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Abstract: The tracking community is increasingly focused on RGBT tracking, which leverages the
complementary strengths of corresponding visible light and thermal infrared images. The most
well-known RGBT trackers, however, are unable to balance performance and speed at the same time
for UAV tracking. In this paper, an innovative RGBT Siamese tracker named SiamCAF is proposed,
which utilizes multi-modal features with a beyond-real-time running speed. Specifically, we used a
dual-modal Siamese subnetwork to extract features. In addition, to extract similar features and reduce
the modality differences for fusing features efficiently, we designed the Complementary Coupling
Feature fusion module (CCF). Simultaneously, the Residual Channel Attention Enhanced module
(RCAE) was designed to enhance the extracted features and representational power. Furthermore, the
Maximum Fusion Prediction module (MFP) was constructed to boost performance in the response
map fusion stage. Finally, comprehensive experiments on three real RGBT tracking datasets and one
visible–thermal UAV tracking dataset showed that SiamCAF outperforms other tracking methods,
with a remarkable tracking speed of over 105 frames per second.

Keywords: multi-modal object tracking; RGBT tracking; attention mechanism; deep learning

1. Introduction

Visual object tracking is not only a consequential but also fundamental task in the
realm of computer vision, requiring the accurate and robust tracking of objects across
subsequent frames based on the initial position of a model-agnostic target. This technology
is helpful for potential practical applications such as visual monitoring, robot vision nav-
igation, and autonomous vehicles. The performance of object tracking tends to degrade
under challenging circumstances, such as low illumination, rainy, fog, and other extreme
environments, due to the inherent limitations of visible light images. As shown in Figure 1,
under certain conditions such as low light and partial occlusion, the targets may lack clear
distinguishability in visible light images. On the other hand, thermal infrared images
may offer a more distinct and discernible representation of the targets. Conversely, in
scenarios such as inadequate thermal imaging of the target or thermal interferences, the
visual information, including color and texture, that is captured in visible light images can
effectively display the target, as demonstrated in Figure 2.

The thermal image obtained with the thermal infrared camera, as a complementary
cue, can effectively compensate for the degradation in object-tracking performance, and
thermal infrared cameras have become increasingly affordable and economically accessible
in recent years [1]. An increasing number of RGBT tracking benchmark datasets [2–5]
serve as a versatile evaluation platform for assessing the performance of trackers. This
has contributed to increasing attention and interest in RGBT tracking as a research area in
computer vision.
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Figure 1. Examples where objects are tracked better in thermal infrared images (bottom). 

  

  

Figure 2. Examples where objects are tracked better in visible light images (top). 

Figure 1. Examples where objects are tracked better in thermal infrared images (bottom).
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Thus far, a great number of RGBT trackers have been proposed. Traditional object-
tracking methods in their early stages of development, such as Kalman filter [6], particle
filter [7], and mean shift [8], were used for RGBT tracking. These methods mostly use hand-
crafted features such as a histogram of oriented gradients (HOG) [9], scale invariant feature
transform (SIFT) [10], and local binary pattern (LBP) [11] to fuse features. Nevertheless,
traditional RGBT tracking methods do have certain limitations that can restrict their overall
performance. First of all, the features used in tracking are handcrafted, meaning that they
cannot handle practical challenges such as scale changes and fast movements. Secondly, the
above methods often necessitate significant computational resources, and almost none of
them are capable of meeting demanding real-time requirements. Influenced by the notable
achievements of Convolutional Neural Networks in visible light tracking, an increasing
number of attempts have been made to use CNNs in order to enhance the performance of
RGBT trackers. The Multi-Domain Network (MDNet) [12] and Siamese [13] architectures
are two widely used and popular frameworks in the realm of RGBT tracking. MDNet-
based trackers must be disregarded due to their slower processing speeds that do not meet
real-time requirements, while trackers based on the Siamese network satisfy the real-time
requirements. Despite the faster speed achieved with Siamese-based trackers, there still
remains a large performance gap when compared to most advanced RGBT trackers.

