
Citation: Fu, Z.; Wang, F.; Dou, J.;

Nam, K.; Ma, H. Enhanced Absence

Sampling Technique for Data-Driven

Landslide Susceptibility Mapping: A

Case Study in Songyang County,

China. Remote Sens. 2023, 15, 3345.

https://doi.org/10.3390/rs15133345

Academic Editors: Stefano Morelli,

Veronica Pazzi and Mirko Francioni

Received: 22 May 2023

Revised: 17 June 2023

Accepted: 27 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Enhanced Absence Sampling Technique for Data-Driven
Landslide Susceptibility Mapping: A Case Study in Songyang
County, China
Zijin Fu 1 , Fawu Wang 1,2,*, Jie Dou 3 , Kounghoon Nam 1 and Hao Ma 1

1 Department of Geotechnical Engineering, College of Civil Engineering, Tongji University,
Shanghai 200092, China; fuzijin@tongji.edu.cn (Z.F.); soilnam@tongji.edu.cn (K.N.); mah@tongji.edu.cn (H.M.)

2 Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education,
Tongji University, Shanghai 200092, China

3 Badong National Observation and Research Station of Geohazards, China University of Geosciences-Wuhan,
Wuhan 430074, China; doujie@cug.edu.cn

* Correspondence: wangfw@tongji.edu.cn

Abstract: Accurate prediction of landslide susceptibility relies on effectively handling absence sam-
ples in data-driven models. This study investigates the influence of different absence sampling
methods, including buffer control sampling (BCS), controlled target space exteriorization sampling
(CTSES), information value (IV), and mini-batch k-medoids (MBKM), on landslide susceptibility
mapping in Songyang County, China, using support vector machines and random forest algorithms.
Various evaluation metrics are employed to compare the efficacy of these sampling methods for sus-
ceptibility zoning. The results demonstrate that CTSES, IV, and MBKM methods exhibit an expansion
of the high susceptibility region (maximum susceptibility mean value reaching 0.87) and divergence
in the susceptibility index when extreme absence samples are present, with MBKM showing a com-
parative advantage (lower susceptibility mean value) compared to the IV model. Building on the
strengths of different sampling methods, a novel integrative sampling approach that incorporates
multiple existing methods is proposed. The integrative sampling can mitigate negative effects caused
by extreme absence samples (susceptibility mean value is approximately 0.5 in the same extreme
samples and presence-absence ratio) and obtain significantly better prediction results (AUC = 0.92,
KC = 0.73, POA = 2.46 in the best model). Additionally, the mean level of susceptibility is heavily
influenced by the proportion of absent samples.

Keywords: presence-absence method; data-driven model; landslide susceptibility mapping; absence
sampling method; integrative sampling; machine learning

1. Introduction

Landslides are devastating geological processes that frequently cause massive casu-
alties and economic losses [1,2]. Due to their sudden occurrence, fast movement, and
strong impact, landslides pose a serious threat to traffic, buildings, and residents, espe-
cially in well-developed mountainous areas. Therefore, accurate landslide forecasting is of
paramount importance. In recent years, with the rapid development of 3S technology (re-
mote sensing, geographic information system, and global positioning system), tremendous
progress has been made in remote sensing for landslides, covering aspects of landslide
detection, monitoring, and hazard assessment and prediction [3–5]. Landslide susceptibility
mapping (LSM), which predicts the spatial probability of landslide occurrence under cer-
tain environmental conditions in an area, represents important regional landslide research
work [6].

In an era of rapid development in computer science and GIS technology, various
methods have been proposed for LSM. These methods can be categorized into three groups:
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knowledge-based methods, physical methods, and data-driven methods [7]. While the
subjectivity of expert knowledge is too strong and the wide-area parameters in physical
models possess uncertainty, data-driven methods have more objective results and higher
efficiency. Data-driven methods have been widely studied and applied in LSM. The kernel
idea of data-based methods is to find a certain relationship by means of data science,
relying on a landslide inventory and conditioning factors database. Researchers have
developed and applied data-based models in LSM, including bivariate and machine-
learning methods [8,9]. The classic and widely used bivariate methods include IV, certainty
factor (CF), frequency ratio (FR), and fuzzy logic (FL). There are various types of machine
learning models, such as logistic regression (LR), decision tree (DT), random forest (RF),
support vector machine (SVM), Bayes, K-Nearest Neighbor (KNN), and artificial neural
networks (ANN), as well as more complex models such as auto-encoder [10–15]. Data-
driven methods in LSM can be further classified into two groups: presence-absence methods
and presence-only methods [16]. The first group needs both landslide presence samples
and landslide absence samples. The other group of methods needs only landslide samples,
such as bivariate classification.

Sampling strategy, which involves using this acquired data to get a better prediction
effect in LSM, is an important issue. The samples used for LSM prediction are usually
divided into a training set and a testing set. For most machine learning methods in LSM,
this includes presence and absence samples. Extracting and dividing these samples from a
map are fundamental steps in LSM. The quality of the samples used for model training
significantly impacts the performance of a data-driven model [17]. The presence samples
(landslides) in LSM are usually generated from a landslide inventory map produced by
field investigations and the interpretation of aerial photos or remote sensing images [18,19].
For the presence sampling locations, there are some commonly used sampling strategies,
including the landslide scarp centroid, the centroid of the landslide body, the whole scarp
polygon region, and the entire landslide body [20,21]. Different from the present samples,
absence samples cannot be obtained directly. Therefore, studying the uncertainty of absence
samples is particularly important for data-driven LSM.

Three strategies are commonly employed for absence sampling in current LSM re-
search: geographic generation, feature-based generation, and generation from a prior
model [22]. In geographic generation, common methods include random sampling (selec-
tion from randomly distributed circular zones) and buffer-controlled sampling (sampling
from grid cells outside landslide buffer zones) [23], or selecting samples from areas where
landslides are not likely to occur, such as a plain (based on expert judgment) [24,25]. Among
these methods, buffer control sampling is the most frequently used [26]. However, this
method does not guarantee that the selected area is free from potential landslides or has
environmental parameters similar to landslides, either of which reduces the quality of the
samples and has a negative influence on the accuracy of the LSM. Some studies aim to
reduce the uncertainty associated with randomly selected samples in geographic space to
improve the quality of absence samples [27]. In a feature-based generation, the theoretical
foundation is the third law of geography, which states that landslides and non-landslides
should be separated as much as possible in their feature space. Absence sampling from
low-slope areas is an intuitive approach in a feature-based method, but the slope factor is
overly magnified because of subjectivity. Some optimized absence sampling methods have
been proposed, including target space exteriorization sampling (TSES) and similarity-based
methods such as mahalanobis distance, bioclim, domain, and other improved similarity
algorithms [22,28–30]. These methods select or create absence samples based on the feature
space rather than the geographic space, enhancing the reliability of absence samples. TSES
fabricates absence samples by modifying one or more features of a presence sample dataset
into random values in the exteriorization feature space; these absence samples, produced
in feature space, are not necessarily in geographic space and have some connection with
the presence samples. Similarity-based methods select absence samples from the research
area through quantitative indicators of similarity to landslide features. Another approach
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to improving the quality of absence samples is through generation from a prior model,
where absence samples are extracted from the low susceptibility zone of the prior model.
In LSM, the scenario where labels are available only for landslide samples corresponds to a
positive, unlabeled learning problem. The presence-only model is a suitable method for
positive-unlabeled learning as a prior model. Presence-only models such as IV and CF are
widely applied in hybrid models, such as CF-LR, CF-SVM, CF-RF, LV-LR, IV-SVM, and
IV-RF, by combining with a presence-absence model [31–34], but most of these methods
use only the output parameters of the presence-only model as the input parameters of the
presence-absence model. In fact, the bridge between the two methods can also be built on
samples. Research shows that a presence-only method may overestimate the susceptibility
of landslides [16,29]. When regional susceptibility is overestimated, it is easier to expose
low susceptibility zones from which absence samples can be selected with greater certainty.
Some studies have used presence-only as an a priori model for the extraction of missing
samples and obtained good prediction results [35,36]. Furthermore, the combination of
presence-only methods with unsupervised learning has been explored to further enhance
the absence sampling strategy [37]. The two-step approach is also an algorithm for solving
the absence sample problem; it trains a prior model with presence samples and unlabeled
samples to identify reliable absence samples [38]. Following similar concepts, a multiple-
layer perceptron model and a two-step approach based on deep neural networks have been
applied in some LSM studies [39–41].

