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Abstract: Satellite hyperspectral imagery is an important data source for large-scale refined land
cover classification and mapping, but the high spatial heterogeneity and spectral variability at low
spatial resolution and the high computation cost for massive data remain challenges in the research
community. In recent years, convolutional neural network (CNN) models with the capability for
feature extraction have been widely used in hyperspectral image classification. However, incomplete
feature extraction, inappropriate feature fusion, and high time consumption are still the major
problems for CNN applications in large-scale fine land cover mapping. In this study, a Spatial-
Convolution Spectral-Transformer Interactive Network (SCSTIN) was proposed to integrate 2D-CNN
and Transformer into a dual-branch network to enhance feature extraction capabilities by exploring
spatial context information and spectral sequence signatures in a targeted manner. In addition,
spatial-spectral interactive fusion (SSIF) units and category-adaptive weighting (CAW) as two feature
fusion modules were also adopted between and after the two feature extraction branches to improve
efficiency in feature fusion. The ZY1-02D hyperspectral imagery was collected to conduct the
experiments in the study area of the eastern foothills of the Helan Mountains (EFHLM), covering an
area of about 8800 km2, which is the largest hyperspectral dataset as far as we know. To explore the
potential of the proposed network in terms of accuracy and efficiency, SCSTIN models with different
depths (SCSTIN-4 and SCSTIN-2) were performed. The results suggest that compared with the
previous eight advanced hyperspectral image classifiers, both SCSTIN models achieved satisfactory
performance in accuracy and efficiency aspects with low complexity, where SCSTIN-4 achieved the
highest accuracy and SCSTIN-2 obtained higher efficiency. Accordingly, the SCSTIN models are
reliable for large-scale fast refined land cover classification and mapping. In addition, the spatial
distribution pattern of diverse ground objects in EFHLM is also analyzed.

Keywords: land cover mapping; hyperspectral image classification; satellite hyperspectral imagery;
CNN; transformer

1. Introduction

Land cover maps with refined categories are of prime importance for geographical
conditions monitoring and can support many further applications such as precision agri-
culture [1,2], land resource management [3], environmental protection [4,5], and disaster
assessment [6,7]. In recent years, remote sensing (RS) technology has become one of the
most commonly used techniques for large-scale mapping due to its capability to obtain
valuable spatial-spectral information over large areas quickly and cheaply. As one of the
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core technologies of RS, hyperspectral RS uses narrow and continuous spectral channels to
continuously image ground objects and can obtain hundreds of bands and rich spectral
information about ground objects. Thus, hyperspectral images (HSIs) can classify more de-
tailed ground object categories, especially vegetation categories, which makes a significant
contribution to land cover identification tasks [8] and precision agriculture [9]. Moreover,
the emergence of various available hyperspectral datasets and the vigorous development
of intelligent algorithms in recent years have made it possible to perform large-scale and
high-precision fine land cover mapping based on HSIs.

With the development of hyperspectral imaging technology, various imaging spec-
trometers have been mounted on unmanned aerial vehicles (UAV), aviation, and satellite
platforms, and a wealth of HSI data has been obtained [10–12]. However, the existing
hyperspectral datasets are mostly limited to a small area, resulting in relatively simple
classification scenarios [13]. Unlike UAV and airborne HSIs for land cover identification
tasks in a small region [14], satellite HSIs are ideal for mapping the distribution of ground
objects over a large area. For instance, Su et al. [15] used China GaoFen-5 satellite hyper-
spectral imagery to map land cover distributions and spatial patterns of three wetlands,
and Wei et al. [16] attempted to identify grassland communities using ZY1-02D satellite
hyperspectral imagery. Nevertheless, spectral variability and spatial heterogeneity under
low spatial resolution and algorithm cost under large amounts of data are still challenging
for large-scale refined land cover classification and mapping using satellite HSIs. Fur-
thermore, the high-dimensional characteristics of HSIs and massive data over large areas
still necessitate efficient models for future applications in image processing on real-time
platforms. Thus, improving the efficiency of classification algorithms while maintaining
their performance still needs further exploration.

Over the past few years, the commonly used hyperspectral classification methods have
included conventional machine learning algorithms and deep learning algorithms [17,18].
Conventional machine learning algorithms, such as Support Vector Machine (SVM) [19], Ran-
dom Forest (RF) [20], Sparse Representation (SR) [21], and kernel-based strategies [15,22],
are constantly used in hyperspectral classification. Nonetheless, conventional machine
learning algorithms cannot achieve satisfactory classification accuracy under high spectral
variability and the predicament of the mutual restriction between a relatively small training
set and a high-dimensional spectrum (i.e., the Hughes phenomenon) [23] due to weak repre-
sentation ability, especially in large-scale hyperspectral fine classification. In recent years,
deep learning algorithms, including Recurrent Neural Networks (RNN) [24], Convolutional
Neural Networks (CNN) [25], Graph Neural Networks (GNN) [26], the newly emerged
Transformer [27], and so on, have been innovatively introduced from the computer vision
(CV) field to the hyperspectral classification community. The advantages of deep learning
algorithms mainly depend on their structure with multiple feature extraction layers, which
can extract the semantic features of ground objects from shallow to deep, thereby enhancing
the discriminability of the extracted features [28]. The powerful feature extraction ability
also alleviates the dilemma caused by high spectral variability and the Hughes phenomenon
in hyperspectral classification to a certain extent; thus, deep learning has attracted more
attention in the field of hyperspectral classification [29].

According to previous studies [25,30], CNN has a distinguished performance among
the deep learning algorithms and has drawn extensive attention in the hyperspectral classi-
fication community. With its unique convolution operation, CNN has the characteristics
of sparse local connections and weight sharing, which can increase the depth of feature
extraction layers while reducing the number of parameters and the complexity of models,
thereby leading to the process of automatically extracting hierarchical semantic features
layer by layer. These advantages prompted researchers to continuously explore the po-
tential applications of CNN in classification based on hyperspectral images. Specifically,
one-dimensional CNN (1D-CNN) takes the spectrum of one pixel as the input to explicitly
extract the spectral features of hyperspectral data [31]. However, limited by high spectral
variability, the classification accuracy of 1D-CNN hits a bottleneck. In order to allevi-
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ate this problem, 2D-CNN was introduced to perform hyperspectral classification on a
patch-by-patch basis, considering the spatial correlation between the central pixel and its
neighboring pixels [32]. It is worth noting that the above networks consider the spectral
or spatial information separately from the HSI, which weakens the original information
of the HSI to a certain extent, limiting the ultimate classification accuracy. To fully utilize
the original information of 3D HSI data, 3D convolution kernels are applied to extract
local characteristics of spatial and spectral dimensions simultaneously. With the ability to
extract joint spatial-spectral features, 3D-CNN has significantly improved classification
accuracy and dominated the field of deep learning-based hyperspectral classification [33].
All the above studies demonstrate the application potential of CNN models in the field of
hyperspectral classification.

Even though the utilization of CNN significantly improves classification accuracy,
there are still the following issues in the application of large-scale refined land cover
classification and mapping based on the HSI:

1. In the face of high spectral variability, convolution operations cannot reasonably ad-
dress sequential features and long-distance dependent features in spectral signals [27].
The category information of ground objects is mainly reflected by the spectral sequence
curve in the HSI. However, the convolution kernel with a fixed size is restricted to
extracting features in the local scope and ignores the global sequence relationship
between bands;

2. The computational expense affects the application of CNN-based deep learning meth-
ods in large-scale HSI classification. The limited convolution kernel size requires the
CNN model to increase the depth to improve its feature extraction ability [34], which
leads to a high computational cost and longer training and inference times. Especially
for 3D-CNN, the hyperspectral 3D data structure significantly increases the sliding
number and size of the convolution kernel, thereby increasing the running time;

3. Simple feature fusion methods inadequately utilize the spatial-spectral characteristics
within the HSI patches. The spatial and spectral features extracted by CNN are
generally combined by simple addition or connection at the end of the network,
which may weaken the integration of these features.

In short, incomplete feature extraction, inappropriate feature fusion, and high time
consumption limit the application of CNN-based algorithms in hyperspectral classification.