These approaches can effectively take advantage of the modality characteristic, but the
majority of them are missing the potential benefits of modality differences between visible
light and thermal infrared features, which are vital for the adequate fusion of different
modalities. At the same time, the question of how to strike a balance between the high
performance and high speed of RGBT trackers is also a meaningful and challenging issue
that necessitates further exploration.

In this paper, we propose a Siamese Complementary Attention Fusion network (Siam-
CAF) which can achieve a high performance and above-real-time speed. We first expanded
the Siamese framework to a dual Siamese framework [14] to extract different features
from corresponding images of two modalities. Afterwards, the extracted features were
fused through the Complementary Coupling Feature fusion module (CCF), which extracts
the similar features through coupled filters to reduce the modality differences and then
enhances the discriminative power of the fused features. The visible light and thermal
infrared features utilize the Residual Channel Attention Enhanced module (RCAE) to
achieve the feature enhancement of the respective modalities. Finally, the Maximum Fusion
Prediction module (MFP), employed for fusing three predicted position maps, was utilized
to accomplish the final fusion at the response level.

The primary contributions of this research paper can be summarized as follows:

1. We extended the Siamese network to RGBT tracking for better utilization of the
information of two modalities. As a result, our proposed method demonstrates an
outstanding performance and speed (105 FPS), surpassing most advanced RGBT
trackers based on the current mainstream datasets.

2. We designed a Complementary Coupling Feature fusion module (CCF) which can
extract similar features and reduce modality differences to fuse features better. Si-
multaneously, the features are enhanced using the Residual Channel Attention En-
hanced module (RCAE) to amplify the characteristics of visible light and thermal
infrared modalities.

3. We propose a Maximum Fusion Prediction module (MFP) in the response map fusion
stage which enables us to effectively accomplish the response level fusion.

The subsequent sections of this paper are structured as follows: Section 2 provides
a comprehensive review of the relevant domestic and international studies related to our
approach. Section 3 presents the details of our tracking network. Section 4 describes our
implementation details and describes the experimental results in mainstream datasets such
as GTOT, RGBT234, and VTUAV. Section 5 draws the conclusion.
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2. Related Works
2.1. Visual Object Tracking

Modern visual object tracking can roughly be categorized into two main branches.
The first branch of tracking approaches are predicated on the correlation filter, which
involves training a regressor by diagonalizing the resulting data matrix with Discrete
Fourier Transform. This approach enables concurrent online tracking and weight updates of
the filters. The concept of using correlation filters for object tracking was initially introduced
with MOSSE [15], and it has since been widely used for tracking. Henriques et al. [16]
proposed CSK to address the issue of insufficient samples in MOSSE. KCF [17] augments
the previous single-channel correlation filter by defining the multi-channel connection
mode. Subsequent correlation filter methods use more features, such as color features [18]
and deep features [19], to enhance tracking accuracy, but these additional features often
result in a significant reduction in the model update speed. The tracking approaches in the
other branch are built upon deep learning. As an example, MDNet [12] is the pioneering
masterpiece among the early tracking algorithms based on CNNs whose core idea is to
use network branches with multi-domains to fit different target objects. SiamRPN [20]
constructs an RPN structure based on the Siamese network [13]. The template frame and
the detection area use the same network to extract features and determine the location and
size of the target through two independent network branches: classification and regression.

2.2. RGBT Object Tracking

As the theoretical research on thermal infrared cameras improves and a growing
number of tracking benchmarks are proposed [2–5], the field of RGBT object tracking is
recently attracting a great deal of attention.

A crucial concern in RGBT tracking is how to optimally exploit the information
from both modalities, allowing them to synergistically complement each other for an
improved tracking performance. Zhang et al. [21] introduced the fusion-based approach
that combines visible light and thermal infrared images, followed by tracking based on
the fused image data. In SiamFT [22], convolutional features extracted from images of two
modalities are concatenated to generate fused features. The cross-relation operation is then
employed on them to generate the ultimate response map. DSiamMFT [23] incorporates
the dynamic online learned transformation strategy and multi-level semantic features,
building upon the method established in SiamFT. In DuSiamRT [14], a response-level fusion-
tracking algorithm is proposed that incorporates deep learning techniques. Additionally, it
incorporates the weight distribution mechanism during the feature extraction stage, further
enhancing the tracking performance. SiamCDA [24] fuses the cross-modal information
based on SiamRPN++ and takes the influences of distractors into consideration. Feng
et al. [25] proposed a pioneering framework based on Transformer, designing a simple
Siamese network to extract features which are then input into the Transformer feature
fusion network to complete target tracking. SiamIVFN [26] is a fusion tracker whose
tracking head is built based on SiamFC++. Real-time tracking is always considered in the
design of SiamIVFN models; thus, the structure of SiamIVFN is straightforward.

