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Abstract: Developing complex hyperspectral image (HSI) sensors that capture high-resolution spatial
information and voluminous (hundreds) spectral bands of the earth’s surface has made HSI pixel-wise
classification a reality. The 3D-CNN has become the preferred HSI pixel-wise classification approach
because of its ability to extract discriminative spectral and spatial information while maintaining data
integrity. However, HSI datasets are characterized by high nonlinearity, voluminous spectral features,
and limited training sample data. Therefore, developing deep HSI classification methods that purely
utilize 3D-CNNs in their network structure often results in computationally expensive models prone
to overfitting when the model depth increases. In this regard, this paper proposes an integrated
deep multi-scale 3D/2D convolutional network block (MiCB) for simultaneous low-level spectral
and high-level spatial feature extraction, which can optimally train on limited sample data. The
strength of the proposed MiCB model solely lies in the innovative arrangement of convolution layers,
giving the network the ability (i) to simultaneously convolve the low-level spectral with high-level
spatial features; (ii) to use multiscale kernels to extract abundant contextual information; (iii) to apply
residual connections to solve the degradation problem when the model depth increases beyond the
threshold; and (iv) to utilize depthwise separable convolutions in its network structure to address the
computational cost of the proposed MiCB model. We evaluate the efficacy of our proposed MiCB
model using three publicly accessible HSI benchmarking datasets: Salinas Scene (SA), Indian Pines
(IP), and the University of Pavia (UP). When trained on small amounts of training sample data, MiCB
is better at classifying than the state-of-the-art methods used for comparison. For instance, the MiCB
achieves a high overall classification accuracy of 97.35%, 98.29%, and 99.20% when trained on 5% IP,
1% UP, and 1% SA data, respectively.

Keywords: convolutional neural networks; deep learning; hyperspectral image classification;
integrated networks; multi-scale feature learning; spectral–spatial features; remote sensing

1. Introduction

Remote sensing involves the use of sophisticated camera sensors to remotely (from
satellite or aircraft) detect and monitor the physical characteristics of a given portion of
Earth’s surface area using the reflected and emitted radiation [1]. The rapid technological
innovation in remote sensing has resulted in the development of complex hyperspectral
image (HSI) sensors that capture both voluminous (hundreds) spectral bands and high-
resolution spatial information of the earth’s surface to produce a three-dimensional (3D)
HSI data cube [2,3], as shown in Figure 1.

The original hyperspectral image H is depicted in Figure 1 as a three-dimensional
(3D) data cube, with the planes X–Y denoting the spatial data and the Z-axis denoting the
spectral bands. Assuming that there are b spectral bands in the original hyperspectral image,
then every pixel in H is composed of b spectral bands. Since H is 3D data, the design of
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the deep learning-based HSI classifiers shifted to models that can handle both spectral and
spatial features and can optimally train on limited HSI sample data [4]. The convolutional
neural network (CNN) emerges as the favorite among the deep learning methods proposed
for HSI classification because of its ability to extract rich deep features, ensure the integrity
of spatial and spectral information, and avoid the initiative and randomness of human
feature extraction. As depicted in Figures 2–4, there are three categories of deep CNN
feature learning methods based on how HSI features are processed: pre-processing-based,
post-processing-based, and integrated-based.
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The structural layout of the pre-processing-based methods is depicted in Figure 2.
These methods separately acquire the raw HSI data’s low-level spectral and spatial features.
The extracted low-level spatial data are converted into a 1D input vector before fusing
with the original spectral vector. The resultant 1D spectral–spatial feature is channeled
into a deep learning network, where further extraction of high-level spectral–spatial fea-
tures occurs. The resulting highly discriminative spectral–spatial cues are input into the
fully connected (FC) layer and subsequently given to the classifier for classification [5,6].
These methods are complex to train as they require high computation memory and large
training data.

The structure of the post-processing-based networks is depicted in Figure 3. Using
a deep 2D spatial network and a deep 1D spectral network, highly discriminative spatial
and spectral properties are extracted, respectively. The output from these two distinct
networks is fused before they are passed to the FC layers before being fed into the classifier
for classification [7,8]. Hao et al. [2] proposed a novel two-stream deep architecture for HSI
classification. However, these methods experience low classification accuracy, especially
when subjected to very few training samples.

Unlike the pre-processing and post-processing approaches that exploit the spectral
and spatial data separately, the integrated approach shown in Figure 4 simultaneously
processes spectral–spatial features directly from the HSI data cube. It often increases
their ability to obtain discriminative features robust to nonlinear processing, hence better
classification accuracy. Zhong et al. [9], Chen et al. [10], and Li et al. [11] incorporated
3D-CNN layers into their network designs to learn spectral–spatial features from the
raw HSI data simultaneously. However, due to the limited training data available in the
HSI datasets, utilizing 3D-CNNs alone in developing deep HSI classifiers often results in
computationally expensive models prone to overfitting as the network deepens [6,10,12].

