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Abstract: Hyperspectral images (HSI) have high‑dimensional and complex spectral characteristics,
with dozens or even hundreds of bands covering the same area of pixels. The rich information of
the ground objects makes hyperspectral images widely used in satellite remote sensing. Due to the
limitations of remote sensing satellite sensors, hyperspectral images suffer from insufficient spatial
resolution. Therefore, utilizing software algorithms to improve the spatial resolution of hyperspec‑
tral images has become an urgent problem that needs to be solved. The spatial information and spec‑
tral information of hyperspectral images are strongly correlated. If only the spatial resolution is im‑
proved, it often damages the spectral information. Inspired by the high correlation between spectral
information in adjacent spectral bands of hyperspectral images, a hybrid convolution and spectral
symmetry preservation network has been proposed for hyperspectral super‑resolution reconstruc‑
tion. This includes a model to integrate information from neighboring spectral bands to supplement
target band feature information. The proposed model introduces flexible spatial‑spectral symmetric
3D convolution in the network structure to extract low‑resolution and neighboring band features.
At the same time, a combination of deformable convolution and attention mechanisms is used to
extract information from low‑resolution bands. Finally, multiple bands are fused in the reconstruc‑
tion module, and the high‑resolution hyperspectral image containing global information is obtained
by Fourier transform upsampling. Experiments were conducted on the indoor hyperspectral im‑
age dataset CAVE, the airborne hyperspectral dataset Pavia Center, and Chikusei. In the X2 super‑
resolution task, the PSNR values achieved on the CAVE, Pavia Center, and Chikusei datasets were
46.335, 36.321, and 46.310, respectively. In the X4 super‑resolution task, the PSNR values achieved
on the CAVE, Pavia Center, and Chikusei datasets were 41.218, 30.377, and 38.365, respectively. The
results show that our method outperforms many advanced algorithms in objective indicators such
as PSNR and SSIM while maintaining the spectral characteristics of hyperspectral images.

Keywords: hyperspectral images; 3D convolution; spectral symmetry preservation; super‑resolution
reconstruction

1. Introduction
Hyperspectral image refers to an image with a continuous spectral range and contain‑

ing multiple narrow‑band wavebands. As a data cube, it contains hundreds of continu‑
ous spectral bands covering a wide range. For any point in space, a hyperspectral image
can reconstruct the corresponding material area through its continuous and fine spectral
curve and obtain its spatial and material properties. It is often used to obtain the spectral
characteristics of surface materials, enabling quantitative analysis and the identification
of material components. With the rapid development of aerospace and remote sensing
technology, hyperspectral images based on remote sensing satellites are widely used in
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land detection [1,2], urban planning [3], road network layout [4], agricultural yield estima‑
tion [5], disaster prevention and control [6,7], and other fields.

Due to the unique imaging characteristics of hyperspectral images, spatial resolution
and spectral resolution are two important criteria for measuring image quality in hyper‑
spectral imaging systems. Spatial resolution refers to the smallest target size that can be
resolved by the sensor, which can accurately describe the spatial information of image de‑
tails. Spectral resolution refers to the resolution of feature detail information in the spectral
dimension of an image, which can distinguish feature characteristics that are similar to the
human eye and iswidely used in remote sensing. In the imaging principle of hyperspectral
images, each spectral image corresponds to a very narrow spectral window. Only by using
a larger instantaneous field of view and a longer exposure time to collect enough photons
can the signal‑to‑noise ratio of the spectral image be improved and a higher spatial res‑
olution be obtained [8]. However, the spectral resolution is inversely proportional to the
size of the instantaneous field of view. Therefore, a balance between spatial resolution and
spectral resolution needs to be struck in the process of hyperspectral imaging. With the
overlay of spectral features, hyperspectral images typically lower their spatial resolution
to achieve higher spectral resolution [9]. If the emphasis is on hardware improvement,
it not only poses challenges to current engineering technology but also goes against the
lightweight and commercial design concept advocated by remote sensing satellites. Un‑
der the current limitations of hyperspectral imaging technology, it has become an urgent
problem to maintain high spectral resolution while improving spatial resolution through
software algorithms.