2.3. Attention Mechanisms

Attention mechanisms, first introduced for machine translation, have now become an
essential concept within the realm of whole computer vision. They have gained significant
attention and have become a crucial concept in recent research efforts. Many works have
explored the significance of attention mechanisms in different spatial and channel domains
to improve performance in the main task. Attention mechanisms play a vital role in
enabling neural networks to only concentrate on important details, avoiding unimportant
information, much like our visual processing system. This selective attention aids in
perception by allowing the network to prioritize important features, similar to the way in
which humans tend to focus on specific parts of an image while disregarding irrelevant
details. The spatial transformation of the input image was proposed with STN [27] to
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strengthen the model’s capacity for generalization and robustness. SENet [28] is a method
that learns channel-wise correlations to allocate more attention to channels with higher
information contents. This allows the network to dynamically adapt its attention to different
channels based on their relevance. CBAM [29] emphasizes the meaningful features in
channel and spatial dimensions and applies attention modules in turn to learn what to
focus on and where. SKNet [30] is an attention mechanism research project on convolution
kernels that uses different convolutional kernel weights for different images.

3. Our Method

In this section, we provide a detailed introduction to our proposed RGBT tracking
model. First, we outline the overall network architecture of the SiamCAF. Then, we
describe each component module in detail. As depicted in Figure 3, the network has a
dual-modal Siamese subnetwork to extract features, CCF modules to fuse dual-modal
features, RCAE modules for unimodal feature enhancement, region proposal networks
for proposal generation, and an MFP module to select the bounding box. In the following
sections, we comprehensively elucidate each component in detail.
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3.1. Dual-Modal Siamese Subnetwork for Feature Extraction

We propose the tracking model SiamCAF, which has two Siamese subnetworks [14],
named RGB Siamese network and T Siamese network. They are utilized for distinctive
feature extraction from visible light and thermal infrared images. For the better processing
of features by subsequent modules, the two Siamese subnetworks use an identical structure
but possess distinct parameters that enable them to accurately perform feature extraction
from the corresponding image pairs. Each Siamese subnetwork contains two branches,
namely, the template branch and detection branch, which have the same structure and
parameters. However, the difference is that the template branch is responsible for extracting
features from the template patches. We denote the template patches corresponding to the
visible light and thermal infrared images as zr and zt. The detection branch extracts features
from the detection patches. We denote the detection patches corresponding to the visible
light and thermal infrared images as xr and xt. The template patches and detection patches
are obtained by cropping regions of interest from the template frames and detection frames,
respectively. The first frame of the tracked object is referred to as the template frame,
and the subsequent frames which need to be tracked are called the detection frames. The
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convolutional neural network utilized in our approach is an improved version of AlexNet,
which removes padding in the same way as SiamRPN [20]. For ease of notation, we denote
the feature extraction operations of the RGB Siamese network and T Siamese network as
ϕr(·) and ϕt(·). Then, the dual-modal Siamese subnetwork’s output includes ϕr(zr), ϕr(xr),
ϕt(zt), and ϕt(xt).

3.2. Complementary Coupling Feature Fusion Module

Given the extracted features from the Siamese networks of two modalities, the issue
of how to fuse them in a more efficient form is the next question. Similar to the existing
RGBT trackers, the features ϕr(zr) from the RGB Siamese network in the template branch
and the matching features ϕt(zt) extracted from the T Siamese network in the template
branch are combined to generate the fused template features. Likewise, ϕr(xr) and ϕt(xt)
in the detection branch are combined to gain the fused detection features. The most
straightforward and commonly used methods for multimodal features fusion are element-
wise summation [23] and concatenation [31]; nevertheless, they do not take the differences
between features into consideration. Specifically, simple element-wise summation and
concatenation do not take the characteristics and reliability of different modalities into
account, which, indeed, is why the fusion strategy based on content dependency weighting
often yields a superior performance. Despite this, the vast majority of the current fusion
strategies lack consideration of the dissimilarities between features of the two modalities.