In the field of landslide susceptibility prediction, absence sampling plays a crucial
role. However, existing studies often overlook the quality of absence samples in absence
sampling methods, leaving the impact of absence sample quality on landslide susceptibility
prediction understudied. It is essential to conduct comparative studies using different
methods and quality control measures to select appropriate absence sampling methods and
ensure the quality of absence samples. Moreover, many LSM studies tend to focus solely on
prediction performance scores, neglecting the importance of assessing the reasonableness
of landslide susceptibility prediction results. This oversight can lead to disregarding
the negative effects of selected absence samples. Therefore, it is necessary to establish
a comprehensive and valid evaluation system for absence samples in order to consider
their applicability. On this basis, an absence sampling method with strong applicability
considering the quality of different methods needs to be proposed.

In this paper, four absence sampling methods are investigated, and an integrative
sampling method is proposed based on the fusion of these methods for a data-driven
LSM model. In order to control the quality of absence samples, a controlled target space
exteriorization sampling (CTSES) method based on improved TSES is proposed. A less
commonly used optimization clustering algorithm, mini-batch K-medoids (MBKM), is
employed as a prior model. The sampling methods include BCS, CTSES, IV, and MBKM,
as well as a novel integrative sampling. Sampling intervals were established for each
method, and extensive training was conducted to investigate the effects of absence samples
from different sources and of varying quality on LSM. SVM and RF models are applied
as predictive models for LSM in Songyang County, Lishui City, Zhejiang Province, China,
where five absence sampling methods were tested.

2. Materials
2.1. Study Area

The study area is Songyang County, which is located in the southwest of Zhejiang
Province and northwest of Lishui City. The geographical coordinates are 119◦10′0′′E to
119◦42′42′′E, 28◦14′23′′N to 28◦36′15′′N. The largest diameter from north to south is 40.2 km,
with a total area of about 1404 square kilometers. Figure 1 presents the location of the
study area.
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Figure 1. Geographical location of Songyang County.

Songyang County is located in the mountainous region of southern Zhejiang Province.
The topography primarily consists of medium and low hills surrounded by mountains, with
an open central basin known as “Songgu Basin”. The terrain is higher in the northwest and
lower in the southeast. The county has obvious layers of landforms, including accumulation
landforms, erosion and denudation landforms, and structural erosion landforms. The
lithology formation includes rhyolite, tuff, gneiss, granite, sandstone, quartz sandstone,
and Quaternary sediments. Faults dominate the geological structure of the Songyang area,
with over 30 large and small fault zones identified. Most of these faults align in the NNW
and NNE directions, with the NNE fault belonging to the Yuyao-Lishui fault system, which
is a deep fault traversing the lithosphere. This fault system formed in a tensioning process
in the Cretaceous, with a strike of about 30◦ and 350 km in Zhejiang Province, and it runs
through Songyang County [42,43]. The multistage tectonic activity that occurred in the
ancient fault zone has resulted in the formation of a compressive fault zone, which spans
4–30 km in width. The fault zones in Songyang County exhibit intricate tectonic activities
and fractured internal rock mass structures, significantly influencing the local geological
and geomorphic environment and impacting the stability of the original slope [44]. The
seismic peak acceleration in Songyang County is within the range of 0.05 g, indicating a
stable crustal zone.

Songyang County is situated in a subtropical monsoon region characterized by a
mild climate, abundant rainfall, and distinct seasonal variations, with notable variations
in vertical climate. The annual precipitation is 1700 mm, with the period from March to
June receiving the highest amount of rainfall, averaging 816.8 mm annually. November
experiences the lowest rainfall, 40–50 mm. Additionally, the southeast coastal area is prone
to frequent typhoon occurrences, with Songyang County being affected by an average of
one to three typhoons each year. From 2015 to 2020, the county experienced the impact of
several typhoons, including Sudillo, Moranti, Likima, and Hagupe. Each of these typhoons
resulted in increased rainfall and triggered numerous landslides as they passed through
the area. The rivers in Songyang County are part of the Oujiang River Basin. Songyin Creek
and Xiaogang Creek meander from the northwest and southwest directions, respectively,
toward the southeast. The area is characterized by a dense development of tributaries and
numerous river valleys. During the rainy season, the water level of the rivers rises sharply.
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2.2. Landslide Inventory

A landslide inventory is an important dependent variable in a calculation model and
has a great influence on the accuracy of prediction results. In recent years, landslides
have continued to occur in the study area. According to a relevant landslide survey
report and remote sensing interpretation, 217 landslides were identified in the study area.
These landslides occurred between 2000 and 2021, and the years with the most frequent
occurrence were 2010, 2012, 2014, and 2016, which were also the years when Songyang
County was severely affected by heavy rainfall/typhoons, and other catastrophic effects.

Landslides in Songyang County are divided into soil landslides and rock landslides,
with soil landslides being the predominant type (Figure 2). The compositions of landslide
masses are generally uniform, composed mainly of silty clay with gravel and a sandy,
completely weathered layer in the metamorphic rock and granite distribution area. The
thicknesses of landslide masses are generally small, ranging from 1 to 5 m. The volume
sizes of landslides are generally below 10,000 m3; about half of the landslides are less than
1000 m3, while several reach 100,000 m3. The smaller ones can measure tens of cubic meters.
The soil within the sliding zone is often soft plastic powdery clay, and the sliding bed is
often the underlying bedrock or a relatively denser rock-soil layer. From the perspective
of a plane, landslides tend to exhibit generally semi-elliptical, tongue-shaped, or wide
fan-shaped patterns, with the semi-elliptical shape being the most common. From the
perspective of the longitudinal section, landslides primarily appear as linear or stepped
features. The transition zone is where the terrain slope changes from steep to gentle, and the
upper slope is mostly above 25◦. According to an analysis of landslide triggering, fragile
geological conditions are the primary causes. Additionally, extreme rainfall and human
engineering activities (excavation, slope cutting, plowing, etc.) have created a landslide
breeding environment.
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Figure 2. Typical landslides in Songyang County. (a) Chengtian landslide; (b) Xiangxi town landslide;
(c) potential landslide in Fanshantui, Shaqiu Village. The red lines indicate the geometric boundary
of the landslides and the arrow indicates the direction of the main slide.
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2.3. Landslide Conditioning Factors

Factors affecting landslides can be divided into two categories: internal disaster-
forming conditioning factors and external triggering factors. In this study, a total of
16 parameters were considered as potential conditioning factors for landslides, including el-
evation, slope, aspect, plan curvature, profile curvature, topographic roughness index (TRI),
topographic wetness index (TWI), sediment transport index (STI), normalized difference
vegetation index (NDVI), lithology, rainfall, distance to faults, distance to river network,
distance to road, land use, and soil type (Figure 3). The grouping methods employed
subjective division (for factors that are more subjective) and natural breaks (for factors that
are more objective). The sources of all indicators are shown in Table 1. The formula for the
relevant metrics is shown below:

TRI =
Amean − Amin
Amax − Amin

(1)

where the Amean, Amin, and Amax indicate the mean, minimum, and maximum values of all
cells in a 3 × 3 cell, respectively.

TWI = ln
As

tan β
(2)

STI =
(

As

22.13

)0.6
+

(
sin β

0.0896

)1.3
(3)

where As and β indicate the specific catchment area (m2/m) and slope gradient, respectively.

NDVI =
NIR− Red
NIR + Red

(4)

where NIR is the reflection value in the near infrared band, and Red is the reflection value
in the red band.

Table 1. Data sources of conditioning factors.