Image super‑resolution reconstruction can infer a high‑resolution image from one or
multiple consecutive low‑resolution images. It can break through the limitations of the
imaging system and improve the spatial resolution of the image in the post‑processing
stage. The development of natural image super‑resolution is becoming increasingly ma‑
ture, while there is still much room for progress in hyperspectral image super‑resolution.
We classify them into three categories: single‑frame HSI super‑resolution methods; aux‑
iliary image fusion hyperspectral image super‑resolution (such as panchromatic, RGB, or
multispectral image); andmulti‑frame fusion super‑resolutionmethoddwithin hyperspec‑
tral images.

Single‑frame hyperspectral image super‑resolution methods are derived from natu‑
ral image super‑resolution methods, which mainly include interpolation‑based methods,
reconstruction‑based methods, and learning‑based methods. Among them, interpolation‑
based methods include nearest neighbor interpolation, first‑order interpolation, bicubic
interpolation, etc. However, interpolation methods can cause edge blur and artifacts and
cannot fully utilize image abstraction information. Akgun et al. proposed a novel hyper‑
spectral image acquisitionmodel and a convex set projection algorithm to reconstruct high‑
resolution hyperspectral images [10]. Huang et al. proposed a dictionary‑based super‑
resolution method by combining low‑rank and group sparsity properties [11]. Wang et al.
proposed a super‑resolution method based on a non‑local approximate tensor [12]. How‑
ever, these methods require solving complex and time‑consuming optimization problems
during the testing phase and also require prior knowledge of the image, which makes
it difficult to flexibly apply them to hyperspectral images. With the rapid development
of convolutional neural networks, deep learning has shown superior performance in com‑
puter vision tasks. Super‑resolution algorithms such as SRCNN [13], VDSR [14], EDSR [15],
D‑DPN [16], and SAN [17] have been proposed successively. They have shown superior
performance in natural image super‑resolution. However, when it comes to hyperspec‑
tral image super‑resolution, the above‑mentioned algorithms cannot explore spectral and
spatial information, and their network representation ability is weak. Moreover, these nat‑
ural image super‑resolution methods have large parameters and are difficult to apply to
multi‑band hyperspectral images. In addition, there are few hyperspectral datasets avail‑
able, which makes it difficult to support the learning of these algorithms. Yuan et al. pro‑
posed a method to transfer the knowledge learned from natural images to reconstruct
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high‑resolution hyperspectral images [18]. However, the above method has limited im‑
provement in spatial and spectral resolution.

Themethod of auxiliary image fusion hyperspectral image super‑resolution combines
low‑resolution hyperspectral images with high‑resolution RGB images, multispectral im‑
ages, or panchromatic images. Starting from both spectral and spatial information, the
method aims to obtain hyperspectral images with high spatial resolution and high spectral
resolution. Which can be categorized into five types: pan‑sharpening extension [19,20],
Bayesian inference [21,22], matrix decomposition [23,24], tensor decomposition [25,26],
and deep learning [27–29]. The above method requires high‑resolution auxiliary images
and has image registration issues, which make it difficult to implement in practical ap‑
plications. The above method requires high‑resolution auxiliary images and has image
registration issues, which make it difficult to implement in practical applications.

In the absence of auxiliary images, the multi‑frame fusion super‑resolution method
within a single hyperspectral image has received widespread attention. Jiang et al. [30]
proposed a spatial‑spectral prior network that utilizes the correlation between spatial and
spectral information in hyperspectral images through group convolutions with progres‑
sive upsampling and shared parameters, but the network has a huge number of parame‑
ters. Wang et al. [31] proposed a sequential recursive feedback network that explores com‑
plementary and continuous information in hyperspectral images and preserves the spatial
and spectral structures of spectral images. Hu et al. [32] proposed a hyperspectral image
super‑resolution method based on a deep information distillation network and internal
fusion. Due to the strong correlation between bands in hyperspectral images, inspired by
video multi‑frame super‑resolution, 3D convolution has begun to enter the field of hyper‑
spectral image super‑resolution [33]. Li et al. proposed a 2D and 3D hybrid module for
image reconstruction, which to some extent alleviates the redundancy of the network struc‑
ture while achieving the same performance [34]. To save parameters, Li et al. proposed
a combined spectrum and feature context network [35]. In order to address the issue of
excessive parameters in 3D convolutions, Jia et al. proposed a method called “Diffused
Convolutional Neural Network for Hyperspectral Image Super‑Resolution” [36], which
has achieved good results.