Based on the above analysis, as depicted in Figure 4, we propose a multimodal fusion
module that integrates visible light and thermal infrared features to improve discriminabil-
ity, called the Complementary Coupling Feature fusion module (CCF). Inspired by [32], we
first used coupled filters with a coupling ratio of 0.5 in the convolutional layer to perform
the extraction of similar features between the visible light and thermal infrared features.
The upper red part represents the non-coupling filter of visible light features and the lower
gray part represents the non-coupling filter of thermal infrared features. The overlapping
yellow part between the two indicates the coupled part of the two filters. In this way, the
weight of visible light and thermal infrared features can be updated using the coupled
filters at the same time. In each iteration, the non-coupling filter is updated once, and
the coupled filter is updated twice. All the non-coupling filters and coupled filters in the
convolutional layer, with a kernel size of 3× 3, produce two weight maps. These weight
maps are then normalized to the range of [0, 1] using a sigmoid layer, indicating the extent
to which additional information from one modality feature needs to be incorporated into
another. Taking the template branch as an example, the weight maps can be obtained
as follows:

Wr = σ(conv(ϕr(zr), θ1)) (1)

Wt = σ(conv(ϕt(zt), θ2)) (2)

where conv(∗, θ) denotes the convolutional layer with the parameters θ, including both
non-coupling filters and coupled filters, and the parameters of the coupled filters are the
same. σ(·) denotes the sigmoid layer.

After we obtain the weight maps, the visible light and thermal infrared features are
enhanced through cross-modal connections with Wr and Wt, and the enhanced features
ϕ
′
r(zr) and ϕ

′
t(zt) can be obtained as follows:

ϕ
′
r(zr) = ϕr(zr) + ϕt(zt)⊗Wt (3)

ϕ
′
t(zt) = ϕt(zt) + ϕr(zr)⊗Wr (4)

where ⊗ denotes the element-wise multiplication. Since the enhanced features ϕ
′
r(zr) and

ϕ
′
t(zt) contain information about another modality, the difference between ϕ

′
r(zr) and ϕ

′
t(zt)

is smaller than before.
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Finally, we fuse the enhanced features through concatenation, and the channel infor-
mation is fused using the 1× 1 convolutional layer. Then, the fused features z f can be
obtained as follows:

z f = conv
(

cat
(

ϕ
′
r(zr), ϕ

′
t(zt)

)
, θ3

)
(5)

where cat(·) denotes the concatenation operation and conv(∗, θ3) denotes the convolutional
layer with a kernel size 1× 1 and parameters θ3.

3.3. Residual Channel Attention Enhanced Module

To fully utilize visible light and thermal infrared features while suppressing feature
noise and redundancy, inspired by SENet [28], which dynamically recalibrates the feature
responses of each channel, we developed a Residual Channel Attention Enhanced module
(RCAE). The features ϕr(zr) from the RGB Siamese network in the template branch, along
with the corresponding features ϕt(zt) from the T Siamese network in the template branch,
are enhanced together via the RCAE. Similarly, ϕr(xr) and ϕt(xt) in the detection branch are
enhanced in the same way as those in the template branch. The importance of each feature
channel is acquired automatically through the learning process, allowing for the promotion
of useful features and the suppression of features that are not relevant for the current task
based on their importance scores, thus enhancing the representation capabilities of the
network by fully magnifying the characteristics of different modalities.