Recently, several attempts have been proposed to reduce the dimensionality curse in-
troduced by voluminous spectral bands in HSI data. Among the methods proposed,
the principal component analysis (PCA) [13] has gained popularity in hyperspectral
imaging [5,6,10,14–16]. Additionally, several methods have been introduced to address the
challenge of overfitting in models utilizing an integrated network approach. Some notable
integrated approach advancements include the research by Zhong et al. [9], who proposed
and designed the SSRN structure with the identity mapping of residual blocks for spectral–
spatial feature learning [9]. Lee and Kwon [17] also utilized the residual connections in their
design to develop a network that learns hierarchical features [17]. Feng et al. [18] intro-
duced residual connection on HybridSN to develop R-HybridSN, which can optimally train
on limited HSI data without overfitting. Other researchers, such as Roy et al. [19], proposed
a hybrid model that combines 3D-CNN and 2D-CNN in its network structure to extract
spectral–spatial features [19]. Cao and Guo [20] proposed the SSRN, an end-to-end hybrid
expansion residual deep convolutional network, which is composed of residual blocks and
hybrid dilated convolutions (HDC) [20]. Wu et al. [21] designed the 3D ResNeXt structure
using feature fusion and label-smoothing strategies [21]. Tinega et al. [1], developed a
GGBN model that used the biological genome concept to combine 3D-CNN and 2D-CNN
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and residual connections in a network structure [1]. Among other researchers who utilized
a mixture of 3D-CNN and 2D-CNN in their network structure, and residual connections to
produce the state-of-the-art models include zhao et al. [22], and Tinega et al. [23].

To further the research on developing deep HSI models that can optimally be trained
using limited training samples, we propose an integrated deep multi-scale 3D/2D con-
volutional network (MiCB). The main contribution of the proposed MiCB model is the
creative use of MiCB blocks, which allow the network to convolve low-level spectral fea-
tures with high-level spatial features that are strengthened by multi-scale kernels, residual
connections, and depthwise separable convolutions.

The remainder of this work is structured as follows: Section 2 explains the research
technique; Section 3 examines the experimental setup; Section 4 discusses the experimental
results and discussion; and Section 5 concludes this research.

2. Methodology
2.1. The Proposed Model

Figure 5 depicts the whole framework of the suggested MiCB model, which can
train optimally using a minimal amount of data. The MiCB network contains three
parts: pre-processing, the spectral–spatial feature learning process (MiCB Architecture),
and classification.
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2.1.1. The Pre-Processing Part

Figure 6 outlines the pre-processing framework of the proposed MiCB network. The
dimensionality of an original HSI data cube H can also be stated as H ∈ Rx×y×b, where x
denotes the width, y denotes the height, and b denotes the number of spectral bands. Due
to the presence of the voluminous spectral bands, the first step in pre-processing involves
dimensionality reduction in these spectral bands. In this regard, we use the PCA as a
dimensionality reduction method. However, the PCA is sensitive to variable variances.
Therefore, the first step involves centering and standardizing the HSI data cube H by
computing and subtracting the mean value and dividing it by the standard deviation for
each spectral band in the original data cube. Mathematically, this can be written as:

H =
value−mean

standard deviation
(1)

This is followed by the computation of the covariance matrix and the identification
of the principal components, which are the data lines with maximal variance. The more
significant the variance a line carries, the more information it holds. Therefore, PCA aims
to find t number of components b that carry more information without losing valuable
information, resulting in the data cube I ∈ Rx×y×t, such that t < b. The data cube
I ∈ Rx×y×t is further subjected to neighborhood extraction (NE), where G overlapping
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3D patches of dimensionality p× p× t are extracted. The truth label of these overlapping
patches at a given spatial location is dependent on the label of the central pixel.
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2.1.2. Spectral–Spatial Feature Learning Process

Figure 7 shows the detailed architecture of the proposed MiCB, which is based on a
hybrid structure of 3D and 2D CNNs. It illustrates how the MiCB model simultaneously
convolves low-level spectral cues with high-level spatial features, utilizing mixed 3D/2D
CNN layers, multi-scale kernels, depthwise separable convolutions, and residual connec-
tions to extract highly discriminative HSI features. Substituting 3D-CNN with 2D-CNN
layers increases the network’s ability to learn spatial information at the top levels and
reduces the model complexity [17]. The usage of non-identity multi-residual connections
drastically reduces the challenge of gradient disappearance in the MiCB network [15]
while replacing the traditional 2D-CNN with the 2D depthwise separable convolutional
layers promotes the reduction in network parameters and prevents overfitting as the model
structure deepens. Lastly, the utilization of multi-scale kernels enhances the extraction of
abundant contextual features [23–26].
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At the bottom of the MiCB network architecture, we utilized the 3D convolution to
extract HSI spectral–spatial features, as shown in Figure 8.

A 3D convolution operation, as illustrated in Figure 8, can be denoted as:

vx,y,z
i = ci +

J

∑
j=1

Ri−1

∑
r=0

Qi−1

∑
q=0

Pi−1

∑
p=0

wr,q,p
i,j × v(x+r),( y+q),(z+p)

(i−1),j (2)
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where vx,y,z
i is the neuron activity at spectral-spatial position (x, y, z), wr,q,p

i,j is the Kernel
weight of the jth feature map in the ith layer at (r, q, p). The R, Q, and P are the length,

width, and depth dimensions of the jth feature map. The v(x+r),( y+q),(z+p)
(i−1),j , is the 3D

convolution output at position (x, y, z) in the jth feature map of the i− 1 layer. The ci is the
bias value of the convolution filter in the ith layer.