It is difficult to simultaneously improve the spatial resolution of hyperspectral images
while preserving their spectral characteristics. Hu et al. proposed a spectral difference net‑
work that separates spatial and spectral information for learning, which improves spatial
resolution while preserving spectral characteristics [37]. However, the network structure
is too redundant, and the improvement in spatial resolution is limited. Hu et al. [38] in‑
tegrated the spectral difference module with the super‑resolution reconstruction module,
reducing the number of network parameters and enhancing the network’s generalization
ability. References [39,40] propose a new method based on a spectral angle loss function
to preserve spectral features.

In the problem of hyperspectral image super‑resolution, traditional interpolation,
Bayesian‑based, matrix‑based, and tensor decomposition methods require a significant
amount of prior knowledge and have difficulties in model solving. Deep learning meth‑
ods, relying on their excellent feature learning capabilities, construct models to obtain
high‑resolution images. However, current deep learning methods in hyperspectral super‑
resolution still have limitations, such as inadequate exploration of spectral and spatial cor‑
relations, redundant network structures, excessive parameters, and the inability to explore
global features in both spatial and spectral domains. This paper proposes a hybrid convo‑
lution and spectral symmetry preservation network for hyperspectral super‑resolution re‑
construction. It uses a spatial‑spectral symmetric 3D convolution to extract low‑resolution
bands and their adjacent band features, thus exploring the spatial and spectral correlation
of hyperspectral images. A 2D convolution module, composed of deformable convolu‑
tion and attention mechanisms, is designed to extract low‑resolution band features and
learn spatial information to the maximum extent. Finally, through the fusion module and
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Fourier transform reconstruction module, the network efficiently learns global and local
information to obtain high‑resolution hyperspectral images with high spectral fidelity.

Traditional algorithms for hyperspectral image super‑resolution require a significant
amount of prior knowledge and face challenges in the actual solving process. In contrast,
deep‑learning‑based methods for hyperspectral image super‑resolution have the ability to
autonomously learn a large amount of feature information and construct high‑resolution
images. Therefore, this paper proposes a network framework based on deep learning.
Compared to natural images, hyperspectral images have significantly more bands, and
each band contains different spatial and spectral information. However, there is a high
degree of similarity in the spectral information between adjacent bands. By effectively
utilizing the spatial information between adjacent bands while preserving the spectral in‑
formation of the current band, this paper proposes a design approach based on the supple‑
mentation of information from neighboring bands. The network consists of two parallel
branches: a single‑band feature extraction network and amulti‑band feature extraction net‑
work. This network sequentially extracts the target super‑resolution band and its adjacent
bands. The target low‑resolution band is processed by the single‑band feature extraction
network that consists of residual 2D convolutions, attention mechanisms, and deformable
convolutions. The purpose of this network is to focus on the feature information of the
target band. The residual 2D convolutions are used to extract both the shallow and deep
information of the band. To capturemore spatial and spectral information among different
channels, we employ 3D residual convolutional modules in the multi‑channel feature ex‑
traction network. Compared to 2D convolutions, 3D convolutions have an additional spa‑
tial dimension, making them widely used in hyperspectral image processing. However,
the increased exploration capability in multiple dimensions also leads to an explosion of
parameters. To address this issue, this paper introduces a novel spectral‑symmetric 3D con‑
volution, which significantly reduces the network parameters. In hyperspectral images,
there exist distant spectral bands that contain similar spectral information and spatial in‑
formation that can complement each other. To address this, we propose a context feature
fusion module in our approach for integrating information from distant bands that mu‑
tually complement each other. Furthermore, in the reconstruction module, conventional
upsampling methods often struggle to consider global information and only focus on the
current pixel and its surrounding feature information. To overcome this limitation, we in‑
troduce Fourier transform upsampling in our approach for reconstructing high‑resolution
hyperspectral images. This approach takes into account global information and improves
the overall quality of the reconstructed images.