To address the problems mentioned above, the Transformer network [35] has been
introduced to the RS community from the natural language processing (NLP) and CV
fields and has shown competitive results in hyperspectral classification [36]. Multi-head
self-attention (MHSA) is the most critical module in Transformer, which has the global
dependency feature modeling capability of sequence vectors, and the mode of multi-head
parallel computing can reduce the computational loss and reduce the running time [37].
Hong et al. [27] flattened patches into sequence vectors as the input of the Transformer
to capture spectral sequence relationships of hyperspectral images, which gained better
accuracy compared with conventional classifiers. However, only using Transformer for
HSI classification ignores the extraction of spatial local features in the image, and CNN
can make up for the shortcomings of Transformer. In the process of characterizing HSIs,
CNNs naturally equip themselves with the intrinsic inductive bias of scale invariance
and locality, which is beneficial to the extraction of spatial texture features [38], while the
Transformer has a better extraction effect and efficiency on the spectral sequence features
with long-distance dependencies [34]. Thus, more scholars focused on the hybrid model,
combining the advantages of both. Sun et al. [39] used a convolution module to extract low-
level features, followed by a Gaussian Tokenization Transformer for feature representation
and learning. Song et al. [40] designed a dual-branch Bottleneck Transformer to extract
spatial and spectral features combined with 3D-CNN. However, most of the current studies
combined CNN and Transformer to simultaneously extract spatial features and spectral
features without distinction, ignoring the specialty of the two model structures for the
respective extraction of spatial context features and spectral sequence features. In addition,
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these methods only use simple addition or concatenation to achieve the fusion of spatial and
spectral features, which will cause information loss. Therefore, successfully fusing spatial
and spectral information and combining CNN and the Transformer remain challenges for
HSI classification.

In this paper, a Spatial-Convolution Spectral-Transformer Interactive Network (SC-
STIN) is proposed to perform hyperspectral refined land cover classification and mapping
in the eastern foothills of the Helan Mountains (EFHLM) in northern Ningxia. The study
area covers about 8800 km2, which is the largest HSI classification study area known
to us. The EFHLM dataset contains a preprocessed hyperspectral image with a size of
1800× 4900× 147 collected by the ZY1-02D satellite and ground truth labels with 16 land
cover categories. The SCSTIN framework is designed to address the problems of incom-
plete feature extraction, inappropriate feature fusion, and long-term consumption when the
existing CNN model is applied to large-scale satellite hyperspectral classification. Instead
of the most commonly used 3D-CNN model, the hybrid STSCIN model combined with
2D-CNN and Transformer was devised to extract the spatial-spectral discriminant features
in HSI. This model organically fuses data in two different formats to combine the respective
advantages of CNN and Transformer and can improve efficiency while ensuring the accu-
racy of the algorithm. First, convolution-based dimensionality reduction is performed to
refine redundant spectral bands and save computational costs. Afterwards, the backbone
of the network integrates the spatial CNN branch and the spectral Transformer branch into
a dual-branch network structure to extract spatial context features and spectral sequence
features of HSIs, respectively. During the feature extraction process, a spatial-spectral
interactive fusion (SSIF) unit is adopted to narrow the semantic gap between the two
branches in a continuous and interactive manner. In the end, two kinds of features from
two branches are input into the SoftMax classifier in a category-adaptive weighting (CAW)
manner to obtain the land object classification results. The major contributions of this paper
can be concluded as follows:

1. As an early attempt, a new Spatial-Convolution Spectral-Transformer Interactive
Network (SCSTIN) is proposed for large-scale fast refined land cover classification
and mapping using ZY1-02D satellite hyperspectral imagery. The CNN and Trans-
former are innovatively integrated as dual-branch architectures to efficiently perform
hyperspectral image classification tasks;

2. To extract spatial context characteristics and spectral sequence features of HSI accord-
ing to the data organization format, 2D-CNN and Transformer are performed in the
spatial branch and the spectral branch, respectively. This design can make full use of
the respective strengths of CNN and the Transformer to extract spatial and spectral
semantic information, respectively;

3. Two blocks, including SSIF and CAW, are designed to effectively fuse spatial and
spectral features at different stages of SCSTIN. In the process of extracting features
from two different branches, SSIF fuses two types of features continuously and inter-
actively. Before the two types of discriminative features are fed into the classifier, the
CAW is used to apply adaptive weights to the features for further fusion;

4. The superiority of the proposed SCSTIN framework is experimentally verified and
compared with other advanced algorithms on the large-scale eastern foothills of the
Helan Mountains (EFHLM) dataset, which covers about 8800 km2 with 16 types
of ground objects (the largest dataset to our knowledge). The spatial distribution
patterns of ground objects in the EFHLM region are also shown and analyzed. In
addition, extended experiments on the EFHLM dataset and two benchmark datasets
(i.e., Indian Pines and Botswana) demonstrate that the proposed SCSTIN can achieve
satisfactory classification performance with low complexity and high efficiency.
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2. Data and Materials
2.1. Study Area

The eastern foothills of the Helan Mountains (EFHLM) are located in the northern
part of the Ningxia Hui Autonomous Region in China, as shown in Figure 1a. This is a
stripe-like area between the Helan Mountains and the Yellow River floodplain, extending
over the three cities of Shizuishan, Yinchuan, and Wuzhong. The study area experiences
an arid and semi-arid continental climate, characterized by dryness and low precipitation,
high sunshine duration, and large diurnal variation of temperature. The daily temperature
fluctuation ranges between 12 and 15 ◦C, while the annual average precipitation hovers
between 150 and 240 mm. However, evapotranspiration can reach as high as 800 mm
or even 1000 mm, which is conducive to the accumulation of secondary metabolites.
Consequently, the primary land use type in this area is agricultural land, which covers most
of the area (Figure 1c). Additionally, diverse crops are cultivated in this area, including corn,
rice, alfalfa, etc. More importantly, due to its superior geographical location (37◦–39◦N in
Figure 1b), unique topographical features, and suitable soil and climatic conditions, the
EFHLM is considered an ideal “golden zone” for grape cultivation, wine-making, and
high-end wine production in the world [41]. Consequently, accurately and finely mapping
the vegetation distribution in this study area poses both challenges and significance.

2.2. ZY1-02D Hyperspectral Imagery and Preprocessing

The ZiYuan 1-02D (ZY1-02D) is China’s first civil hyperspectral service satellite [42],
carrying a new generation of advanced hyperspectral imager (AHSI) sensor [12], whose
detailed configurations are listed in Table 1. It has a total of 166 spectral bands, including
76 bands in visible and near-infrared (VNIR) and 90 bands in shortwave infrared (SWIR),
covering the wavelength of 400–2500 nm. Fine spectrograms are obtained by AHSI with
spectral resolutions of 10 and 20 nm in the VNIR and SWIR regions, respectively. Moreover,
the AHSI has a spatial resolution of 30 m and a high swath width of 60 km, which is suitable
for large-scale mapping.

Table 1. The configurations of the AHSI sensor on the ZY1-02D satellite.

Configurations
ZY1-02D AHSI

VNIR SWIR

Wavelength 400–1040 nm 1005–2500 nm
Spectral resolution 10 nm 20 nm
Spatial resolution 30 m 30 m

Bands 76 90
Swath width 60 km 60 km

The ZY1-02D hyperspectral images acquired on 15 August 2021, with no clouds, are
used for the EFHLM’s refined land cover classification and mapping. These images were
L-1A products downloaded from the Natural Resources Satellite Remote Sensing Cloud
Service Platform of China (http://sasclouds.com/chinese/normal/, accessed on 15 August
2021). Thus, some preprocessing is needed. First, it is worth noting that the VNIR region
and the SWIR region of the hyperspectral curve have overlapping parts. Considering the
high spectral resolution in the VNIR region, the 3 spectral bands at 1005–1040 nm in the
SWIR region were removed to reduce redundant information. Meanwhile, 16 bands severely
affected by water vapor absorption were also removed to improve data quality. Thus, a
total of 147 spectral bands were utilized in the EFHLM hyperspectral dataset. Second,
the digital number values of the raw hyperspectral image were converted to radiance by
radiometric calibration. Additionally, atmospheric correction was done by the Fast Line-of-
Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) method to obtain the spectral
reflectance data. Finally, the acquired reflectance images were mosaicked and cropped to
form one 1800 × 4900 × 147 image that fully covers the study area. The aforementioned

http://sasclouds.com/chinese/normal/
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preprocessing operations were all conducted using ENVI 5.3 software on a Windows 10
system with an NVIDIA GeForce RTX 2070 GPU and an Intel Core i9-10900K CPU.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 1. Location maps of the study area. (a) Map of China. (b) Map of Ningxia. (c) A false color 
image (859.68 nm for blue, 662.29 nm for green, and 559.23 nm for red) of ZY1-02D hyperspectral 
data for the EFHLM area, with the green diamond symbol representing the field survey points. 