We introduced nonlinearity to vx,y,z
l using the rectified linear unit (ReLU) activation

function as denoted in Equation (3):

R
(

vx,y,z
l

)
= Max

(
0, vx,y,z

l

)
(3)

Similarly, a nonlinear 2D convolutional operation in the jth feature map of the ith layer
is as shown in Figure 9.
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Figure 9 can be expressed mathematically using Equation (4):

vx,y
i = R

(
ci +

J

∑
j=1

Ri−1

∑
r=0

Qi−1

∑
q=0

wr,q
i,j × v(x+r),( y+q)

(i−1),j

)
(4)

R represents the ReLU activation function.

At the top layer of the proposed MiCB model structure, the 3D feature maps are
reshaped into 2D feature maps, as shown in Figure 9.

For example, in Figure 10, the 3D layer of the network has 48 feature maps with a size
of 11× 11× 15. To learn the feature maps in the 2D space, we reshape the 48 3D feature
maps into 720 2D feature maps with dimensions of 11× 11.

We utilized the bottleneck concept shown in Figure 11 to reduce the number of
network parameters and mitigate overfitting by downscaling the number of feature maps
after reshaping. This is achieved by eliminating redundant features and retaining the
smallest possible number of highly discriminative features that preserve the predictive
power of the remaining data. In Figure 11, we used a 1× 1 filter to downsample feature
maps. The 1 × 1 filter has a single weight for each input feature map, making it possible to
act like a single neuron with input from the same position across each feature map in the
input. Therefore, utilizing a convolutional layer with multiple 1 × 1 filters at any point of
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the CNN structure allows the depth of the summarized input feature maps to be decreased
to increase the network structure’s efficiency by reducing the computational costs.
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Figure 11. Downsampling feature maps using 1× 1 filters.

The MiCB structure integrates feature maps from different convolution layers us-
ing a concatenation operation, as shown in Figure 12. Feature concatenation is just a
feature-stacking operation. For example, in Figure 12, we have two layers with 125 feature
maps each to perform channel-wise feature concatenation; the resulting output will have
125 × 2 = 250 concatenated feature maps.
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The 2D feature maps are flattened into a continuous linear vector before being passed
into the FC layer. We employ two FC layers to extract deep spectral–spatial features before
pushing the features into the classification’s softmax layer.

2.1.3. MiCB Classifier

The MiCB model employs a softmax layer in the classification part. Softmax is a
probabilistic function that measures the relationship between reference and output values.
Thus, the chance that a particular input matches a specific class is calculated as follows:
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σ(
→
t )i =

eti

∑C
j=1 etj

for i = 1, . . . c, . . . , C, and t = t1, . . . , tC ∈ RC
(5)

→
t = t1, . . . , tC ∈ RC denotes the input vector values ti, and C denotes the num-

ber of classes. The eti denotes the standard exponential function, while the ∑C
j=1 etj is

the normalization term that ensures that all output values of the standard exponential
function sum to 1, and each value should range between 1 and 0 to constitute a proper
probability distribution.

Fine-tuning the network is performed using backpropagation. We chose the categorical
cross-entropy loss because the number of classes exceeds two. The categorical cross-entropy
loss function measures how well our network models the training data. It aims to minimize
the training loss between the anticipated and target output, as the lesser the loss, the more
accurate the model. Mathematically, the cross-entropy loss can be defined as shown in
Equation (6):

L = −
C

∑
i=1

r i log
(

σ(
→
t )i

)
, for C classes (6)

r i is the ground truth label and σ(
→
t )i is the softmax probability for the ith class.

Finally, the prediction label is decided by taking the argmin value t̂l of the loss function.

t̂i =
ar gmin L

c
(7)

The argmin operation finds the class with the least loss value from the target function.

2.2. Simultaneous Convolution of Low-Level High-Level Spectral–Spatial Features

The main backbone of the MiCB block is the convolution of low-level spectral features
with high-level spatial features. This is achieved through the use of 3D kernels that only
convolve the spatial dimensions while retaining the spectral aspect. The MiCB model
uses kernels of sizes 5× 5× 1 and 3× 3× 1 to learn the spatial features and preserve low
spectral features for convolution at higher network layers (see Figure 7).

2.3. Multi-Scale 3D Convolution Block

Figure 13 depicts the framework for multi-scale feature learning with kernels of various
sizes to identify a broader range of significant characteristics [23,25–27]. The red, aqua, and
blue boxes are distinct convolutional filters used to discover hidden characteristics.
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2.4. Depthwise Separable Convolution