2. Materials and Methods
2.1. Structure

The network structure of the hybrid convolution and spectral symmetry preservation
network (HSSPN) is shown in Figure 1, which includes five parts: image input, feature
extraction, feature fusion, image reconstruction, and image output. The network model
is designed to improve the spatial resolution of the high‑spectral image while maximiz‑
ing the preservation of the spectral characteristics of the original high‑spectral image. The
spectral reflectance of adjacent spectral bands has high similarity, which represents similar
spectral information between adjacent bands. While preserving the spectral information,
fusing the spatial information of adjacent bands can effectively improve the spatial res‑
olution of the low‑resolution bands. Therefore, the input of the network consists of the
low‑resolution image LRt of the t‑th band and the adjacent band images LRt+1 and LRt−1,
as shown in Equation (1).

Finput =


[
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(
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1

)
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Figure 1. Hybrid convolution and spectral symmetry preservation network (HSSPN). 
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When the first spectral band is selected, the adjacent bands are the second and third
bands; when the last spectral band is selected, the adjacent bands are the second‑to‑last
and third‑to‑last bands.

The feature extraction network structure uses two parallel networks, one for extract‑
ing multi‑channel information and the other for extracting single‑channel information. A
shallow feature fusionmodule, denoted as DS, is added between the two parallel networks
to fuse their features. To balance efficiency and performance, themulti‑channel feature net‑
work uses the more flexible Res3D spatial‑spectral symmetric 3D convolution module to
extract multi‑channel features, while the single‑channel feature extraction network uses
deformable convolution to extract shallow region features. Deep spatial features are ex‑
tracted bymixed ECA attentionmechanisms and a 2D residual convolutionmodule (MER).
The feature fusion network consists of two modules: the channel feature fusion module
(CF) and the incremental feature fusion module (IF). The CF module fuses multi‑channel
features and single‑channel features, while the IFmodule fuses incremental contextual spa‑
tial features. Both fusion modules deeply fuse spatial and spectral information between
bands. To capture global information, the image reconstructionmodule uses Fourier trans‑
form upsampling and 2D convolution to reconstruct the image. The L1 loss combinedwith
gradient loss (GV) is used as the loss function for the entire network.

2.2. Feature Extraction Module
The feature extraction process is mainly divided into two parallel networks: single‑

band feature extraction and multi‑band feature extraction. At the same time, a shallow
feature fusion module is added between the parallel networks.

2.2.1. Multi‑Band Feature Extraction Network
The multi‑channel feature extraction network is composed of several Res3D mod‑

ules in series. Res3D is a residual network with spatially symmetric 3D convolution as
its core. In this paper, 3D convolution is used to extract multi‑channel features. Unlike
2D convolution, 3D convolution uses a three‑dimensional convolution kernel to extract
multi‑dimensional information, which can analyze spatial dimension information and ex‑
tract spectral dimension information at the same time. Three‑dimensional convolution
extracts features by sampling the input feature xwith a 3D convolution kernel and weight‑
ing the sampled values with the function w, as shown in Equation (2) below when using a
3 × 3 × 3 convolution kernel:

y(p0) =
N

∑
n=1

w(pn) · x(p0 + pn) (2)
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where P0 represents the position of the output feature, and Pn and n represent the position
and index of the 3 × 3 × 3 convolution kernel sampling grid. N represents the size of the
sampling grid, and x represents the input multi‑channel feature tensor It−1LR, ItLR, It+1LR.