2.2. ZY1-02D Hyperspectral Imagery and Preprocessing 
The ZiYuan 1-02D (ZY1-02D) is China’s first civil hyperspectral service satellite [42], 

carrying a new generation of advanced hyperspectral imager (AHSI) sensor [12], whose 
detailed configurations are listed in Table 1. It has a total of 166 spectral bands, including 
76 bands in visible and near-infrared (VNIR) and 90 bands in shortwave infrared (SWIR), 

Figure 1. Location maps of the study area. (a) Map of China. (b) Map of Ningxia. (c) A false color
image (859.68 nm for blue, 662.29 nm for green, and 559.23 nm for red) of ZY1-02D hyperspectral
data for the EFHLM area, with the green diamond symbol representing the field survey points.

In addition to the ZY1-02D hyperspectral data, another key part of the EFHLM dataset
is the ground truth labels of the image. From 14 to 17 August 2021, a field survey covering
the entire study area was carried out, collecting field samples (Figure 1c). Combined with
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field surveys and visual interpretation based on high-spatial-resolution remote sensing
images in Google Earth, pixel-level categories in hyperspectral images were labeled. Refer-
ring to the labeling principle used by Su et al. [15], discontinuity in space, sufficiency in
quantity, and typicality of samples are three important indicators for labeling. The above
three criteria were also followed in our labeling process. Finally, a total of 16 types of
ground objects were labeled in the EFHLM dataset, and detailed information is listed in
Table 2. In addition, 1% of the labeled samples were randomly selected as training samples
for subsequent experiments, which will be analyzed in the Section 5.

Table 2. Sample information from the EFHLM dataset.

Class Number Ground Object Number of Samples

1 Corn 13,686
2 Rice 13,241
3 Alfalfa 3480
4 Trees 9658
5 Grassland 2103
6 Vegetable 10,383
7 Bare land 26,306
8 Building 23,291
9 Road 4689
10 Water 7823
11 Greenhouse 14,368
12 Grape 13,113
13 Lotus 1545
14 Wheat 2413
15 Wetland 13,691
16 Wolfberry 825

Total 160,615

2.3. EFHLM Dataset

The EFHLM dataset (Figure 2) mainly contains two kinds of data: hyperspectral image
cube data and ground truth label data. The size of the EFHLM hyperspectral image is
1800 × 4900 with 30 m spatial resolution. The coverage area of EFHLM is about 8800 km2,
which is much larger than the commonly used public hyperspectral datasets. The number
of spectral bands is 147 after image preprocessing. The labels of a total of 16 typical ground
objects are evenly distributed in the label map, as shown in Figure 2b. In addition, the
average reflectance for each type of ground object was calculated and shown in Figure 2c.
The EFHLM dataset is used as a benchmark dataset in this paper for large-scale ground
object fine classification and mapping based on ZY1-02D satellite hyperspectral data.
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3. Methodology
3.1. Overview of the SCSTIN

The overall pipeline of the proposed SCSTIN framework used for HSI classification
is shown in Figure 3. SCSTIN is an end-to-end patch-wise classification method, which
features a spectral dimensionality reduction block, a spectral Transformer branch, a spatial
CNN branch, SSIF modules, and a CAW module. Incomplete feature extraction, inappro-
priate feature fusion, and longtime consumption are the major challenges for the CNN
models to be applied in the classification of large-scale satellite hyperspectral images. These
problems are addressed to some extent in the proposed SCSTIN framework.
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Figure 3. Flowchart of the proposed SCSTIN for classification based on the HSI image.

Before being fed into the network, HSI data with the size of B× H ×W (B represents
the number of bands, H represents the height of the image, and W represents the width of
the image) is cropped into HSI cube patches with the size of B× s× s (s represents the size
of the cube patch), which take the labeled pixel as the center pixel. In the first stage of the
SCSTIN framework, in order to alleviate spectral information redundancy caused by the
high correlation between spectral bands and improve the operation efficiency of subsequent
stages, a spectral dimensionality reduction block is adopted. During the process of spectral
dimensionality reduction, the number of spectral feature bands for the cube patch is refined
from B to b (b represents the number of feature bands, b < B) by b 3D convolution kernels
of B× 1× 1 size. Batch norm (BN) and ReLU functions are conducted subsequently to
achieve regularization and nonlinear activation to improve the performance of the network.
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In terms of feature extraction, 3D-CNN is the most commonly used structure in the
state-of-the-art hyperspectral classification method to integrally mine the spatial-spectral
discrimination features [43]. However, the locally sliding convolution operation of CNN
with fixed kernels performs better at characterizing spatial context information and is not
suitable for the extraction of spectral sequence features, which will lead to information loss
and reduce model efficiency [44]. While the characteristic of Transformer to extract sequence
features can make up for this. Furthermore, 2D-CNN and Transformer with MHSA have
advantages in speed compared to 3D-CNN. Therefore, considering the need for large-scale
mapping, in the SCSTIN framework, the feature extraction stage is purposefully designed
to synthesize the respective advantages of the Transformer and 2D-CNN, which consist
of a spectral Transformer branch, a spatial CNN branch, and two types of feature fusion
modules. The feature maps from the spectral dimensionality reduction block are fed into
the spectral Transformer branch and the spatial CNN branch to deep extract spectral
features and spatial features layer by layer, respectively. During the feature extraction
process, SSIF converts the two forms of data into each other and integrates them together
as spatial-spectral features; after the feature extraction process, CAW adaptively aggregates
the spectral class features from the Transformer branch and spatial class features from the
CNN branch into final classification features. The skip connection (SC) is also adopted to
reduce information loss and avoid gradient problems during the propagation of networks
(dotted arrow in Figure 3) [45]. At the last stage, the final classification features are input to
the SoftMax classifier to obtain the class information for each pixel.

In summary, the whole network adopts the concise and fast Transformer and 2D-CNN
to effectively extract spatial and spectral features according to their respective character-
istics, leveraging SSIF and CAW to fuse the extracted features at different stages of the
network, and finally achieving better performance in both speed and accuracy.

3.2. Spectral Transformer Branch

The spectral Transformer branch is designed to handle the problem of insufficient
spectral sequence feature extraction. Benefiting from the powerful global feature extraction
capabilities, the Transformer has achieved progressive results in the field of HSI process-
ing [46], in applications such as classification [34], spectral super-resolution [47], change
detection [48], unmixing [49], and target detection [50]. However, most of these studies
draw on the application of Transformer in the field of CV, focusing on the extraction of
global spatial information while ignoring the extraction of spectral sequence information.
In the proposed SCSTIN framework, the spectral Transformer branch aims to deep mine
spectral sequence features with long-distance dependencies, which is achieved by modeling
interaction information between any two spectral feature bands and increasing the weight
of the more important bands. Figure 4 shows the structure of the spectral Transformer
branch. Firstly, the organization format of data output by the spectral dimensionality
reduction block is converted from feature maps to tokens, which is a 1D vector organization
format of data that can be received by the Transformer module. Subsequently, tokens from
the tokenization block are input into multiple Transformer modules connected in tandem
to deep mine the spectral features by considering sequence and dependency characteristics
between spectral feature bands. Additionally, from the second Transformer module to
the last one, SSIF is performed before it to supplement spatial information from the CNN
module. Moreover, the SC structure is applied to each Transformer module to maximize
information retention. Lastly, only the vector related to class information in the tokens,
called the class token, is taken out to be projected into spectral class features with n (the
number of classes) size through a fully connected layer (FC).
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3.2.1. The Tokenization Block

The Transformer module receives 2D tokens as input. To handle 3D feature maps, the
tokenization block is designed to perform data format conversion from feature maps to
tokens by embedding 2D spatial information into 1D feature vectors and adding learnable
supplementary information. “Tokens” originated in the field of NLP, which is used to
characterize vectors with sequence relationships, such as words in sentences [35]. Therefore,
this data organization format, as the input of the Transformer, is ideal for characterizing
spectral bands that have sequence features. In the proposed SCSTIN framework, tokens
consist of three components: spectral tokens, the class token, and position embeddings.
The spectral tokens are specially designed in this paper to feature spectral information
using vectors. As a complement, the class token and position embeddings are learnable
parameters that are updated as part of the continuous training of the network. The class
token realizes global feature aggregation by aggregating weighted information from all
other tokens, and positional embeddings enable the model to perceive sequence information
of spectral features by labeling the position of each token [51].