Conditioning Factor Variable Type Spatial Resolution (m) Production Time (year) Data Source

Altitude Continuous 30 2009 ASTER GDEM 30M
Slope Continuous 30 2009 Derived from DEM

Slope aspect Continuous 30 2009 Derived from DEM
Plan curvature Continuous 30 2009 Derived from DEM

Profile curvature Continuous 30 2009 Derived from DEM
TRI Continuous 30 2009 Derived from DEM
TWI Continuous 30 2009 Derived from DEM
STI Continuous 30 2009 Derived from DEM

Lithology Discrete 30 2019 [41]
Distance to faults Continuous 30 2019 [41]

Soil type Discrete 30 2005 https://www.resdc.cn/
(accessed on 1 May 2022)

Annual rainfall Continuous 30 2000–2021 http://data.cma.cn/ (accessed
on 1 May 2022)

Distance to stream Continuous 30 2021 https://lbs.amap.com/
(accessed on 1 May 2022)

Distance to road Continuous 30 2021 https://lbs.amap.com/
(accessed on 1 May 2022)

Land use Discrete 30 2020 https://www.resdc.cn/
(accessed on 1 May 2022)

NDVI Continuous 30 2021 Landsat8

https://www.resdc.cn/
http://data.cma.cn/
https://lbs.amap.com/
https://lbs.amap.com/
https://www.resdc.cn/
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Figure 3. Conditioning factors of LSM. (a) Altitude; (b) slope; (c) slope aspect; (d) plan curvature;
(e) profile curvature; (f) TRI; (g) TWI; (h) STI; (i) lithology; (j) distance to faults; (k) soil type; (l) annual
rainfall; (m) distance to stream; (n) distance to the road; (o) land use; (p) NDVI.

As illustrated in Table 1, the production time of each conditioning factor is inconsistent.
This is because this study is based on landslides that have occurred in the past 20 years,
and numerous real-time data points are not necessary for the long timescale. The ideal
data source would be produced at the same time as the landslide occurred. In the case of
LSM studies based on abrupt events (earthquakes, extreme weather), the requirement for
real-time data is higher. However, it is difficult to achieve consistency in timescales for
landslides that have occurred consecutively over 20 years. For less variable data on a long
time scale, such as DEM, lithology, faults, soil type, streams, and land use, momentary and
reliable data need to be selected to represent the conditions of the region over two decades.
For more variable data, such as rainfall, try to choose the average data over the research
time as a representative. For the conditioning factors of roads and vegetation, the most
recent data are considered representative of the average data of the last two decades by
simplification. Based on the above considerations and the limitations of the data sources,
more relatively reasonable layers of landslide conditioning factors were collected for this
research. Due to the long timescale and the uncertainty of data quality, systematic errors
introduced by the data sources are bound to exist but are not further discussed in this study.

Topographical factors have proved to be of great influence in LSM [45]. From the basic
DEM, slope, aspect, plan curvature, profile curvature, TRI, TWI, and STI can be calculated
using ArcGIS 10.8. Altitude and slope are intuitive factors in a landslide-hazard environ-
ment. The altitude values of the study area can be divided into five groups: 34–100 m,
301–600 m, 601–900 m, 901–1200 m, or 1201–1492 m. The slopes are divided into six cate-
gories at 10◦ intervals: 0◦–10◦, 10.1◦–20◦, 20.1◦–30◦, 30.1◦–40◦, 40.1◦–50◦, and >50◦. The
aspect of the study area is divided into the following nine categories: flat, north, northeast,
east, southeast, south, southwest, west, and northwest. Profile curvature measures the
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change in the slope of the surface and affects the acceleration or deceleration of water
flow. It can be divided into the following groups by the natural breaks group method:
−10.848–1.643, −1.642–−0.482, −0.481–0.412, 0.413–1.574, and 1.575–11.940. Plane curva-
ture reflects the change in the lateral slope of the land surface, which affects the convergence
or dispersion of surface water flow and, by the natural breaks, is divided into the following
five groups: −9.487–−1.297, −1.298–−0.355, −0.354–0.370, 0.371–1.239, and 1.240–8.994.
TRI expresses the degree of surface undulation and can be divided into five groups by
natural breaks: 0.111–0.294, 0.295–0.419, 0.420–0.498, 0.499–0.578, and 0.579–0.889. TWI
quantitatively describes the influence and cumulative effect of topography on watershed
runoff and predicts the spatial spread of regional soil moisture. By natural breaks, it can be
divided into the following five groups: 2.354–4.686, 4.687–6.410, 6.411–8.742, 8.743–12.392,
and 12.393–28.209. STI can provide important information on the potential for sediment
transport in a given river network; due to the uneven distribution of STI values in the study
area, they are manually divided into the following categories: 0–3.0, 3.1–12.0, 12.1–15.0,
15.1–50.0, and >50.0.

Regional geological factors are important endogenous factors for landslides. The lithol-
ogy map and fault map are based on a 1:200,000 geological map of China [44]. The lithology
includes sandstone, quartz sandstone, gneiss, tuff, rhyolite, quaternary alluvium, and gran-
odiorite porphyry. Areas in the fault map can be divided into five groups by the distance to
a fault: 0–200 m, 201–500 m, 501–1000 m, 1001–1500 m, and >1500 m. Soil type was also
included as an auxiliary conditioning factor and consists of rock, brown earths, paddy soils,
limestone soils, red earths, and yellow earth. Meteorology and hydrology are the most im-
portant triggers for landslides. The average annual rainfall from 2000 to 2021 was divided
into five groups according to the natural breaks: 1488–1497 mm/year, 1498–1528 mm/year,
1529–1552 mm/year, 1553–1575 mm/year, and 1576–1611 mm/year. The distance to the
stream is divided into the following groups: 0–50 m, 51–150 m, 151–300 m, 301–600 m, and
>600 m.

Other factors such as traffic, vegetation, and land use are also included. The traffic
network can reflect the modification of slopes by human engineering activities. The
distance to a road is divided into the following groups: 0–200 m, 201–400 m, 401–600 m,
601–800 m, and >800 m. Land use types involve human modification of the land surface;
the classifications detected in the study area are residential, bare lands, forests, water
bodies, and farmlands. The vegetation cover is represented by NDVI and is divided into
the following groups by natural breaks: −0.184–0.077, 0.078–0.161, 0.162–0.239, 0.240–0.316,
and 0.317–0.486.

3. Methodology
3.1. Study Route

This study was conducted in three stages (Figure 4). First, layers of the 16 conditioning
factors for the study area were prepared, and correlation tests were performed. Then, the
absence sample dataset with different qualities was constructed using different methods of
absence sampling: BCS, CTSES, IV, MBKM, and integrative sampling. Finally, LSM work
was produced by support vector machine and random forest algorithms, and evaluation
and comparison of the models produced by each absence sampling method were completed.
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3.2. Correlation Analysis of Conditioning Factors

Here, correlation analysis was performed to determine the statistical correlation among
more than two variables. Multiple correlation analysis of conditioning factors in landslide
susceptibility mapping is important and represents the screening process for selected
indicators. If variables with strong correlations are input into the model, the complexity
of the model will increase, and the training process of the model will also be affected.
Thus, correlation analysis and screening of conditioning factors are indispensable steps
in LSM [46]. In this study, commonly used correlation indicators, including the Pearson
correlation coefficient (PCC), variance inflation factor (VIF), and tolerance (TOL), were
selected to scan the correlation and multicollinearity between the conditioning factors.

Pearson correlation analysis is used to measure the strength and direction of the linear
relationship between two variables. The value of the PCC is usually between −1 and 1,
where −1 indicates a perfect negative correlation, +1 indicates a perfect positive correlation,
and 0 indicates no linear correlation. The closer the absolute value of the PCC is to 1, the
stronger the correlation, and the closer the absolute value of the PCC is to 0, the weaker the
correlation. When the values are 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1, the correlation
between the two conditioning factors is very weak, weak, moderate, strong, and very
strong, respectively. The formula for calculating the PCC is as follows:

ρx,y =
cov(x, y)

σxσy
(5)

where cov(x, y ) denotes the covariance of the conditioning factors x and y; σx and σy denote
the standard deviation of x and y.

The VIF and TOL are indicators to test the multicollinearity of multiple conditioning
factors. It is generally considered that when the value of VIF is less than 5 and the value
of TOL > 0.2, the factor has no multicollinearity with other factors. Factors of VIF values
in the range of 5–10 and TOL values in the range of 0.1–0.2 are considered to have weak
multicollinearity. Factors with VIF values > 10 and TOL values < 0.1 are considered to
have moderate or higher multicollinearity. The formulas for calculating VIF and TOL are
as follows:

VIFi =
1

1− R2
i

(6)

TOL = 1− R2
i (7)
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where R2
i is the sample decidability coefficient of the i-th conditioning factor.