Unlike the conventional 2D convolution that jointly maps spatial and channel in-
formation when generating feature maps, the depthwise separable convolution performs
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convolution in two steps: the depthwise spatial convolution and the point-wise convolution,
as shown in Figure 14.
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The depthwise spatial convolution performs the 2D convolution on each feature map
separately. As illustrated in Figure 14, the input data is comprised of 7 feature maps of
size 6×6. We use seven kernels, separately of size 3× 3. Each kernel convolves only one
channel of the input layer resulting in a feature map of dimension 4× 4. We assume
that padding is zero and the stride value is set to one. We then stack the resultant seven
feature maps of dimensionality 4× 4 to create seven images of size 4× 4. In the second
step, we apply point-wise convolution, we extend the depth of the image by applying
the 1 × 1 convolution with the kernel size of 1 × 17 will result in the feature map of
dimension 4× 4. Hence after applying 1× 1128 convolutions, we have the final output
layer with dimension 4× 4128, as shown in Figure 14. Therefore, we transform an input
data of dimension 6 ×67 into an output layer with dimension 4× 4128. The depthwise
separable convolution reduces the model complexity regarding network parameters and the
calculation time. From the illustration on Figure 14 the method cuts down the parameters
from 733, 824 (3 × 3 × 7 × 16 × 128) to 15, 344 (3 × 3 × 7 × 16 + 1 × 1 × 7 × 16 × 128).
However, its ability to reduce calculation time is illustrated in Section 4. Hyperspectral
image classification has utilized these benefits, which help with information balancing for
layers with depth dimensions far larger than spatial dimensions.

2.5. Residual Learning

Deep learning research indicates that the depth of the network is more advantageous
than its width [9,28]. Deeper networks can learn highly discriminative features; however,
training them on limited sample data often results in overfitting [23]. To address the
challenge of overfitting, we applied residual connections to sufficiently recover the lost
features in the MiCB model as the network depth increases [12]. The architecture of the
proposed MiCB network employs non-identical residual connections, shown in Figure 15a,b
in its design.

The first non-identical residual connection shown in Figure 15a is a 3D-CNN layer that
only convolves spatial dimension + ReLU, utilized at the bottom part of the MiCB network
structure among the successful 3D/2D CNN layers to conduct dimension adjustment and
facilitate low-level spectral and high-level spatial convolution. We used a convolution
layer + ReLU because it converts a network into layers of directed acyclic graphs in which
each branch can independently learn highly discriminative features. In deep learning
models, feature degradation is at its peak at the top part of the model. In order to recover
lost features and control overfitting at this point, we utilized a max pooling layer (shown
in Figure 15b) to conduct dimension adjustment. The max pooling function divides the
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input feature map into smaller regions and outputs the maximum value from each region.
Mathematically, this can be expressed as:

gj
i = pmax

(
hj

i

)
(8)

gj
i denotes the pooled feature map, and pmax(.) is a max pooling function.
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3. Experimental Setup

This section contains the dataset description, comparison methods, implementation
details, evaluation indicators, experimental results, and discussion.

3.1. Dataset Description

Three publicly accessible HSI datasets, IP, UP, and SA, were used to evaluate the effec-
tiveness of the MiCB method. The original IP dataset image dimensions are 145 × 145 × 224.
However, due to water absorption, 24 bands were discarded [19,29,30]. Therefore, this
experiment uses an IP image dataset with dimensions of 145 × 145 × 200. Its ground truth
consists of sixteen classes that are not mutually exclusive, as shown in Table 1 [26]. The IP
dataset is the most unbalanced, followed by the UP and SA datasets (see Table 1). The origi-
nal UP dataset image dimensions are 610 × 340 × 115. We reduced the spectral dimensions
from 115 to 103 bands by removing 12 noisy bands [19,29,30]. Its ground truth contains
nine classes, as shown in Table 1. The size of the original SA image is 512 × 217 × 204
pixels after discarding 20 water absorption bands. Nevertheless, we anticipated that the
results obtained in the training SA dataset, even at less than 1%, would be superior to those
of IP and UP, as the majority of classes are adequately represented even when trained using
1% of the data sample. The SA dataset has 16 class labels assigned to the land cover [26].

Table 1. The IP, UP, and SA datasets, class labels, and per class sample data percentage.

Class No
IP Dataset SA Dataset UP Dataset

Class Label Samples (%) Class Label Samples (%) Class Label Samples (%)

1 Alfalfa 0.45 Brocoli_green_weeds_1 3.71 Asphalt 15.50
2 Corn-notill 13.93 Brocoli_green_weeds_2 6.88 Meadows 43.60
3 Corn-mintill 8.10 Fallow 3.65 Gravel 4.91
4 Corn 2.31 Fallow_rough_plow 2.58 Trees 7.16
5 Grass-pasture 4.71 Fallow_smooth 4.95 Painted 3.14
6 Grass-trees 7.12 Stubble 7.31 Bare 11.76
7 Grass-pasture-mowed 0.27 Celery 6.61 Bitumen 3.11
8 Hay-windrowed 4.66 Grapes_untrained 20.82 Self-

Blocking 8.61
9 Oats 0.20 Soil_vinyard_develop 11.46 Shadows 2.21
10 Soybean-notill 9.48 Corn_senesced_green_weeds 6.06
11 Soybean-mintill 23.95 Lettuce_romaine_4wk 1.97
12 Soybean-clean 5.79 Lettuce_romaine_5wk 3.56
13 Wheat 2.00 Lettuce_romaine_6wk 1.69
14 Woods 12.34 Lettuce_romaine_7wk 1.98
15 Buildings-Grass-

Trees-Drives 3.77 Vinyard_untrained 13.43
16 Stone-Steel-Towers 0.91 Vinyard_vertical_trellis 3.34
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3.2. Implementation Details

All the tests in this paper were performed online using Google Colab Inc., Mountain
View, CA, USA. We used random subsampling in MiCB, which randomly selects some data
as the training data while the remaining data are used for testing the model. The results
are reported as the mean of seven separate tests. A grid search was utilized to determine
the optimal optimizer, learning rate, batch size, epochs, and dropout technique for the
MiCB model. For both the IP and UP datasets, the Adam optimizer with a learning rate
of 0.0009 and a dropout of 0.6 was selected. However, we adjusted the learning rate for
SA to 0.0007 but retained the 0.6 dropout. The number of epochs was set to 100 for all
datasets, and the batch size was set to 64, 128, and 96 for the IP, UP, and SA, respectively. To
evaluate objectively, we extracted the same spatial–spectral dimension of the overlapping
3D patches of size 17× 17× 15 across all datasets (see Tables 2–4).