Conventional 3D convolutions directly extracting model parameters result in a large
number of parameters. Depthwise separable 3D convolutions were proposed to replace
conventional 3D convolutions by modifying the filter k × k × k to k × 1 × 1 and
1 × k × k [41,42]. However, the model parameters are still too large and structurally
redundant, which is not conducive to algorithm lightweighting. In this paper, spectral‑
symmetric 3D convolutions are used to extract multi‑band features. Spectral‑symmetric
3D convolutions perform one‑dimensional convolutions along the three dimensions, de‑
composing the filter k× k× k into three dimensions of 1× 1× k, 1× k× 1, and 1× 1× k,
simultaneously learning spectral and spatial features of multi‑band images while saving a
large number of network parameters. The calculation expression of the Res3D module is
shown in Equation (3):

RD = YD(YD−1(. . . Y1(R0) + R0 . . .) + R0) + R0 (3)

where YD represents the D‑th function of the Res3D module, R0 represents the first input
feature, and RD represents the output feature of the D‑th Res3D module.

The Res3Dmodule represents a residual network consisting of multiple 3D blocks, as
shown in Figure 2. Each 3D block is connected to the next one through skip connections,
allowing for maximum feature fusion and avoiding gradient explosion. Hyperspectral
images contain rich information in three dimensions. To enhance the feature representa‑
tion capability, inspired by [43], we design 3D blocks operating in different dimensions
to extract features from multiple perspectives. Specifically, these blocks consist of three
1 × 1 × 1 convolutions at different scales with ReLU activation, enabling the extraction of
diverse spatial and spectral features. Deep features are further extracted using 1 × 3 × 3
and 3 × 1 × 1 separable convolution kernels. The three layers of the network are inter‑
connected with residual connections, maximizing feature integration and avoiding gradi‑
ent explosion.
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Figure 2. Res3D network.

2.2.2. Single‑Band Feature Extraction Network
To enhance the spatial resolution of hyperspectral images, this paper proposes a single‑

channel feature extraction network composed of deformable convolution modules and
residual attention modules (MER).

The deformable convolution module consists of a 2D convolution and a deformable
convolution. Compared to traditional convolution, it provides a more flexible receptive
field and can extract the required target features to the maximum extent. The deformable
convolution adds learnable offset values in the convolution kernel to extract actual object
features more flexibly, as shown in Equation (4):
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y(p0) =
N

∑
n=1

w(pn) · x(p0 + pn) (4)

where P0 represents the location of the output features, Pn and n represent the 3 × 3 con‑
volutional sampling grid, N represents the size of the sampling grid, and x represents the
input multi‑channel. The residual attention module (MER) is composed of the channel
attention mechanism (ECA), residual 2D convolution, and shallow feature fusion module
(DS), as shown in Figure 3.
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ECA (efficient channel attention) is a lightweight channel attention mechanism that
enhances information efficiency and effectiveness by incorporating local cross‑channel in‑
teractions [44]. It automatically focuses on capturing detailed information across different
channels within the network for hyperspectral super‑resolution tasks. The specific steps
of ECA can be summarized as follows: (1) The input feature tensor of size n × w × h is
spatially downscaled by average pooling, resulting in global average values along the chan‑
nel dimension. (2) One‑dimensional convolution is applied to the global average values,
generating a weight vector in the channel direction. (3) The weight vector is normalized
using an activation function, yielding attention weights for each channel. (4) The atten‑
tion weights are element‑wise multiplied with the input feature tensor of size n × w × h,
resulting in a weighted feature representation.

The feature tensor y with shape w × h × n obtained by the deformable convolution
module is pooled with an average pooling operation. To ensure the attention mechanism
is lightweight, a one‑dimensional convolution with a kernel size of 1 is applied to the fea‑
ture tensor, and then an activation function is used to obtain the weight values of each
channel. The calculation is shown in Equation (5). The final output feature S is obtained
by element‑wisemultiplication of theweightwwith the correspondingweighted elements
of the original input feature y. ECA enhances spatial feature extraction capabilities on a
minimal parameter basis.