3.3. Absence Sampling Methods
3.3.1. Buffer Control Sampling (BCS)

BCS is a quick, easy way to create non-landslide samples and is widely used in
LSM [47]. The essential basis of BCS is similar to the first law of geography, which states that
things close together in geographical space have a stronger connection. Accordingly, in the
landslide inventory map, the area adjacent to a landslide is more susceptible to landslides.
This is also consistent with the physical mechanics and disaster-forming environment of
a landslide. Rock and soil in areas close enough to the landslide are more susceptible to
further sliding due to the scraping or accumulation of previous landslides. Moreover, due
to the continuity of engineering geological conditions, areas relatively close to landslides
are more likely to develop the same geological environment and be exposed to strong
external triggers. Therefore, the BCS method could set a buffer zone at a certain distance
around the landslide location in the landslide inventory map and complete the sampling
work in areas outside the buffer zone within the study area to reduce the strong effect of
the spatial proximity of landslide events.

3.3.2. Controlled Target Space Exteriorization Sampling (CTSES)

TSES is proposed to create pseudo-absence data for LSM. The absence of data are
produced from feature space instead of geographical space [28]. This method can make up
for the defects of sampling in geospatial samples with geographical differences that may
be similar in the feature space. The core principle of TSES is to extend landslide features
beyond the feature space of all landslides (within the feature space of the study area) to
obtain new non-landslide samples. It is reasonable for these absence samples to be created
using landslide samples, as doing so preserves the regional character of the study area
and enhances variability within landslide samples. Improved target space exteriorization
sampling (ITSES) has been proposed to compensate for the non-existence absence samples
in geographic space [29]. It maps the absence samples from feature exteriorizing space to
geographic space, which gives the absence data more chances to be validated in remote
sensing or field work.

Existing TSES methods exteriorize only one feature of the landslide sample during the
process. In fact, landslide samples can be simultaneously exteriorized on multiple feature
dimensions, and the number of such exteriorizing dimensions determines the degree of
difference between absence and landslide samples. Whether this difference could affect
the predictive performance of LSM is uncertain. In this study, controlled TSES (CTSES) is
proposed to explore absence sampling methods from different exteriorizing dimensions by
adding an artificially controlled number d of exteriorizing dimensions on the basis of the
ITSES (Figures 5 and 6). The code is as follows:

Input: landslide samples S, number of exteriorizing feature dimension d
Output: non-landslide samples Nd with exteriorizing feature dimension d

(1) Initialization:

N = ∅

(2) For each landslide conditioning factor A:

Calculate the value range VA max of feature A of all units on the whole study area;
calculate the value range VA of feature A of all landslide samples;

determine the exteriorized feature space V′A =
−

VA ∩VA max.

(3) Traverse every unit i in the study area:

(a) Set temporary variables a = 0;
(b) Traverse every landslide conditioning factor A:

if A of i is in V′A, a = a + 1;
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(c) If a = d, then run (d):
(d) Nd = Nd ∪ i

(4) Return Nd
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Figure 6. Schematic of the three-dimensional feature space of the CTSES method. (a) Three-
dimensional feature space of the study area; (b) deconstruction map of the three-dimensional feature
space in the CTSES method.

3.3.3. Information Value (IV)

As a bivariate analysis method, the IV method is often used in landslide susceptibility
analysis. The method is consistent with the principles of several other bivariate analysis
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methods, including certainty factor (CF) and frequency ratio (FR). Information theory is the
basis of the IV method, in which the information gain measures the significance of features
to the prediction results. The theory of the IV method assumes that the generation of
geohazards depends on the quality and quantity of the information obtained. Probabilistic
statistics and comparative mapping are used to derive the magnitude of the contribution
of various conditioning factors to landslide generation from historical landslide data. The
significance of each conditioning factor is expressed by the IV, and the larger the value, the
more likely a geological hazard will occur under this factor.

The theoretical formula for the amount of information is:

I(xi, A) = ln
P(xi | A)

P(xi)
(8)

where I(xi, A) is the amount of information provided by the single-factor factor xi to the
occurrence of geohazard (A), P(xi | A) is the probability of xi under geohazard conditions,
and P(xi) is the probability of factor xi in the study area.

In specific applications, the sampling frequency (area ratio) is often used as:

Iij = ln

Nij
Sij

N
S

(9)

where Iij is the amount of information in the j-th classification of the i-th factor, S is the
total study area; Sij is the area under the j-th classification of the i-th factor in the study
area. N is the total number of geological hazards in the study area, and Nij is the number
of the j-th classification of the i-th factor in the study area.

The sum of the Iij of each unit is shown as the landslide sensitivity index, and the
formula is:

LSI =
n

∑
i=1

Iij (10)

3.3.4. Mini-Batch K-Medoids (MBKM)

K-medoids is an improved unsupervised algorithm for clustering based on K-means.
Various clustering algorithms are often used for LSM, but the k-medoids method is mini-
mally used in LSM [48,49]. The improvement of the K-medoids method is that it updates
the centroid with the most centrally located object in the cluster instead of the center of
mass formed by the average value in the K-means method. Therefore, K-medoids are far
more adaptable to noise and outliers than K-means.

1. K initial centroids are randomly selected.
2. Assign the remaining points to the cluster represented by the closest medoids.
3. In each class, the sum of distances between each sample point and other points

is calculated, and the point with the smallest sum of distances is selected as the
new medoid.

4. Repeat the process in steps 2–3 until all medoid points no longer change or the upper
limit of iterations is reached.

In this algorithm, the time complexity is much greater than that of K-means due
to iterating through all data points, especially with large datasets. When the number of
sample points reaches a million, huge computational resources will be required; however,
the mini-batch algorithm will solve this problem well.

The MBKM method randomly samples several small sample sets from a large sample
set and updates the initial centroids in each small sample set by substituting them into the
K-medoids model. The combined training effect on a large number of small samples will be
slightly lower than the training effect on the whole sample, but it will save computational
resources and time.
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3.3.5. Integrative Sampling

At its core, integrative sampling is similar to integrated learning but with added
diversity. The specific operation is to mix the absence samples from each sampling method
by a certain ratio to form a new absence sample set. The newly formed sample set has
more diversity, which results in a more robust and generalized model and a reduced risk
of overfitting (similar to the idea of bagging). Under the same sampling interval, the
characteristic pattern of the generated absence samples may be singular or one-sided.
Overly monotonic sample characteristics can make the model tend to overfit, and extreme
samples can make the model perform poorly against new datasets. However, in integrative
sampling, the learner receives samples from multiple sampling methods. Due to the
different sampling methods for absence samples, the distribution of absence samples in the
geographic space and feature space is diverse in order to give comprehensive information
to the training model. Therefore, the training model that accepts the integrative sampling
set can show good adaptability and generalization ability when faced with a diverse set of
prediction data.

Integrated sampling combines four absence sampling methods, namely BCS, CTSES,
IV, and MBKM, and the process is shown in Figure 7. The main processing steps are
as follows: (1) defining sampling thresholds and sampling for absence samples of each
method; (2) pre-training and evaluating combining with landslide samples; and (3) forming
the new integrated absence samples by assembling the best-quality sample sets for each
method. The best-quality sample sets are discriminated by the comprehensive predictive
performance metrics in the pre-training results.
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3.4. Machine Learning for Landslide Susceptibility Mapping

SVM and RF are among the most classical algorithms for prediction and classifica-
tion and are widely used and known for their excellent performance in a wide range of
industries. In recent years, SVM and RF have been prominent in LSM research due to their
excellent performance. In fact, SVM and RF models are capable of not only classification but
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also a probabilistic prediction that can be transformed into the assessment of susceptibility.
Data-driven landslide prediction is a high-dimensional and nonlinear problem that is well
suited to be solved with these two algorithms.