As shown in Figure 5, RCAE concatenates the original features which are extracted
from visible light and thermal infrared images for better information interaction. We use
global average pooling to squeeze the global spatial information into a channel descriptor.
Taking the template branch as an example, formally, a statistic g ∈ Rc is generated by
shrinking the features through its spatial dimensions H ×W, where the c-th element of g is
computed as follows:

zr+t = cat(ϕr(zr), ϕt(zt)) (6)

gc =
1

H ×W

H

∑
i=1

W

∑
j=1

(zr+t)c(i, j) (7)
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where cat(·) denotes the concatenation operation. The global feature then passes through
two fully connected layers to improve the generalization ability of RCAE, and the subse-
quent sigmoid layer is used to normalize the values of the global feature to [0, 1]:

hc = σ(β(α(gc))) (8)

where α(·) and β(·) denote two different fully connected layers and σ(·) denotes one sigmoid
layer. The learned feature vector hc is multiplied by the original feature zr+t and then added
to the original feature to calculate the output z:

zc = (zr+t)c · hc + (zr+t)c = cat(ϕ∗r (zr), ϕ∗t (zt)) (9)
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The enhanced visible light features ϕ∗r (zr) and thermal infrared features ϕ∗t (zt) are
obtained by separating the output z according to the channel. The whole process of
RCAE can be understood to learn the weight coefficient of each channel through channel
self-attention, which enhances the features and representational power of the network.

3.4. Maximum Fusion Prediction Module

The region proposal network, as utilized in SiamRPN [20], comprises two branches: a
classification branch for foreground and background classification and a regression branch
for proposal regression. In cases where there are k anchors, the network is required to output
2k channels for classification and 4k channels for regression. In SiamCAF, the outputs of
CCF and RCAE are fed into the region proposal subnetwork. Taking the output of CCF
as an instance study, the feature maps z f in classification branch require the expansion of
the number of channels to 2k through the convolutional layer, while the corresponding
feature maps x f in the detection branch, as an input, require additional size transformation
through the convolutional layer, without expanding the number of channels. We denote the
operation through the convolutional layer as (·)cls. Thus, z f and x f , after undergoing the

convolutional layer, can be denoted as
(

z f

)
cls

and
(

x f

)
cls

, and the correlation calculation
of the two features can be obtained:

AclsF =
(

x f

)
cls
F
(

z f

)
cls

(10)
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where F denotes the correlation calculation, and the feature maps
(

z f

)
cls

are used as
kernels. Similarly, the classification branch of the outputs of the RCAE can be obtained
as follows:

AclsR = (ϕ∗r (xr))clsF(ϕ∗r (zr))cls (11)

AclsT = (ϕ∗t (xt))clsF(ϕ∗t (zt))cls (12)

The SoftMax loss is utilized to provide supervision for the classification branch. In
MFP, we need to fuse the three predicted classifications in order to predict each anchor at
the corresponding location on the original map. We incorporate scale change penalties for
positive predictions to mitigate abrupt changes in size and aspect ratio. We introduce a
cosine box to reduce the impact of large displacements in the same way as SiamRPN and
then choose the largest item via combination:

Sr = Cos(penalty× AclsR) (13)

St = Cos(penalty× AclsT) (14)

S f = Cos(penalty× AclsF) (15)

S = max
(

S f + St, S f + Sr

)
(16)

where Sr denotes the map of the positive prediction of the enhanced visible light features, St
represents the prediction map of the enhanced thermal infrared features, and S f represents
the prediction map of the fused features. To comprehensively consider the varying capabil-
ities of representation in different features, we use S to fuse the corresponding elements for
obtaining a more accurate and reliable predicted position of the object.

4. Experiment and Result Analysis

This section begins with a comparison between our proposed SiamCAF and other
advanced RGBT tracking methods to showcase its superior performance. Subsequently, we
conduct ablation experiments to validate the effectiveness of each module and the different
modalities in our approach. Finally, we discuss the implementation details.

4.1. Evaluation Dataset and Evaluation Metrics
4.1.1. GTOT Dataset and Metrics

The GTOT dataset [2] contains 50 video pairs in different scenes and conditions, with
each pair consisting of a visible light video and a thermal infrared video. It consists of
frames with artificially marked ground truth, and the challenge attributes are categorized
into seven groups based on the state of the target. The videos in the dataset exhibit high
diversity, and to ensure consistency in the annotations, they were all completed by a single
person. Two widely used evaluation metrics, the precision rate (PR) and success rate (SR)
in one-pass evaluation (OPE), are used as evaluation indicators of the tracker. For GTOT,
where the target object is typically small, we set the threshold to five pixels following the
previous work.