Table 2. The MiCB model’s performance on different window sizes when trained using 5% of the IP
data sample and assessed in terms of Kappa, OA, and AA.

Evaluation 15 ×15 17 × 17 19 × 19 21 × 21 23 × 23 25 × 25 27 × 27

Kappa 0.967 0.970 0.967 0.965 0.965 0.963 0.963
OA 97.14 97.35 97.13 96.90 96.95 96.76 96.71
AA 90.08 92.16 91.38 89.18 91.46 91.22 91.79

Table 3. The MiCB model’s performance on different window sizes when trained using 1% of the UP
data sample and assessed in terms of Kappa, OA, and AA.

Evaluation 15 × 15 17 × 17 19 × 19 21 × 21 23 × 23 25 × 25 27 × 27

Kappa 0.974 0.977 0.973 0.974 0.970 0.969 0.969
OA 98.03 98.23 97.96 98.07 97.73 97.66 97.66
AA 96.44 96.73 95.99 96.09 95.51 94.98 94.99

Table 4. The MiCB model’s performance on different window sizes when trained using 1% of the SA
data sample and assessed in terms of Kappa, OA, and AA.

Evaluation 15 × 15 17 × 17 19 × 19 21 × 21 23 × 23 25 × 25 27 × 27

Kappa 0.988 0.991 0.992 0.995 0.995 0.995 0.996
OA 98.93 99.20 99.28 99.51 99.54 99.56 99.64
AA 98.95 99.13 99.16 99.42 99.35 99.47 99.51

3.3. Evaluation Criteria

We evaluated the performance of the recommended HSI models using the Kappa
Coefficient (Kappa), Overall Accuracy (OA), and Average Accuracy (AA) metrics. The
OA calculates the percentage of correctly categorized samples. These are samples whose
projected outcomes exactly matched the ground truth label. The AA calculates the mean
of per-class accuracies. The Kappa coefficient’s values range between 0 and 1; a 0 value
indicates no consistency while a 1 value indicates a perfect consistency between the classifi-
cation map and its corresponding ground truth.

4. Experimental Results and Discussion

This section presents the experimental results and discussion of the proposed MiCB
model in contrast to various cutting-edge approaches using the three (IP, UP, and SA)
datasets, including M3D-CNN [27], SSRN [9], R-HybridSN [16], HybridSN [18], and
GGBN [1].
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4.1. Effect of Varying Window Size

This section examines the impact of altering the window size of the MiCB model
across the three (IP, UP, and SA) datasets. We utilized a 1% training set for SA and UP and
a 5% training set for IP.

Tables 2–4 shows that a spatial window size of 17× 17 attained better classification
accuracy on IP and UP datasets, while a 27× 27 spatial window was optimal on the SA
dataset. However, we choose a spatial window size of 17× 17 across the three datasets for
a fair comparison.

4.2. Ablation Results

Models A and B were developed to determine the impact of residual learning and
depthwise separable convolution on MiCB classification results. Model A utilizes residual
connections with a mixture of the traditional 2D- and 3D-CNN layers. On the other hand,
Model B replaced the traditional 2D-CNN layers with depthwise separable convolutions
but lacked residual connections. The classification outcomes are displayed in Tables 5–7.

Table 5. The summary of the results of the per-class accuracy, Kappa, OA, and AA of Model A, Model
B, MiCB, and other selected models trained using 5% of the IP data sample.

Class Number
Overall Accuracy in Percentage (%)

M3D-CNN HybridSN R-HybridSN SSRN GGBN Model A Model B MiCB

1 27.5 61.82 45 12.99 46.36 59.09 32.14 72.73
2 59.15 92.25 95.45 93.04 94.78 95.15 94.85 96.05
3 45.07 92.97 97.36 93.72 98.38 97.97 98.70 99.24
4 38.49 78.22 94.8 72.38 94.49 93.27 88.57 92.38
5 70.33 96.6 98.85 98.16 99.15 99.69 99.38 98.79
6 97.2 98.11 99.32 99.86 98.02 99.55 98.66 98.52
7 18.52 68.52 95.56 0 87.78 77.25 12.70 98.41
8 98.04 99.96 100 99.94 99.85 99.81 99.31 99.94
9 25.79 83.68 65.26 0 78.95 82.71 10.53 50.38

10 55.85 96.12 95.9 91.01 97.82 97.04 96.36 97.26
11 76.2 96.66 98.09 95.63 97.98 97.86 98.21 98.73
12 33.89 85.44 89.15 87.9 92.97 93.45 92.01 93.12
13 91.23 94.97 99.74 98.53 97.64 99.71 99.49 99.34
14 94.68 99.34 99.26 99.82 99.03 99.97 99.14 99.77
15 42.37 82.92 87.66 82.09 92.29 92.45 86.22 89.96
16 49.32 80 88.18 82.31 88.75 82.79 89.94 89.94

Kappa 0.642 0.934 0.96 0.923 0.96 0.965 0.955 0.97
OA (%) 68.88 94.24 96.46 93.39 96.85 96.92 96.07 97.35
AA (%) 57.73 87.97 90.6 75.28 91.51 91.67 81.01 92.16

Table 6. The summary of the results of the per-class accuracy, Kappa, OA, and AA of Model A, Model
B, MiCB, and other selected models trained using 1% of the UP data sample.