3.4.1. Random Forest

Random forest is a supervised machine learning integration algorithm based on bag-
ging. Multiple sample sets and decision trees are constructed through bootstrap sampling
(random sampling with put-back), and random features of the sample are selected for
splitting on the basis of the decision tree. Due to its randomness, the random forest does
not easily fall into overfitting and has good resistance to noise. After each decision tree split
is completed (training completed), the set becomes a forest, and each decision tree is voted
on to get the final result. Decision trees can achieve the tasks of classification and regression,
and for LSM, landslide susceptibility indicators can be obtained by averaging the results of
multiple decision trees [50]. Due to its excellent ability to handle high-dimensional and
nonlinear data, the random forest method can achieve good prediction results in LSM [51].

3.4.2. Support Vector Machine

A support vector machine is a supervised machine learning algorithm commonly
used in landslide susceptibility [52]. An SVM has the ability to solve problems with high-
dimensional, small samples, and nonlinear features. The two main ideas of the SVM
are the search for the best classification hyperplane and the use of kernel functions [53].
The hyperplane is a subspace of n-1 dimensions in an N-dimensional linear space; it can
correctly classify the sample categories. The support vector is the closest training sample
point to the hyperplane. The optimal hyperplane has the largest sum of the distances from it
to different classes of support vectors. In the two-dimensional feature space, the hyperplane
is a straight line that can divide the sample categories, and in the three-dimensional feature
space, a hyperplane is a plane that can divide the sample categories. Once no hyperplane
in the current feature space can linearly divide the sample categories, the original feature
space can be mapped to a higher-dimensional feature space by a kernel function to make
the samples linearly divisible in this space. The commonly used kernel functions are the
linear kernel, polynomial kernel, radial basis function kernel (RBF-kernel), and sigmoid
kernel; the polynomial kernel and the RBF-kernel are most frequently used and have a
good predictive effect on landslide susceptibility [54,55].

3.5. Model Evaluation Methods

To assess and compare the predictive performance of models using different absence
sample compositions, the models were evaluated from three perspectives. First, the ac-
curacy of the model was examined, encompassing both the accuracy of the training sets
and the testing sets. Accuracy is the most intuitive indicator of a model’s predictive per-
formance. The accuracy threshold is set to 0.5; it is considered a potential landslide when
the prediction result is >0.5. Training accuracy reflects the model’s ability to fit onto the
training sets; the higher the testing accuracy, the better the model can learn the patterns
and laws of the data. Testing accuracy reflects the model’s ability to generalize, which
represents the ability to perform on unseen data.

The second perspective involves evaluating the comprehensive performance of the
model. Area under the curve (AUC), kappa coefficient (KC), and performance overall
accuracy (POA) were used to evaluate the combined predictive performance of the model.
The receiver operating characteristic curve (ROC) and AUC are commonly used methods
to assess the performance of classification models. The AUC represents the area under the
ROC curve and ranges from 0.5 to 1.0. A higher AUC value implies a better discrimination
performance of the model. A confusion matrix is a table used to evaluate the performance
of a classification model by comparing the predicted class labels with the actual class labels.
The matrix contains four terms: true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). From the confusion matrix, several metrics can be calculated to
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evaluate the performance of the classification model, such as precision, recall, accuracy,
KC, Matthews correlation coefficient (MCC), and F1-score. KC measures the agreement
between the predicted and actual class labels, correcting for the agreement expected by
chance. KC values range from −1 to 1, where a value of 1 indicates perfect agreement, a
value of 0 indicates agreement by chance, and a value of −1 indicates perfect disagreement.
POA, which is the sum of accuracy, MCC, and F1-score, provides a more comprehensive
assessment of the model’s predictive performance than individual metrics [31,56].

The third is the mean and standard deviation of landslide susceptibility. The mean
value reflects the overall overestimation or underestimation of the model’s susceptibility,
and the standard deviation represents the degree of dispersion of the susceptibility index.
Therefore, the mean and standard deviation can be used as auxiliary parameters to assess
the reasonableness of the model.

4. Results
4.1. Correlation Analysis

In ArcGIS 10.8, the band collection statistics function was used to calculate the PCC
between two conditioning factors by inputting a total of 16 conditioning factor layers
containing elevation, slope, aspect, profile curvature, plane curvature, NDVI, lithology,
rainfall, distance to faults, distance to rivers, TWI, TRI, STI, distance to roads, land use,
and soil type. The results are entered into Python for heat map visualization (Figure 8).
In the heat map, the stronger the correlation, the darker the color, and the weaker the
correlation, the lighter the color. The color tends to be brown for positive correlations and
purple for negative correlations. Among the 16 conditioning factors, the maximum PCC
value was −0.59, where the profile curvature and plane curvature were (relatively) most
correlated, followed by the PCC value of 0.56, showing a relatively positive correlation
between elevation and distance to the road. All PCC values are less than 0.6, which means
that there is no strong correlation among the factors.
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In all, 16 layers of conditioning factors were extracted from ArcGIS 10.8 for the whole
study area, and the VIF and TOL values of the 16 conditioning factors were calculated using
the statsmodels library in Python (Table 2). Elevation had the highest VIF value of 2.6 and
the lowest TOL value of 0.383, with relatively strong multicollinearity with all other factors.
In addition, VIF values for all conditioning factors were less than 10 and strictly less than
5, and all TOL values were greater than 0.1. Therefore, it can be assumed that there is no
strong multicollinearity between these 16 conditioning factors.

Table 2. VIF and TOL results for 16 conditioning factors.

Factor VIF TOL

Elevation 2.613 0.383
Slope 1.685 0.594

Aspect 1.105 0.905
Profile curvature 2.010 0.498
Plane curvature 2.087 0.479

TRI 1.558 0.642
TWI 2.090 0.478
STI 1.118 0.894

NDVI 1.143 0.875
Lithology 1.223 0.818
Rainfall 1.570 0.637

Distance to faults 1.028 0.972
Distance to rivers 1.172 0.854
Distance to roads 1.613 0.620

Land use 1.032 0.969
Soil type 1.350 0.740

4.2. Results of Absence Sampling

The absence sample set for BCS is constructed by first constructing a buffer for 217 land-
slide sample points and then creating random points outside the buffer by taking the inverse
of the function of the intersection set. By doing so, we can ensure that the random points
do not fall inside the buffer or near the landslide. By constructing buffers of different scales,
the sampling scales are divided into 300 m, 500 m, 800 m, 1000 m, and 1500 m, and 10 sets
of random points are randomly selected under each scale as absence samples. In the BCS
method, the relationship between the created absence sample location and the landslide
location is shown in Figure 9. The number of absence samples per group was 217, which
was used for the final training and testing after extracting 16 conditioning factors. The
whole sampling process for BCS was conducted on ArcGIS 10.8.

The program for CTSES was done in Python, and subsequently, all pixels in the study
area were entered and traversed in the program (the core code is shown in Section 3.3.2).
The number of input pixels was 1,559,752. The search for absence samples of different
quality was performed by changing the control parameters. In the sampling results of
CTSES, the number of absence samples with d = 1, d = 2, d = 3, and d = 4 were 200,023,
22,765, 2888, and 323, accounting for 12.824%, 1.459%, 0.185%, and 0.021% of the overall
pixels, respectively. When the controlled parameter d is increased to 5, the number of
absence samples found is 21, and we cannot find any absence samples with d greater than
5. The location of these absence samples mapped to the study area is shown in Figure 10.
Absence sample sets were created for training and testing from the CTSES data of d = 1,
d = 2, d = 3, and d = 4. In all, 20 sets of 217 absence samples were randomly selected from
each interval for final training and testing.
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The total number of landslides in the study area was 217, and the total number of
pixels was 1,559,752, which was used to replace N and S in the IV model. The statistics
of the number of landslides Nij and the corresponding area Sij within the interval of each
conditioning factor are shown in Table 3. The IV values of the grading of each factor were
calculated. After the initial susceptibility mapping of the IV model was conducted, the
susceptibility was divided into 10 intervals based on the natural break method, as shown
in Figure 11a. The absence sampling threshold was set according to the natural break, and
a total of 10 sampling intervals were divided: <0.1, <0.2, <0.3, <0.4, <0.5, <0.6, <0.7, <0.8,
<0.9, and <1.0.