4.1.2. RGBT234 Dataset and Metrics

The RGBT234 dataset [3] is a large-scale RGBT tracking dataset. It is an expanded
version of the RGBT210 dataset [33] and has 234 sequences and 12 challenge attributes. The
acquisition equipment for this dataset is a thermal infrared camera and a CCD camera,
and the imaging parameters of the two cameras are consistent, which can ensure that the
alignment between the visible light and thermal infrared sequence pairs is highly accurate,
and no preprocessing or post-processing is required. Following the previous work, our
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evaluation metrics are based on the maximum precision rate (MPR) and the maximum
success rate (MSR), and the threshold is 20 pixels. To be specific, we computed the PR/SR
for both the visible light and thermal infrared modalities and then selected the maximum
value between the two as our MPR/MSR.

4.1.3. VTUAV Dataset and Metrics

The VTUAV dataset [5] was captured using a professional UAV. It comprises a total
of 500 sequences, containing 1,664,549 RGB-T image pairs. The dataset is split into two
different sets: a training set comprising 250 sequences and a separate test set consisting
of the remaining 250 sequences. Additionally, to account for the presence or absence of
targets, all sequences are further categorized into long-term and short-term sets, allowing
for a thorough evaluation of the tracking performance in different scenarios. In this paper,
we focus on the short-term set, and its challenges are summarized as 13 attributes. In
this evaluation, we continue to utilize the maximum precision rate (MPR) and maximum
success rate (MSR) as quantitative measures to assess the performance, in the same way as
for the RGBT234 dataset.

4.2. Implementation Details

The parameters of our backbone are initialized using the modified AlexNet, pretrained
from ImageNet. In detail, the first three convolution layers are fixed, and we only fine-
tune the last two convolution layers in SiamCAF. During the training process, we utilize
the SGD optimizer with an initial learning rate of 10−2 and an end learning rate of 10−5.
Additionally, the momentum is 0.9 and weight decay is 5× 10−4. We set the batch size
as 28 and train the model for 50 epochs in total. The template and the detection patches
are extracted in the same way as SiamRPN. Our tracker is implemented in Python using
PyTorch. All experiments are run with a NIVIDA GeForce RTX 3090 GPU and an Intel
I9-10980XE CPU.

4.3. Result Comparisons on GTOT
4.3.1. Overall Performance

Based on the GTOT dataset, we compared SiamCAF with other advanced RGB trackers
(KCF [17], ECO [34], C-COT [19], and MDNet [12]) and advanced fusion trackers (CAT [35],
SGT [33], MANet [36], DAPNet [37], and HDINet [38]). According to Figure 6, our SiamCAF
demonstrates a superior performance, achieving a success rate of 73% and a precision rate
of 90.6%. Our method also achieves a clear improvement over the other RGB trackers,
proving the importance of thermal information in object tracking. Notably, when compared
with the most recent state-of-the-art tracker, HDINet, our algorithm exhibits improvements
of 1.2% in the success rate and 1.8% in the precision rate. Furthermore, our SiamCAF
demonstrates remarkable speed on the GTOT dataset, being 116 times faster than HDINet.
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4.3.2. Attribute-Based Performance

We conducted a comprehensive comparison of SiamCAF with other advanced RGBT
trackers on subsets that involved diverse challenge attributes, including KCF, SRDCF [39]
+RGBT, RT-MDNet [40], DuSiamRT, SGT, MANet, DAPNet, and HDINet. The evaluation
results are presented in Table 1, demonstrating that our SiamCAF method consistently out-
performs the other RGBT trackers in the majority of the challenges, providing compelling
evidence for the effectiveness of our approach.

Table 1. Attribute-based PR/SR scores (%) against other trackers on the GTOT dataset. The best and
second-best results are presented in red and blue, respectively.