Class
Overall Accuracy in Percentage (%)

M3D-CNN HybridSN R-HybridSN SSRN GGBN Model A Model B MiCB

1 90.56 95.72 96.94 98.76 98.50 97.65 98.56 99.40
2 89.47 99.68 99.69 99.91 99.70 99.68 99.77 99.38
3 59.11 84.38 87.17 85.72 89.03 95.37 89.70 95.01
4 93.25 87.7 89.15 94.85 93.28 92.57 93.26 93.90
5 93.66 98.99 99.51 99.76 99.71 98.83 99.77 99.47
6 69.63 96.82 98.44 96.11 99.79 99.26 97.54 99.73
7 65.71 84.42 95.82 95.98 98.14 97.13 84.40 93.97
8 78.35 89.18 93.28 94.96 96.03 97.93 91.50 96.89
9 94.41 71.71 77.82 99.89 97.35 97.77 92.42 92.79

Kappa 0.798 0.935 0.955 0.97 0.975 0.977 0.960 0.977
OA (%) 84.63 95.09 96.59 97.67 98.13 98.30 97.01 98.29
AA (%) 81.57 89.84 93.09 96.22 96.84 97.35 94.10 96.73
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Table 7. The summary of the results of the per-class accuracy, Kappa, OA, and AA of Model A, Model
B, MiCB, and other selected models trained using 1% of the SA data sample.

Class
Overall Accuracy in Percentage (%)

M3D-CNN HybridSN R-HybridSN SSRN GGBN Model A Model B MiCB

1 94.88 99.99 100 100 99.95 100.00 99.98 99.99
2 99.61 100 99.97 100 100 100.00 99.97 100
3 91.89 99.82 99.49 99.96 99.92 99.74 100.00 99.72
4 98.33 98.38 98.72 99.72 96.25 99.68 99.49 99.66
5 98.83 99.26 98.43 98.73 99.33 99.34 99.60 99.02
6 98.09 99.93 99.9 100 99.92 99.98 99.65 99.80
7 97.67 99.95 99.96 99.99 99.98 99.98 100.00 99.85
8 82.4 97.77 98.23 95.06 99.25 99.38 98.60 98.98
9 98.14 99.99 99.99 100 100 99.99 100 100

10 87.6 98.36 97.9 98.33 99.08 98.48 98.49 98.54
11 86.72 96.06 96.46 97.42 98.75 96.49 96.85 99.24
12 96.99 97.44 99.09 100 99.77 99.92 99.48 99.48
13 97.14 97.42 82.82 93.02 93.67 96.79 96.35 95.86
14 91.78 99.52 97.25 95.62 99.27 99.10 99.30 98.00
15 64.42 97.06 95.12 88.18 98.49 95.76 95.18 98.02
16 78.14 100 99.71 99.49 99.99 99.88 99.52 99.98

Kappa 0.867 0.985 0.98 0.966 0.992 0.989 0.986 0.991
OA (%) 88.02 98.72 98.25 96.94 99.29 99.00 98.74 99.20
AA (%) 91.41 98.81 97.69 97.84 98.98 99.03 98.90 99.13

4.2.1. The Summary of Classification Accuracies of the Selected Models Trained Using Very
Minimal Sample Data

In this subsection, we present the summary result of the per-class accuracy, Kappa,
OA, and AA of Model A, Model B, MiCB, and other selected models such as M3D-CNN,
HybridSN, R-HybridSN, SSRN, and GGBN trained on 5% of the IP dataset’s total sample
data and 1% of the UP and SA datasets’ total sample data.

The proposed MiCB outperforms the M3D-CNN, HybridSN, R-HybridSN, and SSRN
models on the three (IP, UP, and SA) datasets, as shown in Tables 5–7. However, its
performance is comparable with the GGBN on all three datasets. For instance, over the IP
dataset, as shown in Table 5, the MiCB model increased the overall classification accuracy of
M3D-CNN, HybridSN, R-HybridSN, and SSRN by +28.47%, +3.11%, +0.89%, and +3.96%,
respectively. However, the proposed MiCB slightly increased the performance of the
GGBN by +0.5%. A similar trend is observed for the UP and SA datasets, where the MiCB
increased the overall classification accuracy of M3D-CNN, HybridSN, R-HybridSN, and
SSRN by +13.66%, +3.2%, +1.7%, +0.62% on UP (see Table 6) and by +11.18%, +0.48%,
+0.95%, +2.26% on SA (see Table 7), respectively. Similar to the MiCB performance on IP
dataset, the proposed model slightly increased the overall classification accuracy of GGBN
by +0.16% on UP and comparable on the SA dataset.