Table 3. IV calculation table of IV model.

Factor Class No. of Landslides No. of Pixels in Domain IV

Altitude (m)

34–400 65 400,676 0.154
301–600 105 529,308 0.355
601–900 40 424,249 −0.389

901–1200 7 191,726 −1.338
1201–1492 0 13,793 0.000

Slope (◦)

0–10 35 285,800 −0.128
10.1–20 75 353,914 0.421
20.1–30 60 484,962 −0.117
30.1–40 37 339,129 −0.243
40.1–50 10 84,504 −0.162

>50 0 5759 0.000

Aspect (◦)

0 0 5939 0.000
0–22.5 11 89,012 −0.118

22.6–67.5 34 202,755 0.187
67.6–112.5 32 216,747 0.059
112.6–157.5 35 202,523 0.217
157.6–202.5 30 178,953 0.186
202.6–247.5 24 182,953 −0.059
247.6–292.5 26 194,308 −0.039
292.6–337.5 16 192,853 −0.517
337.6–360 9 88,025 −0.308

Plane curvature

(−9.487–−1.297) 7 90,832 −0.591
(−1.296–−0.355) 57 358,239 0.134
(−0.354–0.370) 89 646,319 −0.010
(−0.371–1.239) 56 354,515 0.127
(1.240–8.994) 8 109,847 −0.647

Profile curvature

(−10.848–−1.643) 4 78,385 −1.003
(−1.642–−0.482) 36 318,609 −0.208
(−0.481–0.412) 91 696,850 −0.063
(0.413–1.574) 70 376,172 0.291

(1.575–11.940) 16 89,736 0.248

TWI

(2.354–4.686) 85 656,862 −0.072
(4.687–6.410) 69 524,863 −0.057
(6.411–8.742) 40 250,590 0.137

(8.743–12.392) 17 92,287 0.281
(12.393–28.209) 6 29,466 0.381

TRI

(0.111–0.294) 23 85,999 0.654
(0.295–0.419) 45 246,752 0.271
(0.420–0.498) 80 535,396 0.071
(0.499–0.578) 52 531,083 −0.351
(0.579–0.889) 17 208,097 −0.532
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Table 3. Cont.

Factor Class No. of Landslides No. of Pixels in Domain IV

STI

(0–3.0) 84 715,531 −0.170
(3.1–12.0) 64 586,030 −0.242

(12.1–15.0) 11 50,604 0.446
(15.1 -50.0) 31 140,393 0.462

(>50.0) 27 75,298 0.947

NDVI

(−0.184–0.077) 32 214,619 0.069
(0.078–0.161) 54 270,357 0.362
(0.162–0.239) 66 361,211 0.273
(0.240–0.316) 49 403,597 −0.136
(0.317–0.486) 16 309,958 −0.991

Rainfall (mm/year)

1488–1497 33 118,347 0.695
1498–1528 33 211,130 0.116
1529–1552 28 398,437 −0.683
1553–1575 70 494,390 0.018
1576–1611 53 337,453 0.121

Distance to rivers (m)

0–50 39 169,598 0.503
51–150 79 327,307 0.551
151–300 52 338,629 0.099
301–600 39 498,642 −0.576

>600 8 175,619 −1.116

Distance to roads (m)

0–200 66 222,151 0.759
201–400 21 147,406 0.024
401–600 8 119,129 −0.728
601–800 13 102,609 −0.094

>800 109 968,500 −0.212

Distance to faults (m)

0–200 17 146,962 −0.185
201–500 21 213,815 −0.348

501–1000 61 318,946 0.318
1001–1500 37 256,177 0.037

>1500 81 623,895 −0.069

Land use

Residential 3 42,047 −0.668
Bare land 0 2209 0.000

Forest 155 1,264,284 −0.126
Water body 1 12,156 −0.525
Farmland 56 216,100 0.622
Grassland 2 21,548 −0.405

Soil type

Rock 0 9137 0.000
Brown earth 3 78,111 −1.287
Paddy soil 20 170,108 −0.168

Limestone soil 1 4313 0.511
Red earth 179 1,011,069 0.241

Yellow earth 14 288,375 −1.053

Lithology

Sandstone 10 153,095 −0.756
Quartz sandstone 47 179,684 0.631

Gneiss 18 56,402 0.830
Tuff 38 373,449 −0.313

Rhyolite 86 679,184 −0.094
Quaternary alluvium 3 78,859 −1.297

Granodiorite Porphyry 15 38,986 1.017
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Figure 11. Results of the prior model. (a) IV model; (b) MBKM model. Absence samples were created
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The 1,559,752 pixels with information values were normalized and processed into
the MBKM algorithm for clustering calculations. The calculation process was based on
Python’s msmbuilder library [57]. The specific parameters were set as follows: n_clusters
is 10, max_iter is 1000, batch_size is 20,000, and max_no_improvement is 50. After the
clustering calculation, 10 clusters and 10 susceptibility rank intervals were obtained by
sorting the size according to the information content value of each cluster center. The
preliminary mapping of landslide susceptibility based on MBKM is shown in Figure 11b.
The absence sample sampling threshold was set according to the natural break, and a total
of 10 sampling intervals were divided as in the IV model: <0.1 through <1.0.

Absence samples extracted from low susceptibility intervals exhibited a lower proba-
bility of landslide occurrence in the IV and MBKM models. When the sampling threshold
was close to 1.0, the absence samples were almost randomly selected over the entire area.
Twenty sets of samples were created from each interval for training and prediction in the
prior models of IV and MBKM.

The idea behind integrative sampling is to feed the model with as many samples with
different characteristics as possible. Since the four sampling methods of BCS, CTSES, IV,
and MBKM have different sampling intervals, the default interval with the best prediction
performance metrics was the target interval for integrative sampling. According to the
results (reported in Section 4.4), the 1000 m interval in BCS, the d = 4 intervals in CTSES,
and the 0–0.1 interval in IV and MBKM had the best metrics (accuracy, AUC, KC, POA)
such that the samples in them could input more correct absence sample information to the
model. The selected absence sample sampling groups were BCS-1000m, CTSES-d = 4, IV-
0.1, and MBKM-0.1 for integrative sampling. The final input from the integrative samples
was obtained using random sampling from the intervals of different absence sampling
methods. The ratio of mixing was 1:1:1:1 to evaluate the mixing effect simply. The number
of absence samples in the input of prediction models was set to 217 and 506 to achieve
presence-to-absence sample ratios of 1:1 and 3:7, respectively. The purpose was to test the
effect of the training ratio on susceptibility prediction. This setting can explore whether
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increasing the proportion of absence samples reduces the overestimation of susceptibility
levels by comparing the results of different sample ratios of 1:1 and 3:7.

4.3. Landslide Susceptibility Mapping
4.3.1. LSM Results for Four Sampling Strategies with Different Sampling Intervals

The absence samples obtained in each of the above sampling methods were fed into
the SVM and RF prediction models for training and prediction. The ratio of landslide
samples to absence samples was set to 1:1. Optimal hyperparameters for SVM and RF
prediction models were found by grid search based on 10-fold cross-validation. In the
SVM training process, the RBF-kernel was used; the grid search range for hyperparameters
C and gamma was set to 0–20 and 0–1.2. In the training process of RF, the grid search
range for the hyperparameters n_estimators, max_depth, and min_samples_split were set
to 10–100, 10–50, and 10–40, respectively. There were 10/20 sets of samples under each
sampling threshold for each method, and the set with the highest AUC was selected for
LSM visualization.