Attributes OCC LSV FM LI TC SO DEF ALL

KCF+RGBT 52.2/35.9 55.4/41.4 42.6/34.2 45.9/37.8 44.9/36.1 44.4/30.9 49.2/40.0 49.6/39.6
SRDCF+RGBT 72.7/58.0 80.4/68.1 68.3/61.1 71.7/59.4 70.5/58.0 80.5/57.5 66.6/53.7 71.9/59.1
RT-MDNet 73.3/57.6 79.1/63.7 78.1/64.1 77.2/63.8 73.7/59.0 85.6/63.4 73.1/61.0 74.5/61.3
DuSiamRT 72.8/57.7 80.9/64.5 72.1/58.0 76.2/62.3 78.1/61.4 84.4/64.2 76.4/62.9 76.6/62.8

SGT 81.0/56.7 82.6/55.7 82.0/55.7 84.3/59.0 84.4/59.6 85.7/60.0 86.7/62.1 85.1/62.8
DAPNet 87.3/67.4 84.7/66.1 82.3/65.3 90.0/67.7 89.3/68.0 93.7/68.2 91.9/69.6 88.2/70.7
HDINet 86.3/66.9 87.9/70.8 88.2/70.4 91.9/74.5 87.0/68.9 95.3/70.5 90.3/73.8 88.8/71.8
MANet 88.2/69.6 87.6/70.1 87.6/69.9 89.0/71.2 89.0/71.0 89.7/70.8 90.1/71.5 89.4/72.4

SiamCAF 89.8/69.9 88.0/69.5 88.0/68.6 91.8/74.4 90.1/71.6 91.7/70.5 92.2/75.4 90.6/73.0

4.3.3. Visual Comparison

We compared SiamCAF with five advanced trackers, namely, MANet + RGBT, KCF,
DAPNet, SGT, and SiameseFC, on three sequences. As shown in Figure 7, SiamCAF could
accurately track the target, while the most popular algorithms for comparison failed to track
it. When the target was severely occluded or in thermal crossover, our tracker effectively
handled this challenge with a high performance, because the CCF can fuse two modalities
in a more superior manner. While the other trackers could lose track of the target when
moving quickly and producing large-scale changes, our method maintained continuous
tracking and copes with large-scale change throughout the video sequence because of the
RCAE and RPN.

4.4. Result Comparisons on RGBT234
4.4.1. Overall Performance

On the RGBT234 dataset, we compared SiamCAF with other advanced RGB track-
ers (ECO [34] and C-COT [19]) and advanced fusion trackers (KCF [17] + RGBT, DAP-
Net [37], SGT [33], MDNet [12] + RGBT, SiamDW [41] + RGBT, CFnet [42] + RGBT, and
SOWP [43] + RGBT). The results are shown in Figure 8. Our SiamCAF method realizes
the best performance. On the RGBT234 dataset, the MPR/MSR score of SiamCAF reached
77.1%/53.7%. Specifically, SiamCAF scores 5.1% higher than SGT in the MPR, and 6.5%
higher in the MSR, further proving the effectiveness of SiamCAF. Compared with DAP-
Net, our method has a greater advantage in the MPR, which may be due to the fact that
we used the MFP in the classification branch, which makes the foreground–background
classification more accurate.

4.4.2. Attribute-Based Performance

We conducted a comprehensive comparison of SiamCAF with other advanced RGBT
trackers on subsets that involved 12 challenge attributes, including KCF + RGBT, DAPNet,
SGT, MDNet + RGBT, SiamDW [41] + RGBT, CFnet [42] + RGBT, SOWP [43] + RGBT, L1-
PF [44], and DSST [45]. The results of the evaluation are depicted in Figure 9. It is apparent
that SiamCAF outperforms most of the trackers in all challenges. The attribute-based
experiments clearly showcase the superior tracking capability of SiamCAF to effectively
deal with a wide range of challenges.
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4.5. Result Comparisons on VTUAV
4.5.1. Overall Performance

Based on the VTUAV dataset, we compared SiamCAF with other advanced RGB
trackers (GlobalTrack [46], SiamFC [13], SPLT [47], HiFT [48], D3S [49]) and state-of-the-
art fusion trackers (DAFNet [50], ADRNet [51]). The evaluation results are presented in
Figure 10. Our SiamCAF method realizes the optimal performance. On the VTUAV dataset,
the MPR/MSR score of SiamCAF reached 67.0%/54.2%. Specifically, SiamCAF scores
8.9% higher than SiamFC in the MPR and 8.4% higher in the MSR, further proving the
effectiveness of SiamCAF.
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4.5.2. Visual Comparison