The M3D-CNN achieved the lowest classification accuracies due to its structural
nature, which primarily extracts multi-scale spectral information and insufficient spectral–
spatial features. In addition, the M3D-CNN lacks residual connections to recover lost
features and prevent overfitting in deep networks when training samples are very few.
The SSRN method, on the other hand, recorded better classification accuracies than M3D-
CNN across all the tested datasets because it introduced skip connections in its network
structure, which prevents degradation. The HybridSN utilized 3D and 2D CNN layers in
its network structure to extract highly discriminative HSI characteristics. However, the
overfitting problem worsened as the amount of training data declined. The R-HybridSN
addressed the HybridSN’s limitations by introducing residual connection and depthwise
separable convolutions in its network structure to achieve higher classification accuracy. In
order to improve the classification accuracies when training on very little sample data, the
GGBN incorporated the biological genome approach to judiciously utilize the 3D-CNN
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and 2D-CNN layers in its network structure to achieve comparable classification accuracies
with the proposed MiCB model.

The high performance of the proposed MiCB model in HSI classification can be
attributed to the utilization of residual connection, depthwise separable layers, multi-scale
kernels for feature extraction, and its ability to convolve the low-level spectral with high-
level spatial features. The effect of residual connection can be observed in classes with very
few training samples. For example, the models with residual connections, such as Model A
and MiCB, record very high classification accuracies in classes with extremely few training
sample data compared to Model B which lacks residual connection in its network structure
(See Table 5, class 7 and 9). On the IP dataset, the proposed MiCB model improved the
OA and AA of Model A by +0.43% and +0.40%, respectively, and when compared with
Model B, an increase of +1.28% in OA and +11.06% of AA was recorded. A similar trend
was recorded in the SA dataset (see Table 7), where the MiCB model increased the OA and
AA of Model A by +0.20% and +0.10% and Model B by +0.46% and +0.23%, respectively.
In the UP dataset (see Table 6), the MiCB model recorded an increase in AO and AA for
Model B; however, there was a decrease in OA and AA for Model A.

4.2.2. Computational Complexity of Model A, Model B, and MiCB over IP, UP, and
SA Datasets

This section illustrates the computational complexity of the proposed MiCB model
and its variants in terms of the network parameters and testing time.

We can observe in Table 8 that Model B, with no residual connection, recorded the low-
est number of network parameters and the shortest test time length. A similar observation
is made when replacing the traditional 2D layers in Model A with depthwise separable
layers. Since the MiCB model is a hybrid of Model A and B, adding residual connection
increases the computational cost, while replacing the traditional 2D layers with depthwise
separable layers leads to reduced computational cost. Hence, the proposed model exhibits
balanced network parameters and test time length.

Table 8. The network parameters and testing time in seconds over IP, UP, and SA datasets for Model
A, B, and MiCB.

Dataset

Model A Model B MiCB

Params Train
Time

Test
Time Params Test

Time
Test

Time Params Test
Time

Test
Time

IP 2,354,700 43.01 2.95 426,108 35.08 2.07 958,428 39.96 2.47
UP 2,353,797 41.88 11.88 425,205 33.24 8.99 957,525 42.02 10.82
SA 2,354,700 47.83 14.78 426,108 40.92 11.08 958,428 45.44 12.79

For instance, Model A has 1,396,272 more parameters and increased the test time across
all datasets by +0.48, +1.06, and +1.99 s, respectively, compared with the MiCB model.
However, Model B recorded 532,320 fewer trainable parameters across all datasets than the
proposed MiCB model. In terms of the testing time, Model B recorded −0.40, −1.83, and
−1.71 s less than the MiCB model across all three datasets, respectively. These observations
illustrate the effect of residual and depthwise separable layers on model complexity.

4.3. The Training Accuracy and Loss Convergence Graphs

This subsection uses the training accuracy and loss convergence graphs to demonstrate
the competitiveness of the proposed MiCB model in comparison with the selected state-
of-the-art models over the IP, UP, and SA datasets. Figure 16a–c shows that the proposed
MiCB model converges faster than all the compared methods on the IP dataset and is
commensurate with the R-HybridSN and HybridSN methods on SA and UP datasets but
faster than the SSRN and GGBN models.
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4.4. The Confusion Matrix

In this section, we further demonstrate the competitiveness and robustness of the
proposed MiCB model against the GGBN, HybridSN, and R-HybridSN over the IP, UP,
and SA datasets when a small amount of training sample data are used, as shown in
Figures 17–19.
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From Figures 17–19, it can be observed that most of the sample data of the proposed
MiCB model lie in a diagonal line. This demonstrates the competitiveness and robustness
of the model when trained on very limited sample data.

4.5. Classification Diagrams

This subsection demonstrates the competitiveness and robustness of the MiCB model
using the classification diagrams.