Figure 12 shows the results of the SVM-based models for different sampling intervals
under four absence sampling strategies. In the BCS sampling method, the high landslide
susceptibility areas were concentrated in the eastern part of Songyang County and near the
east-west spreading gullies. Districts in the central flatlands exhibit a lower susceptibility to
landslides. As the size of the landslide buffer increases, the distribution pattern of landslide
susceptibility size little changes until it increases to 1000 m and 1500 m when the area of
the high susceptibility zone in the east increases significantly. Under the CTSES sampling
method, the high susceptibility areas at d = 1 are distributed in the eastern and central
districts around the county seat and on the slopes on both sides of the gully. With the
increase of parameter d, expansion of the high landslide susceptibility area and dispersion
of the susceptibility index (deepening of LSM color) can be observed. When d = 4, most
of the area is classified as having high susceptibility except for a small number of gullies,
mountain fronts, and flatlands in the central county. The same expansion and dispersion of
susceptibility are observed in the lower interval sampling of the IV prior model. When the
sampling threshold of IV is 0.1 or 0.2, the high susceptibility area covers the majority of the
study area. These two phenomena decrease as the IV sampling threshold increases and
eventually stabilize above a sampling threshold of 0.5; they are close to the BCS predictions.
The prediction model law based on the MBKM method of sampling is similar to that of the
IV model, but the polarization and expansion phenomena are greatly reduced compared
with the IV model, and most high landslide susceptibility areas in the low sampling interval
are distributed on both sides of the gullies, which seems more reasonable. In addition,
more areas of high landslide susceptibility occur in the central flatland county in the low
sampling interval (threshold < 0.6) of the IV and MBKM sampling models and in the d = 3
and 4 intervals of the CTSES, which are mitigated in the other sampling intervals.

The RF-based model results for different sampling intervals under four absence sam-
pling strategies are shown in Figure 13. The distribution pattern of susceptibility in the
RF model is similar to that of the SVM, but there are significant differences. In the BCS
method, when the buffer zone is 500 m, 800 m and 1000 m, the high susceptibility zone
is more concentrated in the gully without excessive expansion or confusion. In the three
sampling methods of CTSES, IV, and MBKM, expansion of high landslide susceptibility
areas and dispersion of landslide susceptibility indices can be found with changes in
sampling interval, which is consistent with the SVM prediction model. However, it is
important to note that the expansion and polarization of the RF model are milder than
those of the SVM model. Regardless, the expansion of high landslide susceptibility in the
intermediate flatland counties can still be seen in the low sampling interval of the IV and
MBKM sampling models and in the d = 4 sampling interval of CTSES.
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4.3.2. LSM Results of the Integrative Sampling Method

The prediction plots of landslide susceptibility in SVM and RF prediction models
with integrative sampling methods are shown in Figure 14; 1:1 and 3:7 presence-absence
ratio sample sets are included respectively. In the training process of the SVM and RF,
the hyperparameters are searched in the same range as in Section 4.3.1 for the grid search
based on 10-fold cross-validation. The high landslide susceptibility areas are basically
distributed on and on both sides of the gully, in the eastern part of Songyang County, and
around the central prefecture. Widespread mountain peaks and flat areas in the central
prefecture are designated as safety zones. The results of the integrative sampling did not
reveal over-expansion or diversion of the high landslide susceptibility area, which is more
reasonable than the results obtained from the previous CTSES, IV, and MBKM sampling.
Comparing the results of presence-absence sample ratios of 1:1 and 3:7, the former has a
larger area of high landslide susceptibility. The high susceptibility area predicted by SVM
is slightly higher than in RF.
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4.4. Evaluation of Different Absence Sampling Methods
4.4.1. Model Accuracy of Four Absence Sampling Methods with Respective
Sample Intervals

The training and testing accuracy of the models for different sampling intervals under
each absence sampling method is presented in the form of box-line plots in Figures 15 and 16.
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In the SVM and RF prediction models, a consistent pattern was found in the variation
of accuracy with different sampling intervals. In the BCS method, the accuracy of the
training and testing under SVM prediction increased slightly overall when the buffer rose
from 300 to 1000 m and decreased slightly by 1500 m. In the RF model, training accuracy
was relatively stable, mostly maintained above 0.9, and the amount and trend of testing
accuracy were similar to those of the SVM prediction model. In CTSES, as d increased
from 1 to 4, the accuracy of the training and testing sets under the SVM and RF prediction
models tended to increase. The testing accuracy of SVM and RF reached 0.95 (nearly 1),
as d = 4 and 3, respectively. In the IV and MBKM models, the accuracy of SVM decreased
with increasing sampling threshold, and the testing accuracy of RF also decreased, but the
training accuracy was maintained at a high level (>0.9). In addition, the testing accuracy of
IV was higher than that of MBKM at the sampling thresholds of 0.1, 0.2, 0.3, 0.4, and 0.5;
when the threshold was lowest, the testing accuracy was generally greater than 0.9 or close
to 1.
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4.4.2. Model Comprehensive Predictive Performance of Four Absence Sampling Methods
with Respective Sample Intervals

Three metrics, namely AUC, KC, and POA, were used to weigh the comprehensive
predictive performance of each model consisting of each group of samples. They are
presented as box plots in Figures 17 and 18. The three metrics have a consistent pattern. In
BCS, they increased slightly when the buffer size changed from 300 to 1000 m and decreased
slightly to 1500 m. In BCS, the AUC was around 0.8, the KC did not exceed 0.6, and the
POA reached a maximum of approximately 2.0. In CTSES, the three metrics gradually
increased as d varied from 1 to 4. In IV and MBKM, the three metrics gradually decreased
as the sampling threshold increased. In addition, the AUC approached 1 and even the POA
approached 3 at low sampling intervals in IV and MBKM or a higher d in CTSES. In both
the RF and SVM prediction models, the above-mentioned pattern was present.
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4.4.3. Model Susceptibility Distribution of Four Absence Sampling Methods with
Respective Sample Intervals

Figure 19 shows the means and standard deviations of susceptibility for four absence
sampling strategies with different intervals. In BCS, the change in mean and standard
deviation was negligible. In the remaining three models, as d increased or the sampling
threshold decreased, there was a significant increase in the mean and a weaker upward
trend in the standard deviation. In CTSES, the change in the mean value was particularly
pronounced, rising from 0.4 to 0.87. In IV and MBKM, the maximum mean values were
approximately 0.65 and 0.8, respectively, when the threshold was 0.1. In terms of standard
deviation, BCS had the lowest with a maximum value of about 0.2, while the other methods
had a maximum value of 0.3 or above. In the comparison of the prediction models, the
mean distributions of SVM and RF were about the same in BCS and IV, slightly higher
for RF than SVM in CTSES, and higher for SVM than RF at low thresholds in MBKM. In
addition, almost all standard deviations of the SVM model were larger than those of the
RF model.

Remote Sens. 2023, 15, x FOR PEER REVIEW 30 of 35 
 

 

4.4.3. Model Susceptibility Distribution of Four Absence Sampling Methods with  

Respective Sample Intervals 

Figure 19 shows the means and standard deviations of susceptibility for four absence 

sampling strategies with different intervals. In BCS, the change in mean and standard de-

viation was negligible. In the remaining three models, as d increased or the sampling 

threshold decreased, there was a significant increase in the mean and a weaker upward 

trend in the standard deviation. In CTSES, the change in the mean value was particularly 

pronounced, rising from 0.4 to 0.87. In IV and MBKM, the maximum mean values were 

approximately 0.65 and 0.8, respectively, when the threshold was 0.1. In terms of standard 

deviation, BCS had the lowest with a maximum value of about 0.2, while the other meth-

ods had a maximum value of 0.3 or above. In the comparison of the prediction models, 

the mean distributions of SVM and RF were about the same in BCS and IV, slightly higher 

for RF than SVM in CTSES, and higher for SVM than RF at low thresholds in MBKM. In 

addition, almost all standard deviations of the SVM model were larger than those of the 

RF model. 

 

Figure 19. Means and standard deviations of four absence sampling methods with different inter-

vals. (a) BCS; (b) CTSES; (c) IV; (d) MBKM. 

4.4.4. Evaluation of the Integrative Sampling Model 

The prediction model evaluation metrics for the integrative sampling approach are 

shown in Table 4. The training set accuracies were all greater than 0.9, while the training 

set accuracy of RF was maintained at a high level (>0.95). The testing accuracy and com-

prehensive predictive performance metrics, including the AUC, KC, and POA of SVM, 

were less than those of RF. When the ratio was 1:1, the various metrics fell within the 

region of the BCS and the other three models. The combined predictive performance of 

Figure 19. Means and standard deviations of four absence sampling methods with different intervals.
(a) BCS; (b) CTSES; (c) IV; (d) MBKM.