ω = σ(C1Dk(y)) (5)

The output yd of the single‑channel feature extraction network is calculated as shown
in Equation (6). The shallow feature fusion module combines the multi‑channel features
extracted by Res3D with the single‑channel features extracted by the residual attention
module for shallow feature fusion. The shallow feature fusion network can preserve more
edge and texture information, further improving the spatial resolution of the
single channel.

yD = XD(XD−1(. . . X1(y0(x)) + y0 . . .) + y0) + y0 (6)

whereXD represents the function of theD‑thMERmodule, y0 represents the first input fea‑
ture after the calculation of deformable convolution, and yD represents the output feature
of the D‑th MER module.
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2.2.3. Feature Fusion Network
The feature fusion module consists of two parts: the channel feature fusion module

(CF) and the incremental feature fusion module (IF). The CF module fuses single‑channel
and multi‑channel features, as shown in the following Equation (7).

M = w1(RD) + w2(yD) (7)

where RD represents the features extracted by the multi‑channel network and yD repre‑
sents the features extracted by the single‑channel network.

The incremental feature fusion module IF integrates the preserved features from the
previous spectral band fusion network with the current spectral band fusion network, sim‑
plifying the network structure while exploringmore spatial and spectral correlations. This
is shown in detail in Figure 4.
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2.2.4. Image Reconstruction Network
Currently, image reconstruction usually employs spatial upsampling for multi‑scale

modeling, and interpolation, transpose convolution, anddeconvolution operators are used
in spatial upsampling. However, these operators heavily rely on local similarity features
and cannot focus on global image information. According to the spectral convolution theo‑
rem, the Fourier domain follows global modeling, and it can focus more on global features.
Therefore, in this paper, Fourier operators are used for image reconstruction.

The reconstructionmodule takes a low‑resolution feature image X = RC×H×W as input
and performs a Fourier transform (FFT) on the input‑reconstructed feature image to ob‑
tain an amplitude variable A and a phase component P, as shown in Equations (8) and (9).
Then, the two‑dimensional H andW dimensions are padded twice periodically, as shown
in Equation (10) and Figure 5. Finally, the padded A_pep and P_pep are input into two
independent convolution modules with 1 × 1 kernels, and then an inverse Fourier trans‑
form (IFFT) is performed to project the padded A_pep and P_pep back into the spatial
domain, resulting in a high‑resolution image obtained through the periodic Fourier trans‑
form padding.

f(x, y) =

{
g
( x

2 , y
2
)
, x = 2m, y = 2n

0, others
(8)
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F(u, v) = 1
4MN

2M−1
∑

x=0

2N−1
∑

y=0
f (x, y)e−j2π ux

2M +
vy
2N

= 1
4MN

M−1
∑

x=0

N−1
∑

y=0
f (2x, 2y)e−j2π

u(2x)
2M +

v(2y)
2N

= 1
4MN

M−1
∑

x=0

N−1
∑

y=0
f (2x, 2y)e−j2π ux

M +
vy
N

= 1
4MN

M−1
∑

x=0

N−1
∑

y=0
g(x, y)e−j2π ux

M +
vy
N

(9)

F(u, v) = F(u + M, v) = F(u, v + N) = F(u + M, v + N) (10)
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2.2.5. Loss Function
This paper uses a loss function that combines L1 loss and gradient loss (GV) to guide

the training of the network. The L1 loss calculates the absolute error between the target
value and the estimated output value of the model, as shown in Equation (11).

loss(L1) =
1
n

n

∑
i=1

|yi − f (xi)| (11)

The gradient variance lossmeasures the edge details of the image restoration by using
the variance of the gradient map, calculated by the Sobel operator in the x and y directions
of the high‑resolution and low‑resolution images. To better calculate the gradient variance,
the image is segmented into n × n non‑overlapping image blocks, and the average gradi‑
ent value vi of each block is calculated along the y direction, as shown in Equation (12).
Finally, the gradient variance loss (GV) is calculated by taking the mean of the gradients
along the x and y directions of the high‑resolution and low‑resolution images, as shown
in Equation (13). The overall loss is calculated as shown in Equation (14).