Figures 20–22 illustrate that, in contrast to the proposed MiCB model, the GGBN,
HybridSN, and R-HybridSN classification maps exhibit more noisy spots over the three
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benchmarking datasets. Hence, with less training sample data, the proposed MiCB model
produces less noisy dispersed points and delivers smoother classification results.
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4.6. Comparison with Other Methods

This section details the experimental results in varying the training sample data across
all three datasets. Using the IP dataset, we randomly trained the models on 2%, 5%, 10%,
and 20% of the total sample data. However, in UP and SA, we trained the models on 0.4%,
0.8%, 1%, 2%, and 5% of the total sample data for the UP and SA datasets and utilized the
remaining sample data to test the models. The HSI classifiers performed significantly poor
on the IP dataset, especially when the training sample is reduced to below 5% because some
classes might be missing in the training dataset. The outcome is summarized in Tables 9–11
and Figure 23a–c.
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Figure 22. Classification maps of SA dataset: (a) ground truth; (b) R-hybridSN; (c) HybridSN; (d) GGBN;
(e) MiCB.

Table 9. The influence of altering the training data samples on overall accuracy for MiCB in compari-
son with the selected models over the IP dataset.

Training Sample Data in Percentage

Model 20% 10% 8% 5% 2%

M3D-CNN 90.03 80.10 78.04 68.88 62.28
SSRN 98.91 97.25 96.33 93.39 84.30

HybridSN 99.30 97.66 96.37 94.24 83.14
R-HybridSN 99.52 98.44 98.12 96.46 86.67

GGBN 99.45 98.80 98.04 96.85 89.37
MiCB 99.52 98.75 98.43 97.35 91.59

Table 10. The influence of altering the training data samples on overall accuracy for MiCB in
comparison with the selected models over the UP dataset.

Model
Training Sample Data

5% 2% 1% 0.80% 0.40%

M3D-CNN 92.80 89.27 87.19 82.75 76.53
SSRN 99.57 99.07 97.67 97.12 93.41

HybridSN 99.45 97.86 95.86 93.30 85.95
R-HybridSN 99.47 98.47 96.40 95.64 91.60

GGBN 99.74 99.34 98.13 97.46 94.66
MiCB 99.74 99.16 98.29 97.48 94.21
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Table 11. The influence of altering the training data samples on overall accuracy for MiCB in
comparison with the selected models over the SA dataset.

Model
Training Sample Data

5% 2% 1% 0.80% 0.40%

M3D-CNN 92.65 90.17 88.02 86.82 83.42
SSRN 98.7 98.02 96.94 96.87 93.64

HybridSN 99.83 99.57 98.72 97.78 94.88
R-HybridSN 99.82 99.36 98.25 96.97 94.33

GGBN 99.97 99.68 99.29 98.32 97.26
MiCB 99.93 99.73 99.20 98.57 96.07
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R-HybridSN, SSRN, GGBN, and MiCB methods on the overall accuracy (OA) over (a) IP; (b) UP;
(c) SA datasets.

The increase in training sample data narrows the OA gap between the compared
methods and converges at some point, as illustrated in Tables 9–11 and Figure 23a–c. For
example, in the IP dataset, when 5% of the data are used to train the models, the MiCB
increases the OA gap of M3D-CNN, HybridSN, R-HybridSN, SSRN, GGBN by +28.47%,
3.11%, +0.89%, +3.96%, and +0.5%, respectively. When the training sample data are 20% of
the total data, the MiCB increases the OA gap of M3D-CNN, HybridSN, R-HybridSN, SSRN,
and GGBN by +9.49%, +0.22%, 0.0%, +0.61%, and +0.07%, respectively. This observation is
clearly visualized in Table 9 and Figure 23a. In addition, we note that when the comparison
models are trained on extremely small sample sizes, the MiCB model achieves the highest
classification accuracy in almost all the datasets, thus showing the model’s adaptability. For
instance, the MiCB improved the OA of M3D-CNN, HybridSN, R-HybridSN, SSRN, and
GGBN by +29.31%, +8.45%, +4.92%, +7.29%, and +2.22% on 2% IP train data (see Table 9);
by +14.73%, +4.18%, +0.36%, +1.84%, +0.02% on 0.40% UP train data (see Table 10 and
Figure 23b); and by +11.75%, +0.79%, +1.6%, +1.7%, and +0.25% on 0.8% SA train data (see
Table 11 and Figure 23c), respectively.

5. Conclusions

This paper aims to add to the scientific work of making deep networks for HSI classifi-
cation that can optimally train with merger training samples while mitigating the overfitting
problem. This paper proposes an integrated deep multi-scale 3D/2D convolutional network
block (MiCB) for simultaneous low-level spectral and high-level spatial feature extraction
that can optimally be trained with a limited amount of training sample data. The primary
contribution of the MiCB model is its creative use of MiCB blocks, which allow the network
to convolve low-level spectral features with high-level spatial features that are strengthened
by multi-scale kernels, residual connections, and depthwise separable convolutions. The
use of non-identity multi-residual connections in the MiCB network drastically reduces the
challenge of gradient disappearance in the MiCB network. Exploding network parameters
can be addressed by replacing the traditional 2D-CNN with the 2D depthwise separable
convolutional layers, which also prevents overfitting as the model structure deepens. Lastly,
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utilizing multi-scale kernels promotes the extraction of highly discriminative features and
increases the generalizability of the model. The innovative combination of these four ap-
proaches in the MiCB network structure enables the model to extract distinct and abundant
contextual features to achieve high classification accuracy even with few training samples.
We tested the robustness and competitiveness of our model with cutting-edge methods over
the IP, UP, and SA datasets. Our proposed method achieves better classification accuracy
than M3D-CNN, HybridSN, SSRN, R-HybridSN, and comparable results with GGBN.
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