As shown in the upper part of Figure 4, for the input feature maps X ∈ Rb×s×s, the
2D spatial information map of s× s size is flattened into a 1D feature vector with the size
of s2. The flattened vectors are then fed into a linear embedding process, which encodes
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the spatial information of each spectral feature band into the feature representation of
the corresponding band, called the spectral token in our net. The spectral tokens have
the size b × t, where t is the embedding dimension. Subsequently, a prepended class
token with the dimension size of 1× t, which is a randomly generated learnable vector, is
concatenated with the spectral tokens to construct (1 + b)× t size tokens. Importantly, in
order to supplement the sequence position information between b + 1 tokens, the element-
wise sum is conducted between current tokens and position embeddings with (1 + b)× t
size. The position embeddings are expanded from the learnable (1 + b)× 1 size position
vector. Finally, the tokens T0 ∈ R(1+b)×t are the output. In summary, the whole process for
the tokenization block is formulated as follows:

T0 = [Tc; Ts] + PE; Tc ∈ R1×t; Ts ∈ Rb×t; PE ∈ R(1+b)×t (1)

where Tc is the randomly generated class token, Ts are the spectral tokens, and PE represents
the position embedding. [; ] represents the operation of concatenation. Ts and PE are
calculated as follows:

Ts = fL(XF); XF ∈ Rb×s2

XF = Flatten(X); X ∈ Rb×s×s

fL(x) = xWT + b; W ∈ Rt×s2
, b ∈ Rt×1

(2)

PE = Expand(PV); PV ∈ R(1+b)×1 (3)

where XF is the flattened feature map and PV is the randomly generated position vector.
fL(·) represents the linear embedding process, where W and b are learnable parameters.
Expand(·) operation is used to replicate t copies of PV to form PE.

3.2.2. The Transformer Module

Taking tokens as input, the Transformer modules are able to deeply excavate global spectral
sequence information layer by layer by applying MHSA and multilayer perceptron (MLP). As
is shown in Figure 4a, MHSA first uses the attention mechanism to establish the relationship
between any two tokens to realize the modeling of long-distance dependence of features, and
MLP is conducted subsequently to weight each token to highlight important spectral feature
bands for classification. Layer norm operation is adopted before the two blocks to standardize
the spectral feature dimension and speed up the convergence of the network. In addition, the
SC structure is also applied in the two blocks to avoid problems of gradient vanishing and
exploding. The formula for the Transformer module can be expressed as:

Ti = TMHSA + MLP(LN(TMHSA)); TMHSA ∈ R(1+b)×t

TMHSA = Ti−1 + MHSA(LN(Ti−1)); Ti−1 ∈ R(1+b)×t
(4)

where Ti denotes the output tokens of the ith Transformer module, TMHSA is the output of
the MHSA block, MHSA(·) indicates operation of the MHSA block, and MLP(·) represents
operation of the MLP block.

Figure 4b shows the detailed process for MHSA in the Transformer module. The
normed tokens are linearly projected into three elements with a size of (1 + b) × t/h
(h is the number of heads) called query (Q), key (K), and value (V). Scores with a size
of (1 + b) × (1 + b) are calculated from Q and K, which can quantitatively reflect the
relationship between any two spectral characteristic bands. Then multiply scores by V to
get the Attention of one head. After the above process is performed h times in parallel, h
Attentions are concatenated together to form the final Attention with a size of (1 + b)× t.
In the last step, the final Attention is fed to the linear projection layer to further mine its
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deep features and is output as new tokens. The formula for the final Attention can be
expressed as:

Attention = [H1; . . . ; Hh]; Hi ∈ R(1+b)× t
h

Hi = so f tmax
(

QKT

scale

)
V; Q, K, V ∈ R(1+b)× t

h
(5)

where Hi represents the attention obtained in each head and scale is a constant that
equals

√
t/h.

Figure 4c shows the specific structure for MLP with one hidden layer in the Trans-
former module. The normed tokens from MHSA are successively sent to two linear
projection layers, which can fully excavate deep features for the HSI image. The Gaussian
error linear unit (GELU) is used as an activation function after linear projection to introduce
non-linear factors into MLP. The formula for the MLP can be expressed as follows:

MLP(T) = GELU( fL2(GELU( fL1(T)))); T ∈ R(1+b)×t

fL1(x) = xWT + b; W ∈ R(r∗t)×t, b ∈ R(r∗t)×1

fL2(x) = xWT + b; W ∈ Rt×(r∗t), b ∈ Rt×1

GELU(x) = x·Φ(x) = x· 12
[
1 + erf

(
x√
2

)]
erf(x) = 2√

π

∫ x
0 e−t2

dt

(6)

where r is the increase ratio of neurons for the hidden layer, GELU(·) is the GELU activation
function, and Φ(x) represents the standard Gaussian cumulative distribution function.

3.3. Spatial CNN Branch

The spatial CNN branch is designed to deeply exploit the 2D spatial features of
hyperspectral feature maps, layer by layer. The detailed structure of the spatial CNN
branch is shown in Figure 5. Different from the spectral Transformer branch, the feature
maps X from the spectral dimensionality can be directly input to the CNN Module without
data format conversion. In order to increase the speed of operation, the CNN Module is
composed of 2D convolution, BN, and ReLU, which are constructed as concisely as possible,
which is conducive to the fast inference of large-scale HSI. The kernel of a 2D convolutional
slide in the height and width directions, and the value Xxy

i,j at position (x, y) on the jth
feature map in the ith CNN module can be formulated as follows:

Xxy
i,j = ∑

m

Pi−1

∑
p

Qi−1

∑
q

wp,q
i,j,mX(x+p)(y+q)

i−1,m + bi,j (7)

where m denotes the feature map related to the current feature map in the (i− 1)th layer, Pi
and Qi represent the length and width of the convolution kernel, respectively, the coefficient
connected to the mth feature map at the (p, q) position in the preceding layer is denoted
wp,q

i,j,m, and the bias of this kernel is denoted bi,j.
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The SC and the SSIF are conducted for the CNN Module in the same way in the
Transformer branch. Following the last CNN Module, an average pool is conducted to
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squeeze feature maps into a 1D vector with b size. Ultimately, the vector is projected onto
spatial class features with a size of n. The formula for a 2D average pool is as follows:

FAverage(X) =
1

H·W
H

∑
i

W

∑
j

Xij (8)

where H and W denote the sizes of height and width for feature maps.

3.4. Feature Fusion Method

The integration of spatial and spectral information is a key step in HSI analysis. In
common deep learning-based models, the fusion process is placed after feature extraction
and prior to the classifier and is implemented by direct addition or concatenation [33].
However, there are two problems with this approach: first, there is no information inter-
change, which will isolate the spatial and spectral information from each other, resulting in
poorly extracted spatial-spectral features; second, direct addition or concatenation without
discrimination cannot reflect the preference of different categories of objects for the two
types of features (for example, road classification depends more on spatial information,
while vegetation classification depends more on spectral information). To solve these, SSIF
and CAW are proposed, respectively, in our SCSTIN framework.

