, R.; Guhennec, P. Effective annotation for the automatic vectorization of cadastral maps. Digit. Scholar. Humanit. 2022,

fqaq006. [CrossRef]
37. Petitpierre, R.; Kaplan, F.; di Lenardo, I. Generic Semantic Segmentation of Historical Maps. In Proceedings of the CEUR

Workshop, CHR 2021: Computational Humanities Research Conference, Amsterdam, The Netherlands, 17–19 November 2021;
pp. 228–248.

38. Oliveira, S.A.; Seguin, B.; Kaplan, F. dhSegment: A generic deep-learning approach for document segmentation. In Proceedings
of the 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, USA, 5–8 August
2018; pp. 7–12.

39. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

41. Zhang, T.Y.; Seuen, C.Y. A fast parallel algorithm for thinning digital patterns. Com. ACM 1984, 27, 236–239. [CrossRef]
42. Harris, C.; Stephens, M. A Combined Corner and Edge Detector. Alvey Vision Conf. 1988, 15, 147–151.
43. Douglas, D.; Peucker, T. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature.

Can. Cartogr. 1973, 10, 112–122. [CrossRef]

http://dx.doi.org/10.3390/app11041445
http://dx.doi.org/10.3138/E635-7827-1757-9T53
http://dx.doi.org/10.14361/dcs-2020-0210
http://dx.doi.org/10.1016/j.isprsjprs.2012.04.004
http://dx.doi.org/10.1186/s40965-019-0064-0
http://dx.doi.org/10.1016/j.compenvurbsys.2016.04.005
http://dx.doi.org/10.1007/s44212-022-00011-3
http://dx.doi.org/10.1093/llc/fqv013
http://dx.doi.org/10.3390/urbansci4040047
http://dx.doi.org/10.1080/19475683.2022.2037019
http://dx.doi.org/10.1016/j.isprsjprs.2016.03.003
https://www.nli.org.il/en/maps/NNL_MAPS_JER002654902/NLI
https://www.nli.org.il/en/maps/NNL_MAPS_JER002366984/NLI
https://www.nli.org.il/en/maps/NNL_MAPS_JER002366984/NLI
http://dx.doi.org/10.5281/zenodo.5513639
http://dx.doi.org/10.1093/llc/fqad006
http://dx.doi.org/10.1145/357994.358023
http://dx.doi.org/10.3138/FM57-6770-U75U-7727

Remote Sens. 2023, 15, 3352 24 of 24

44. Polylabel: A fast Algorithm for Finding the Pole of Inaccessibility of a Polygon. Available online: https://github.com/mapbox/
polylabel (accessed on 30 May 2023).

45. García-Castellanos, D.; Lombardo, U. Poles of inaccessibility: A calculation algorithm for the remotest places on Earth. Scott.
Geogr. J. 2007, 123, 227–233. [CrossRef]

46. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. JMLR 2011, 12, 2825–2830.

47. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
48. Zhu, J.; Rosset, S.; Zou, H.; Hastie, T. Multi-class AdaBoost. Stats. Interface 2006, 2, 349–360.
49. Friedman, J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stats. 2001, 29, 1189–1232. [CrossRef]
50. Pydelatin. Python Bindings to ‘Hmm’ for Fast Terrain Mesh Generation. Available online: https://github.com/kylebarron/

pydelatin (accessed on 30 May 2023).
51. Garl, M.; Heckbert, P. Fast Polygonal Approximation of Terrains and Height Fields; Tech. Rep. CMU-CS-95-181; Carnegie Mellon

University: Pittsburgh, PA, USA, 1995.
52. Cadquery. A Python Parametric CAD Scripting Framework Based on OCCT. Available online: https://github.com/CadQuery/

cadquery (accessed on 30 May 2023).
53. Sugihara, K. Straight Skeleton Computation Optimized for Roof Model Generation. In Proceedings of the WSCG’2019-27

International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2019, Pilsen, Czech
Republic, 27–31 May 2019; Volume 27, pp. 101–109.

54. Vitális, S.; Labetski, A.; Boersma, F.; Dahle, F.; Li, X.; Ohori, K.; Ledoux, H.; Stoter, J. CITYJSON + WEB = NINJA. ISPRS Ann.
Photogramm. Remote Sens. Spat. Inf. Sci. 2020, VI-4/W1-2020, 167–173. [CrossRef]

55. Vitalis, S.; Labetski, A.; Arroyo Ohori, K.; Ledoux, H.; Stoter, J. A data structure to incorporate versioning in 3D city models.
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-4/W8, 123–130. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/mapbox/polylabel
https://github.com/mapbox/polylabel
http://dx.doi.org/10.1080/14702540801897809
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1214/aos/1013203451
https://github.com/kylebarron/pydelatin
https://github.com/kylebarron/pydelatin
https://github.com/CadQuery/cadquery
https://github.com/CadQuery/cadquery
http://dx.doi.org/10.5194/isprs-annals-VI-4-W1-2020-167-2020
http://dx.doi.org/10.5194/isprs-annals-IV-4-W8-123-2019

	Introduction
	Methodology and Approach
	From Cartographic Sources to a GIS Dataset
	Parameters Employed for the Procedural Modeling
	Addressing the Issue of Missing Parameters
	Filling Gaps
	Transforming 2D Geodata into a 3D CityJSON Model with dhCityModeler

	Resulting Model
	Discussion
	Conclusions
	Appendix A
	References