As shown in Figure 11, we compared SiamCAF with five advanced trackers, namely,
GlobalTrack, SiamFC, SPLT, HiFT, and DAFNet, on two sequences. In comparison to
the other popular tracking algorithms, SiamCAF demonstrated superior performance in
accurately tracking the target. Even in challenging scenarios such as fast movement or
thermal crossover, our tracker was able to handle the challenge well due to the superior
fusion capability of the CFF. Unlike other trackers that may lose track of the target when
faced with large-scale changes, our method, which incorporates the use of the RCAE and
RPN, maintains continuous tracking and effectively handles large-scale changes.

4.6. Ablation Study

We conducted the first ablation study on the GTOT dataset to validate the effectiveness
of the key components of SiamCAF. Two degraded versions of SiamCAF were used, includ-
ing SiamCAF-noRCAE, for which we removed the Residual Channel Attention Enhanced
module, and SiamCAF-noCCF, in which the Complementary Coupling Feature fusion
module was deleted. According to the experimental results in Figure 12, the following
points could be obtained that SiamCAF scores 1.8%/1.1% higher than SiamCAF-noRCAE
in the PR/SR, which shows that RCAE can amplify and enhance the characteristics of dif-
ferent modalities to achieve better tracking. The evaluation result of SiamCAF is 2.4%/3.0%
greater than that of SiamCAF-noCCF, which verifies that CCF can extract the similar
features and reduce the modality differences to better fuse the visible light and thermal
infrared features. The experimental results confirm the feasibility of the main components
of SiamCAF.

Furthermore, we conducted a second ablation experiment on both the GTOT and
RGBT234 datasets to establish that the combination of visible light and thermal infrared
modalities in SiamCAF yields a superior tracking performance compared to the use of
a single modality. In the variant SiamCAF-RGB, only visible light sequences are input
into the network, while in SiamCAF-T, only thermal infrared sequences are used. It can
be seen from Figure 13 that SiamCAF scores 14%/9% higher than SiamCAF-RGB and
11.9%/7.8% higher than SiamCAF-T in terms of the objective evaluation indicators, the
PR and SR, on GTOT. On RGBT234, SiamCAF scores 8.8%/6.3% higher than SiamCAF-
RGB and 14.3%/14% higher than SiamCAF-T in the MPR/MSR. These results show that
visible light and thermal infrared modalities can co-operate with each other to improve the
accuracy of tracking, and SiamCAF accomplishes this task well.
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Figure 13. PR and SR of SiamCAF with different modalities. (a) Precision plot of GTOT. (b) Success
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4.7. Efficiency Analysis

We compared the efficiency of SiamCAF with that of other fusion tracking methods
(SGT, mfDiMP [31], MANet [36], SiamDW [41] +RGBT, HDINet [38], DuSiamRT [14],
and SiamFT [22]), as shown in Figure 14. It can be seen that the speed of the proposed
SiamCAF greatly exceeds that of most of the fusion methods. SiamCAF reaches 105 FPS
and has the best performance on the GTOT. SiamCAF balances robustness and speed at
the same time. We used a dual-modal Siamese network to make the framework more
concise. Simultaneously, RCAE and CCF are simpler and more convenient than the other
fusion methods.
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5. Conclusions

A novel RGBT Siamese tracker called SiamCAF was proposed in this paper. By lever-
aging the collaborative power of newly designed modules, our method effectively exploits
both visible light and thermal infrared features for RGBT tracking and achieves a state-
of-the-art performance with a beyond-real-time running speed. In particular, due to the
proposed CCF, our tracker can take full advantage of the complementary information of
different modalities, and thus, satisfactory results were achieved in some challenging con-
ditions, such as low illumination and heavy occlusion. Simultaneously, RCAE is designed
to learn the weight coefficient of each channel through channel self-attention, which can
enhance the features and representational power of the network. Finally, MFP completes
the response-level fusion in the response map fusion stage. The extensive experimental
results obtained on the GTOT, RGBT234, and VTUAV datasets demonstrate that our pro-
posed SiamCAF tracker achieves a significantly improved performance compared to other
state-of-the-art algorithms and can reach 105 FPS.
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