The function of SSIF is to realize bidirectional information exchange and feature fusion
during the feature extraction process in two branches. Figure 6a shows the detailed structure
of SSIF in the SCSTIN framework. Due to the spectral Transformer branch and the spatial
CNN branch having different types of data format tokens and feature maps, the core of
SSIF is to realize the mutual conversion between the two data formats. In converting tokens
to feature maps, b× t size spectral tokens containing spectral information are taken from
tokens. Then the spectral tokens are input to linear projection and reshape operations to
match the size of the feature maps. Subsequently, the output with b× s× s size is added
with the feature maps from the CNN branch to form new feature maps. The procedure for
converting feature maps to tokens is reversed. The formula for the SSIF can be expressed as:

X′ = X + Reshape( fL1(Ts)); Ts ∈ Rb×t; X′, X ∈ Rb×s×s

fL1(x) = xWT + b; W ∈ Rs2×t, b ∈ Rs2×t
(9)

T′s = Ts + fL2(Reshape(X)); X ∈ Rb×s×s; Ts
′, Ts ∈ Rb×t

fL2(x) = xW + b; W ∈ Rt×s2
, b ∈ Rt×1

(10)

where X represents input feature maps, X′ represents output feature maps, Ts is input
spectral tokens, and Ts

′ is output spectral tokens. Reshape(·) denotes the operation of
reshaping the input size.

The CAW module is designed to discriminatively fuse spatial and spectral class
features before the classifier. Considering that different ground object types have different
preferences for features, it imposes weights with a sum of 1 on the spatial classification
features and spectral classification features of each object type. Figure 6b shows the detailed
structure of CAW. Spectral class features and spatial class features form two branches
that are multiplied by the weight coefficient after SoftMax normalization. The size of the
weights is set to 1 × n to indicate that different weights are assigned to each category. The
two class features after weighting are added to get the final class features input to the
classifier. The formula for the SSIF can be expressed as:

XC = So f tMax(ω1)·X1 + So f tMax(ω2)·X2; XC, X1, X2, ω1, ω2 ∈ R1×n

So f tMax(ω1) =
eω1

eω1+eω2 ; So f tMax(ω2) =
eω2

eω1+eω2

(11)

where X1 is a spectral class feature, X2 is a spatial class feature, and XC is the final class
feature. ω1 and ω2 are learnable weight parameters.
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4. Results

To evaluate the performance of the proposed SCSTIN model on a large-scale HSI
classification map, eight state-of-the-art HSI classification methods were reproduced for
comparison based on the EFHLM dataset. In this section, we first detail the specific
structure of the SCSTIN model used on practical classification tasks. Then we quantitively
compare the classification results with comparison algorithms. Finally, the trained models
were used to draw classification maps of EFHLM to demonstrate visual results and analyze
the distribution of ground objects.

4.1. Experimental Settings
4.1.1. The SCSTIN Framework Parameter Setting

The accuracy and efficiency of deep learning models are closely related to the design
of the network structure. For parameters inside the SCSTIN framework, the number
of spectral feature bands b after dimensionality reduction is set to 64, the embedding
dimension of tokens t is set to 16, the number of heads h for self-attention in MHSA is four,
and the increase ratio of MLP hidden layer r is set to four, which means the number of
neurons for the hidden layer is 64 in the models. Table 3 shows the detailed parameters for
the SCSTIN framework in the experiment. In addition, some hyperparameters have a great
impact on accuracy and efficiency, such as training batch size, input patch size, network
depth, and learning rate, and their optimal values are selected by controlling variables.
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Table 3. Detailed parameters for the SCSTIN framework in the experiment, where MHSA-4 is multi-
head self-attention with four heads and MLP-4 denotes the multilayer perceptron whose increase
ratio of hidden layer neurons is four.

Stage CNN Branch SSIF Transformer Branch

Input s× s× B

Spectral dimension reduction
Three-dimensional Conv [ 1× 1× B, 64]

Batch Norm
ReLU

Output s× s× 64

Tokenization Tokenization block -- --

Output 65× 16 -- s× s× 64

Depth 1

Layer Norm
MHSA-4

Layer Norm
MLP-4

--
Two-dimensional Conv [3× 3, 64]

Batch Norm
ReLU

Output 65× 16 16 � s× s s× s× 64

Depth 2

Layer Norm
MHSA-4

Layer Norm
MLP-4

--
Two-dimensional Conv [3× 3, 64]

Batch Norm
ReLU

. . . . . . . . . . . .

Output 65× 16 16 � s× s s× s× 64

Depth m

Layer Norm
MHSA-4

Layer Norm
MLP-4

--
Two-dimensional Conv [3× 3, 64]

Batch Norm
ReLU

Output 65× 16 -- s× s× 64

Last Layer

Class token Two-dimensional average pool

FC(16→ n) FC(64→ n)

CAW

Output 1× n

• Depth of the SCSTIN framework

Network depth is a key parameter that determines the complexity of a deep learning
model. Large depth leads to a large number of parameters and high complexity, which can
cause high calculation burdens and overfitting problems. Low depth with lower complexity
may result in underfitting problems, but fewer parameters can save computing resources,
which has advantages in large-scale fine land cover mapping based on satellite HSI. Thus,
it is necessary to choose the depth in a targeted manner to balance classification accuracy
and model efficiency. Figure 7a shows the model performance of the SCSTIN framework
at different depths. The results showed that with the increase in depth from 2 to 6, the
average training time per epoch increased linearly from 0.45 s to 0.98 s, and the maximum
OA reached 96.97% at the depth of four. Therefore, the SCSTIN model with a depth of four
(SCSTIN-4) was selected due to its excellent classification accuracy. Moreover, it is worth
noting that the accuracies of all SCSTIN models are above 96.3%, indicating the network
has strong robustness in depth. Thus, it could be seen that SCSTIN-2 possessed the fastest
training speed but also had good classification accuracy. In conclusion, both SCSTIN-2
and SCSTIN-4 were conducted in the subsequent experiments from the perspectives of
efficiency and accuracy, respectively.
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• Learning Rate

As one of the most important hyperparameters in a deep learning algorithm, learning
rate controls the convergence speed of the objective function to the local minimum value in
the process of back propagation. An appropriate learning rate can make the model converge
steadily and quickly. Considering SCSTIN models with different depths may have different
responses to changes in learning rate, Figure 7b shows the classification accuracy of both
SCSTIN-2 and SCSTIN-4 under different learning rates. It can be seen that when the
learning rate is higher than 0.0002, SCSTIN-2 is more stable than SCSTIN-4, indicating
that SCSTIN-2 is more convenient to tune the learning rate in practical application. By
comparison, 0.002 and 0.003 were selected as the final learning rates with the highest
accuracy for the SCSTIN-4 and SCSTIN-2 models, respectively.

• Training Batch Size

Batch training is a key algorithm for deep learning. It can address multi-input data
in parallel to reduce training time and accelerate network convergence. Too small a batch
size will lead to a longer running time, while too large will reduce the generalization
performance of the model [52]. In order to select the appropriate batch size, we take the
SCSTIN-4 model as an example to compare the classification accuracy and efficiency on
the EFHLM dataset. Figure 7c shows the performance of SCSTIN-4 with different batch
sizes ranging from 64 to 512. For classification accuracy, it is obvious that overall accuracy
(OA) reached its highest value when the batch size was 320. While average training time



Remote Sens. 2023, 15, 3269 17 of 28

per epoch decreased as batch size increased, the reduction was negligible after 320 batch
size. Thus, 320 was chosen as the compromise batch size.

• Input patch size

The size of the input HSI patches controls the amount of information accepted by
the deep learning model. Small sizes may result in insufficient valid information, while
large sizes will increase calculation costs and may introduce many distractions. To select a
suitable patch size, Figure 7d visualizes the performance of SCSTIN-4 with different patch
sizes ranging from 3 × 3 to 11 × 11. It could be seen from the results that the 9 × 9 patch
size had the highest accuracy and was acceptable in terms of time consumption. Therefore,
9 × 9 was chosen as the final input batch size.