4.4.4. Evaluation of the Integrative Sampling Model

The prediction model evaluation metrics for the integrative sampling approach are
shown in Table 4. The training set accuracies were all greater than 0.9, while the training
set accuracy of RF was maintained at a high level (>0.95). The testing accuracy and
comprehensive predictive performance metrics, including the AUC, KC, and POA of SVM,
were less than those of RF. When the ratio was 1:1, the various metrics fell within the
region of the BCS and the other three models. The combined predictive performance
of the integrative sampling model was stronger than that of BCS but weaker than the
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performances of CTSES, IV, and MBKM under the same set of absence sample intervals.
When the ratio changed from 1:1 to 3:7, each parameter decreased slightly, resulting in
a slight decrease in prediction performance. In terms of susceptibility distribution, the
mean value of integrative sampling was slightly higher than that of BCS but significantly
lower than those of CTSES, IV, and MBKM. When the ratio changed from 1:1 to 3:7, further
significant decreases in the mean value occurred (from 0.52 and 0.56 to 0.36 and 0.39).

Table 4. Metrics of the integrative sampling model.

Predictive
Model

Presence:
Absence

Training
Accuracy

Testing
Accuracy AUC KC POA Susceptibility

Mean
Susceptibility

SD

SVM
1:1 0.90 0.77 0.89 0.55 2.13 0.52 0.29
3:7 0.93 0.81 0.87 0.56 2.06 0.36 0.28

RF
1:1 0.96 0.86 0.92 0.73 2.46 0.56 0.23
3:7 0.97 0.83 0.91 0.60 2.15 0.39 0.21

5. Discussion
5.1. Effects of Absence Sampling Strategies and Sample Quality on LSM

Each of the four absence sample sampling models has its own control parameters.
Figures 12 and 13 show the sensitivity of LSM to these parameters, and Figures 15–19 show
the sensitivity of the model evaluation metrics to the parameters.

For BCS, various evaluation metrics show that buffer size has the best performance
effect at 1000 m. The model’s performance rises first when the buffer increases and then
decreases when it increases to a certain level (1500 m). This scenario suggests that there may
be a buffer size that is most suitable for generating negative samples. However, compared
to the feature screening methods in CTSES, IV, and MBKM, the LSM prediction patterns and
prediction performance metrics, as well as the susceptibility distribution of BCS, show little
variation. This indicates that the improved geospatial-based absence sampling method has
a certain upper limit and is less sensitive.

CTSES, IV, and MBKM were found to have significant sensitivity in LSM as well as
various metrics to the control parameters, the main reason for which was absence sampling
methods based on feature screening patterns. The control parameter d in CTSES and the
sampling thresholds in IV and MBKM can be good representations of the negative sample
quality. The larger the d or the lower the sampling threshold, the greater the difference
between the features of the absence samples and the landslide samples, and the safer the
region of the absence samples. These control parameters control the reliability or certainty
of the absence of samples in the input model.

When the reliability and certainty of the absence samples are enhanced, an expan-
sion of the high landslide susceptibility area and a divergence of the susceptibility index
can be observed in the LSM results of these models and in the mean susceptibility level.
Similar results can also be seen in other studies that have classified absence sample relia-
bility [22]. These phenomena are particularly pronounced in IV and CTSES and slightly
less pronounced in MBKM. At the same time, the model’s predictive power indicators
(accuracy, AUC, KC, and POA) are significantly improved or even close to full scores. These
phenomena are due to the fact that when the non-landslide samples are too absent, the
prediction model learns only the extreme features of the absent samples and the features of
the landslides in the learning process. For those intermediate points between the extreme
absence sample and the deterministic landslide sample, the model does not have enough
information to assess them and overestimates them to a higher level of susceptibility. Since
landslide samples and extreme absence samples are used for validation scores, the model’s
susceptibility overestimation will not lead to misjudgment of these samples; therefore,
very high prediction scores can be obtained. The overestimation of the overall regional
susceptibility by the model due to extreme samples is obviously unreasonable and difficult
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to apply. This can be mitigated by reducing the d in CTSES or increasing the sampling
threshold in IV and MBKM, but it will cause some degradation in prediction performance.

5.2. Advantages of Integrative Sampling

The integrative sampling absence sample set is combined with highly reliable absence
samples, including CTSES-d = 4, IV-0.1, MBKM-0.1, and BCS-1000. Looking at the LSM
prediction results for the integrative sampling method, it is surprising to see that the predic-
tion pattern appears very reasonable. The flatland county in the central part of Songyang
County is no longer misclassified as a high susceptibility area, and the excessive extension
of the high susceptibility area in the gully to the banks has been significantly suppressed.
The high landslide susceptibility areas are basically distributed in the gully and both sides
of the gully, the eastern part of Songyang County, and around the central prefecture. The
same samples (CTSES-d = 4, IV-0.1 and MBKM-0.1) would still be susceptible to overes-
timation and differentiation if returned to the original single absence sample sampling
model, as Figures 12–14 show, but the integrated sampling method overcomes this. In
addition, the normal mean level at a presence-absence ratio of 1:1 also indicates that the
overall overestimation and divergence of regional susceptibility are greatly mitigated in
integrative sampling (0.52 in SVM and 0.56 in RF compared with a max mean value of 0.87
in CTSES). Although the predictive assessment metrics (accuracy, AUC, KC, and POA) are
lower than in the CTSES, IV, and MBKM methods, they are still much higher than in the
BCS method. As shown in Table 4, the AUC of the integrative sampling method is around
0.9 for both SVM and RF models, with presence-absence ratios of 1:1 and 3:7, and the other
metrics are within the excellent range (KC > 0.55, POA > 2.06).

Integrative sampling has the above advantages, mainly because the diversity of ab-
sence samples allows the prediction model to learn more non-landslide features. When
predicting objects that are ambiguous, the model is able to synthesize the susceptibility
value of the object based on the sample characteristics of each source. In the BCS indi-
vidual model, the selection of absence samples is highly random and has the potential
to give the model the wrong samples. In the CTSES, IV, and MBKM single models, the
combination of features with high reliability absence samples may be highly similar, with
insufficient information for the model to predict medium susceptibility objects. Integrative
sampling combines various types of absence samples to obtain more information about
the combination of absence sample features of CTSES, IV, and MBKM and also shares
the error introduction rate of BCS. Thus, integrative sampling would give the predic-
tive model a broader predictive capability rather than focusing on very low or very high
susceptibility zones.

In addition, when the presence-absence ratio was changed from 1:1 to 3:7 in integrative
sampling, a reduction in the high susceptibility zone and a decrease in the mean value
of susceptibility were observed. Metrics of model predictive performance are reduced
but within reasonable limits. Therefore, it is inferred that the overestimation level of
regional susceptibility can be reduced by increasing the proportion of absence samples in
the training process, as in another study [29]. Such an approach can be used in situations
where the overall regional susceptibility is too high or where very high susceptibility areas
need to be located quickly.

6. Conclusions

Four absence sampling methods were employed in LSM, namely BCS, CTSES, IV, and
MBKM, and a new method of integrative sampling was proposed. In these methods, the
TSES method was improved to obtain the CTSES method, and the less commonly used
optimized clustering algorithm MBKM was introduced and showed a more reasonable
prediction pattern than the IV model with the same set of samples. The absence of samples
generated by these four methods were mixed for the test of the integrative sampling
method. The above methods were applied to LSM in Songyang County, Lishui City,
Zhejiang Province, China, and the effects of various absence sampling methods and the
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quality of absence samples in LSM were discussed. Multiple sets of sampling intervals
were set for each method, and extensive training computations were conducted in each
interval. The results indicate that, as the certainty and reliability of the sample increase,
expansion of the high susceptibility region and divergence of the susceptibility index occur
in the CTSES, IV, and MBKM methods. This phenomenon can be significantly reduced, and
very satisfactory prediction results can be achieved by employing the proposed integrative
sampling method or a higher proportion of absence samples. Integrative sampling has a
stronger prediction performance than the general independent absence sample sampling
method and can combine the sample information of each sampling method for a more
reasonable classification of high, low, and medium susceptibility areas. The integrative
sampling method presents a valuable approach for constructing absence samples in LSM
based on data-driven models.
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