4.1.2. Comparison Algorithms

Eight HSI classification deep learning methods were reproduced to compare with
the SCSTIN-2 and SCSTIN-4 models based on the EFHLM satellite hyperspectral dataset.
All ten models were divided into three categories according to the classification strategy.
The strategy of the first group adopted the model based on CNN, which contains three
commonly used models: contextual deep CNN (CDCNN) [32], the spectral-spatial residual
network (SSRN) [53], and the fast dense spectral-spatial CNN (FDSSC) [54]. CDCNN
mines spatial features based on 2D convolution, while SSRN and FDSSC extract spatial-
spectral features based on 3D convolution. The second group focused on three attention
mechanism-based models, which include the double-branch multi-attention mechanism
network (DBMA) [55], the double-branch dual-attention mechanism network (DBDA) [33],
and the attention-based adaptive spectral-spatial kernel residual network (A2S2K) [56].
The introduction of an attention mechanism can enhance the ability of the algorithm to
extract global features. The third group contains four Transformer-based models: Vision
Transformer (ViT) [51], Bottleneck spatial-spectral Transformer (BS2T) [40], SCSTIN-2,
and SCSTIN-4. As the most original Transformer in the CV field, ViT was applied to the
hyperspectral classification in this study. BS2T combined the CNN and Transformer as a
multi-head spatial-spectral self-attention module to extract classification features.

To make a fair comparison, the patch size, batch size, and number of iterations were
set to 320, 9 × 9 and 300 for all experiments. In addition, we adopted adaptive moment
estimation with a decoupled weight decay (AdamW) [57] method as the optimizer for
the model parameter optimization. As for learning rate, considering that different model
structures have different convergence speeds, each model was tuned to find its optimal
learning rate. Finally, the overall accuracy (OA), average accuracy (AA), Kappa coefficient,
and producer’s accuracy of each class on the test data were calculated to evaluate the
model quantitatively.

4.2. EFHLM Classification Results

All the algorithms involved were implemented five times using Python 3.8.5 (Python
Software Foundation, Fredericksburg, VA, USA) and PyTorch 1.10.1 (Linux Foundation,
San Francisco, CA, USA), with an NVIDIA GeForce RTX 2070 GPU and an Intel Core
i9-10900K CPU. Of these, the randomly selected training set and verification set account
for 1% of the samples, and the remaining samples were used as the test set for the model
evaluation, and the collected average result is reported. Table 4 lists the evaluation metrics
comparisons of three groups based on different strategies for the EFHLM dataset.

4.2.1. Classification Accuracy Comparison

As can be seen from the quantitative results in Table 4, the SCSTIN-4 model obtains
optimal results with OA, AA, and Kappa coefficients reaching 96.98%, 95.01%, and 96.65%,
respectively, which is superior to comparison methods. For example, compared with
the most basic models, CDCNN, DBMA, and ViT, in the three different strategies, the
proposed SCSTIN-4 model yields 7.44%, 3.38%, and 4.03% average absolute improvements
in terms of OA, which demonstrates the effectiveness of the organic combination of CNN
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and Transformer. The SCSTIN-2 model obtains suboptimal OA and Kappa coefficients of
96.49% and 96.11%, respectively. Another hybrid model, BS2T, reaches the suboptimal AA
with 93.72%, which also explains the advantages of combining CNN with Transformer.

Table 4. Comparisons of classification results among different models for the EFHLM dataset.

Class
Training
Samples

CNN-Based Models Attention-Based Models Transformer-Based Models

CDCNN SSRN FDSSC DBMA DBDA A2S2K ViT BS2T SCSTIN-2 SCSTIN-4

Corn 136 97.39 98.18 97.98 97.37 98.73 98.76 98.76 98.75 99.00 ** 98.84 *
Rice 132 93.47 96.69 96.86 95.31 97.24 97.95 * 95.19 97.58 96.40 98.06 **

Alfalfa 34 61.38 85.83 90.34 * 82.63 88.44 87.80 82.02 89.74 89.63 91.45 **
Trees 96 79.03 91.49 92.26 88.75 92.20 92.29 88.79 91.67 95.96 ** 95.64 *

Grassland 21 23.22 82.10 * 82.03 75.49 80.54 79.15 69.68 80.90 79.76 82.12 **

Vegetable 103 88.01 95.49 95.50 92.13 95.55 95.99
** 87.71 95.58 * 94.82 95.26

Bare land 263 89.47 94.80 95.77 94.52 96.89 96.64 92.40 96.11 97.08 * 97.39 **

Building 232 93.07 97.28 97.15 96.81 97.55 98.03
** 95.92 97.89 97.72 97.97 *

Road 46 68.72 74.03 70.17 63.06 69.64 73.41 80.08 75.60 82.47 ** 82.35 *
Water 78 94.43 95.15 94.66 92.69 95.05 97.02 96.96 95.46 97.13 * 97.53 **

Greenhouse 143 96.95 98.10 98.24 98.30 98.91 99.20 * 98.48 99.29
** 98.98 99.14

Grape 131 92.02 97.61 97.66 95.76 98.09 98.34 * 93.97 97.93 98.04 98.47 **
Lotus 15 46.89 89.19 91.39 * 86.42 91.01 89.14 84.46 90.72 88.28 92.18 **
Wheat 24 10.50 96.57 98.33 * 90.33 97.84 97.40 63.02 98.03 92.15 98.91 **

Wetland 136 92.22 96.60 98.76 * 96.64 98.56 98.04 97.11 98.42 98.53 98.85 **
Wolfberry 8 9.88 94.63 94.35 89.39 93.72 93.65 71.12 95.82 * 92.21 96.00 **

OA (%) 89.54 95.19 95.50 93.60 95.89 96.24 92.95 96.06 96.49 * 96.98 **
AA (%) 71.04 92.73 93.21 89.73 93.12 93.30 87.23 93.72 * 93.67 95.01 **
Kappa 86.18 94.78 95.13 92.92 95.45 95.84 92.19 95.64 96.11 * 96.65 **

Mapping Time (min) 6.80 ** 21.57 26.53 32.61 31.77 28.68 55.00 75.79 9.49 * 15.72

** indicates the optimal value, and * indicates the suboptimal value.

From the perspective of producer accuracy for each category in Table 4, the SCSTIN-
4 model performs the best among all models, especially for rice, alfalfa, grape, wheat,
wolfberry, and other vegetation, which benefits from its powerful ability to address spatial
context features and spectral sequence features. By comparison with the SCSTIN-4, it can
be observed that the SCSTIN-2 conducts a general performance for the classes with a small
number of samples, such as alfalfa, grassland, lotus, wheat, and wolfberry, which can be
attributed to its shallow feature extraction structure.

In addition, by comparing the classification results between models based on different
strategies, it is easy to observe that Transformer-based models possess the best classification
results, followed by Attention-based and CNN-based models. As the most popular deep
learning algorithm, the performance of the CNN-based models (e.g., SSRN and FDSSC)
can basically meet the accuracy requirements of hyperspectral classification. By consid-
ering long-distance-dependent features, the introduction of the attention mechanism can
improve the classification performance of models to some extent (e.g., DBDA and A2S2K).
Additionally, the Transformer, as an improved version of the attention mechanism, can ad-
dress the spectral sequence features with long-distance dependencies. However, the single
transformer model (i.e., ViT) cannot extract spatial context features well and has relatively
poor performance. To deal with it, the latest hybrid models (e.g., BS2T) fuse Transformer
and CNN together to significantly improve classification accuracy. Our proposed SCSTIN
model not only organically combines CNN and Transformer as the dual-branch structure
to utilize spatial context features and spectral sequence features, but also introduces two
feature fusion modules (SSIF and CAW) to fuse both features rationally. In this way, with
more discriminative and representative features extracted, the SCSTIN framework can
achieve the best classification accuracy among all the comparison models.
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4.2.2. Mapping Time Comparison

The cost of models is also one of the important factors to be considered in the practical
application of hyperspectral fine land cover mapping. The time taken by each model to
map the distribution of ground objects in the whole EFHLM region is calculated in Table 4.
It is obvious that the mapping time of CDCNN with 2D convolution is the least, which
proves to a certain extent that 2D convolution has high operational efficiency. However,
CDCNN has the lowest classification accuracy and is not suitable for actual hyperspectral
fine land cover mapping. On the contrary, the proposed SCSTIN framework not only
guarantees high classification accuracy but also keeps mapping time low. The SCSTIN-2
had a suboptimal mapping time of 9.49 min, which is much lower than the mapping time
consumed by other comparison models. For example, another Transformer-based model,
BS2T, is at the same level of classification accuracy as SCSTIN-2 but takes about eight times
as long to map the distribution of EFHLM. This is because SCSTIN reasonably combines
2D CNN and Transformer to improve the efficiency of the model. Even compared with
SSRN, the fastest model in comparison models, the mapping time of SCSTIN-2 is only half
that of SSRN. In addition, the SCSTIN-4 with the highest classification accuracy possesses a
mapping time of 15.72 min, which also exceeds all comparison models.

In summary, compared with the state-of-the-art classification models, the proposed SCSTIN
framework achieves satisfactory performance in both classification accuracy and running time,
which enables fast fine land cover mapping based on large-scale satellite hyperspectral imagery.

4.3. EFHLM Mapping Results and Distribution Analysis

The distribution maps of ground objects for EFHLM in northern Ningxia are shown in
Figure 8 to visualize the classification result of each model. In order to show the details
of the distribution maps more clearly, a small region was zoomed in to compare the
visualization results of different models, as shown in Figure 9.

According to Figures 8 and 9, the models with different strategies showed different
visual effects on the distribution patterns of ground objects. Firstly, it can be observed
that maps of basic models CDCNN and ViT, as shown in (b) and (h) of Figures 8 and 9,
show a lot of noise and misclassification, which is consistent with the quantitative results
reported in Table 4. To reduce noise and misclassification, the CNN-based models SSRN
and FDSSC (c) and (d) introduce the 3D convolutional residual network to extract the
spatial-spectral features. However, their maps are so smooth that some details are ignored,
such as small fields, roads, rivers, and so on, within the black oval in Figure 9, which
is mainly caused by their weak spectral sequence feature extraction ability. By adding
attention mechanisms, DBMA, DBDA, and A2S2K (e), (f), and (g) models can extract global
spatial-spectral information, improving classification accuracy and showing more detailed
information on distribution maps. However, without sufficient mining of spectral sequence
information, the attention-based models still have the problem of excessive smoothing
and some serious misclassification. For instance, some rice paddies within the black oval
in the upper left corner of the zoomed distribution maps in Figure 9 were misclassified
as corn fields. As for the BS2T model, although the quantified classification results are
better than those of other comparison models, the direct structure integration of CNN
and Transformer still leads to the problem of unclear boundaries and a lack of details in
the distribution maps (i) in Figures 8 and 9. The SCSTIN classification models (j) and (k)
exhibit more details in distribution maps due to their ability to fully extract and reasonably
fuse 2D spatial features and spectral sequence features. SCSTIN-4 achieves the best visual
effect with few misclassifications and the highest classification accuracy, while SCSTIN-2 is
affected by categories with small samples, and the classification result was slightly inferior
to that of SCSTIN-4.
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Figure 9. Zoomed-in maps for the black box region of EFHLM, with the black box indicating the
zoomed region. (a) False color image. (b) CDCNN (OA = 89.54%). (c) SSRN (OA = 95.19%). (d) FDSSC
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(l) Ground truth.
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Furthermore, the spatial distribution pattern of the ground objects in the EFHLM
is analyzed based on the SCSTIN-4 classification map. Combined with the false color
image of EFHLM and classification map of SCSTIN-4 (a) and (k) in Figure 9, it can be
seen that the Helan Mountains are in the upper left corner of the imagery. The Helan
Mountains are stony mountains with barren land, many bare rocks, and low vegetation
coverage, so only a few trees are distributed in the mountains. EFHLM is located in the
upper reaches of the Yellow River, which can be seen running through the imagery from
right to bottom. The three cities distributed vertically on the map correspond to Shizuishan
City, Yinchuan City, and Wuzhong City in Figure 1b from top to bottom. Importantly,
due to suitable geographical and climatic conditions, the EFHLM area is mainly covered
by a variety of vegetation. Corn and rice are the main food crops in this area; corn is
distributed throughout the region, while rice is found near rivers and lakes due to the
need for water. Wetlands are distributed along the Yellow River, including a number of
national wetland parks. Alfalfa is planted in a large field in the upper right corner of the
imagery. Greenhouses are mainly distributed near Yinchuan City, while vegetables are
mostly planted between Yinchuan City and Wuzhong City. Lastly, it is of great significance
to study the grape distribution of EFHLM, which is the “golden zone” of grape cultivation.
To be more intuitive, the main planting areas of grapes are framed with purple boxes in
Figure 9a,k. The two boxes near the imagery edge are mainly open-air grape fields planted
in large areas, which is consistent with the study result of Liu et al. [58]. As for the other
purple box, it can be seen that this area is close to the town of Yinchuan City. After the
on-the-spot investigation, it was found that the grapes in this box were mainly planted on
several wine estates.

5. Discussions
5.1. Analysis of the Training Sample Proportion

The deep learning models perform ground object classification by mining the higher-
level spatial-spectral features of HSI in a data-driven way. Thus, the quality of the models is
determined by the number of samples involved in parameter training, and the appropriate
number of training samples can also save time and manpower without losing classification
accuracy. Therefore, we compare the classification performance of different models over
different numbers of training samples, as shown in Figure 10. The training sets were
set at 0.1%, 0.2%, 0.5%, 1%, 1.5%, and 2%, respectively. It is obvious that the three basic
models (i.e., CDCNN, DBMA, and ViT) have relatively poor performance, while the other
algorithms have improved the classification accuracy in all percentages of training samples
through certain improvements. With a more reasonable hybrid structure between CNN
and Transformer, the proposed SCSTIN models perform better in OA. When the percentage
is small, the SCSTIN models show significant advantages over other comparison models.
For example, when the training set is set to 0.1%, the OA of both SCSTIN-4 and SCSTIN-2 is
greater than 88%, far exceeding the OA of other comparison models. As the percentage of
training samples increases, the improvement gap between the models narrows. When the
percentage of training sets is large, the proposed SCSTIN-4 model still shows competitive
results. However, the SCSTIN-2 gradually caught up with other comparison models
due to its shallow feature extraction layer. In addition, it is worth noting that the OA
of all models is not significantly improved when the percentage of the training set is
greater than 1%, so the 1% training set is the most appropriate for the EFHLM dataset. In
summary, the proposed SCSTIN models show more significant improvement under limited
training samples, and the SCSTIN-4 model is in a leading position under each training
sample percentage.
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5.2. Ablation Study on Module

The extraction and fusion of spatial and spectral features play an important role
in the HSI classification based on the deep learning method. In the proposed SCSTIN
framework, two branches and two fusion modules were conducted to mine and integrate
spatial-spectral features, respectively. To validate the effectiveness of each part of the
SCSTIN model, we take SCSTIN-4 as an example to perform ablation experiments on the
EFHLM dataset under the case of 1% training samples. Figure 11 exhibits the results of the
ablation study conducted with each module of the SCSTIN model. From the results, it can
be observed that the classification accuracy of the two-branched network exceeds that of
any single branch, which proves the effectiveness of combining the 2D spatial features and
spectral sequence features extracted by CNN and Transformer. Applying any feature fusion
module in the model also results in a significant improvement in classification results,
which proves that the organic fusion of the two features can also enhance the performance
of the model. Furthermore, the SCSTIN-4 model with all four modules achieves the highest
accuracy in the EFHLM dataset. In conclusion, the adopted two branches and two feature
fusion modules in the SCSTIN-4 model can significantly improve the classification accuracy
in the EFHLM dataset, indicating that all modules in the proposed method are effective.

5.3. Model Complexity

With the continuous development of hyperspectral technology, it will be possible to
process HSIs on real-time platforms in the future. However, running deep learning models
on terminal devices needs to consider the requirements of memory and computing power,
so the model complexity analysis needs to be carried out, involving the number of model
parameters (spatial complexity), the floating point of operations (FLOPs) (computational
complexity), and the training time (time complexity) in this section. Table 5 reports the
complexity of models under the EFHLM dataset of 1% training samples.
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Table 5. Model complexity comparison in the EFHLM dataset.

Models Parameters FLOPs (MMac) Training Time/Epoch (s)

CDCNN 2,181,136 15.00 0.30
SSRN 284,296 116.30 0.88

FDSSC 915,490 129.75 1.28
DBMA 449,309 211.42 2.80
DBDA 294,836 99.69 1.72
A2S2K 289,661 125.98 1.16

ViT 3,576,976 291.85 1.53
BS2T 282,904 78.19 2.86

SCSTIN-2 193,522 15.68 0.46
SCSTIN-4 372,212 30.32 0.67

The number of parameters in the model reflects the storage space occupied by the
model when it is saved. It can be observed that SCSTIN-2 possesses the least number
of parameters, which will take up the least storage space when placed in the context of
the computing platform. For example, the SCSTIN-2 model only has 193,522 parameters,
which is nearly 17 times fewer than the ViT model. The SCSTIN-4 with the highest
classification accuracy only has 372,212 parameters, which is also at a low level among
hyperspectral classification models based on deep learning. Moreover, in terms of training
time and FLOPs, both SCSTIN models have better performance compared with other
advanced models other than CDCNN. For instance, the FLOPs and training time of another
Transformer-based model, BS2T, are almost five times and six times that of the SCSTIN-2,
respectively. This is because the proposed framework uses a more sensible combination
of 2D-CNN and Transformer. In addition, it is worth noting that two basic models for
CNN and Transformer (i.e., CDCNN and ViT) still have less training time in the case of
having more parameters, which also confirms the advantages of 2D-CNN and Transformer
structures in terms of running speed.

Overall, with low complexity in terms of storage, calculation, and time, the proposed
SCSTIN model is capable of attaining advanced performance efficiently for fine land cover
classification using large-scale satellite hyperspectral imagery, which is more conducive to
future applications on real-time platforms.
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5.4. Model Generalization

Model generality refers to the adaptability of one model to different datasets in differ-
ent scenarios. Models with strong generalization ability will perform well across different
datasets. In order to explore the applicability and generality of the proposed model, two
public datasets from different platforms, the satellite hyperspectral dataset for Botswana
and the airborne hyperspectral dataset for Indiana Pines (both can be downloaded from
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes, ac-
cessed on 15 August 2021), were used to conduct generality experiments.

The Botswana dataset, acquired by NASA using the Hyperion sensor on the EO-1
satellite, has a spectral resolution of 10 nm, covering the band range of 400–2500 nm. The
size of the Botswana dataset is 1467 × 256, with a spatial resolution of 30 m, covering
about 340 km2. A total of 145 bands were used in the experiment after data preprocessing.
Figure 12 exhibits the false color image and ground truth distribution of the satellite
hyperspectral dataset for Botswana, which contains a total of 14 classes of ground objects.
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Figure 12. The false color image and ground truth map of the satellite hyperspectral dataset for Botswana.

The Indiana Pines dataset was captured in northwestern Indiana by the AVIRIS sensor
equipped on an airborne platform. It is composed of 145 × 145 pixels and 200 spectral
bands covering 400–2500 nm after removal of water vapor absorption bands. Figure 13
exhibits the false color image and ground truth distribution of the airborne hyperspectral
dataset for Indiana Pines, which contains a total of 16 classes of ground objects.
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CDCNN 75.61 76.23 73.64 0.05 67.39 50.38 62.18 0.11 
SSRN 91.91 91.80 91.23 0.11 94.58 93.42 93.82 0.42 

FDSSC 93.99 93.75 93.49 0.12 95.58 90.06 94.95 3.00 
DBMA 95.88 95.89 95.54 0.12 89.99 88.99 88.59 1.29 
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A2S2K 92.63 92.71 92.01 0.11 93.74 90.28 92.85 0.50 

ViT 91.99 92.38 91.32 0.14 86.65 87.28 84.74 0.52 

Figure 13. The false color image and ground truth map of the airborne hyperspectral dataset for
Indiana Pines.

In this experiment, 1% (42) and 3% (305) samples were randomly selected as training
sets for the Botswana and Indiana Pines datasets, respectively. Table 6 lists the classification

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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results for two datasets. It is clear that both SCSTIN-2 and SCSTIN-4 models achieve high
classification accuracy and have fast training speeds in two datasets, which is similar to
their performance on EFHLM datasets. Specifically, the SCSTIN-4 model possesses the
highest values in terms of OA, AA, and Kappa coefficient in both datasets. Moreover,
the training speed of the SCSTIN-2 model is about 1.5 times that of the SCSTIN-4 model,
ensuring excellent classification accuracy. Therefore, the experimental results with the two
types of datasets have verified that the SCSTIN model has good generalization ability.

Table 6. Classification accuracies on the Botswana and Indiana Pines datasets.

Models
Botswana Indiana Pines

OA AA Kappa Training Time/Epoch (s) OA AA Kappa Training Time/Epoch (s)

CDCNN 75.61 76.23 73.64 0.05 67.39 50.38 62.18 0.11
SSRN 91.91 91.80 91.23 0.11 94.58 93.42 93.82 0.42

FDSSC 93.99 93.75 93.49 0.12 95.58 90.06 94.95 3.00
DBMA 95.88 95.89 95.54 0.12 89.99 88.99 88.59 1.29
DBDA 95.86 95.79 95.51 0.13 96.07 95.92 95.53 0.73
A2S2K 92.63 92.71 92.01 0.11 93.74 90.28 92.85 0.50

ViT 91.99 92.38 91.32 0.14 86.65 87.28 84.74 0.52
BS2T 95.97 96.20 95.63 0.38 95.65 94.40 95.03 1.29

SCSTIN-2 95.84 95.74 95.50 0.07 95.84 93.73 95.25 0.12
SCSTIN-4 96.54 96.56 96.25 0.09 96.32 95.99 95.80 0.18

6. Conclusions

In this study, a novel Spatial-Convolution Spectral-Transformer Interactive Network
(SCSTIN) is proposed for large-scale, fast refined land cover classification and mapping
based on ZY1-02D satellite hyperspectral data. The SCSTIN framework is designed to
address the problems of incomplete feature extraction, inappropriate feature fusion, and
long-term consumption when the existing CNN model is applied to large-scale satellite
hyperspectral classification. In the SCSTIN framework, the dual-branch structure is adopted
to organically combine CNN and Transformer to extract the spatial-spectral features of the
hyperspectral image. In addition, two feature fusion modules, SSIF and CAW, are adopted
between and after the two branches to organically fuse two types of features through
interactive and weighted approaches. Moreover, spectral dimensionality reduction in the
front part of SCSTIN, the 2D convolution operation in the CNN branch, and the parallel
operation of MHSA in the Transformer branch can improve the computational efficiency of
the model. The proposed SCSTIN model can achieve stable and efficient classification and
mapping of large-scale hyperspectral images with higher accuracy.

The ZY1-02D satellite hyperspectral image is used as experimental data to map the
distribution of ground objects in the eastern foothills of the Helan Mountains (EFHLM). To
validate the proposed SCSTIN models, eight state-of-the-art hyperspectral classification
methods are used as comparisons. The experimental results demonstrate that both SCSTIN-
4 and SCSTIN-2 models achieve excellent performance in terms of classification accuracy
and efficiency. Specifically, the SCSTIN-4 model achieves higher accuracy with an overall
accuracy (OA) of 96.98%, while the SCSTIN-2 model exhibits higher efficiency with a
shorter mapping time of 9.49 min. We have analyzed the spatial pattern of the study area
as well as the distribution rules of different ground objects based on the classification map
obtained by the SCSTIN-4 model. Furthermore, we discuss the performance of the proposed
model from various perspectives, including the setting of training sample proportions,
the performance of submodules, model complexity, and generalization ability. The results
unequivocally indicate that the proposed model excels in all these aspects. In future work,
we will continue to explore large-scale hyperspectral refined land cover classification and
mapping in different application scenarios.
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