vi =


n2

∑
j=1

(
G̃i,j − µi

)2

n2 − 1

, i = 1, . . . ,
w · h
n2 (12)

LGV = ESR∥vSR
x − vHR

x ∥2 +ESR∥vSR
y − vHR

y ∥
2

(13)

Loss = LGV + L1 (14)

3. Results
3.1. Dataset and Parameter Settings

To evaluate the superiority of the method in this paper, experiments were conducted
on the public hyperspectral datasets at CAVE, Pavia Center, and Chikusei. Relevant exper‑
iments were carried out.
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The CAVE dataset is simulated by capturing images of materials and objects visible in
the real world using a general‑purpose calibrated pixel camera [45]. The spectral range of
the images is from 400 nm to 700 nm, and the dataset size is 512× 512× 31. Six images are
used as the test set, one image is used as the validation set, and the remaining 25 images
are used as the training set.

The Pavia Center dataset is created using a reflective optics system imaging spectrom‑
eter (ROSIS) flown over Pavia in northern Italy. The wavelength range of the images is
from 430 nm to 860 nm, and the original size of the dataset is 1096× 1096. However, some
samples do not contain any information, so the actual dataset size used is 1096× 715× 102.
A 144 × 144 spectral image with the upper left corner as the origin is used as the test set,
and a 144 × 144 image with the upper right corner as the origin is used as the validation
set. The remaining data are used as the training set.

The Chikusei airborne hyperspectral dataset was captured by the Headwall Hyper‑
spec‑VNIR‑C imaging sensor on 29 July 2014 in the agricultural and urban areas of Chiku‑
sei, Ibaraki, Japan [46]. The spectral range extends from 363 nm to 1018 nm, including
128 bands, and the scene consists of 2517 × 2335 pixels with a ground sampling distance
of 2.5 m. The top left origin 1888 × 1888 is used as the training set, the top right origin
512 × 512 is used as the validation set, and the remaining part is used as the test set.

The acquisition of hyperspectral image data relies on expensive equipment and techni‑
cal support, which also limits the accessibility of such data. Additionally, data collection is
often constrained by factors such as the availability of specific geographic regions, limited
time windows, or the presence of certain objects and scenes. Considering these factors, the
availability of publicly accessible hyperspectral datasets is extremely limited. Therefore,
due to the constraints of limited data, we applied data augmentation techniques to the
training sets of the three publicly available hyperspectral datasets. The data augmentation
methods primarily involved cropping, flipping at 90◦ and 180◦ angles, as well as scaling
with factors of 1, 0.75, and 0.5.

3.2. Evaluation Accuracy
This paper mainly evaluates the performance differences between different methods

from subjective and objective aspects. In order to conform to human subjective perception,
we will show the comparison of the details of super‑resolution reconstructed images be‑
tween ourmethod and other advanced algorithms. To quantitativelymeasure the effective‑
ness of our method, we use four evaluation methods, namely mean peak signal‑to‑noise
ratio (MPSNR), structural similarity (SSIM) [47], and spectral angle mapper (SAM) [48].
The calculation formulas are shown in Equations (15)–(18).

MSE =
1

M × N

M

∑
i=1

N

∑
j=1

[X(i, j)− Y(i, j)]2 (15)

PSNR = 10 × log10

([
2Bits − 1

]2
/MSE

)
(16)

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (17)

SAM = 1HWi = 0Hj = 0W(X(i, j), Y(i, j)) (18)

3.3. Rigorousness Experiments and Parameter Settings
3.3.1. Component Analysis

In our network, modules such as Res3D, MER, deformable convolution, and Fourier‑
transform‑based upsampling have demonstrated superior performance. We conducted
extensive ablation experiments on both single‑channel networks and the overall network
to validate the effectiveness of the current combination in our network. Additionally, we
present specific results of the X2 super‑resolution task on the Pavia Center dataset, evaluat‑
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ing the performance using metrics such as PSNR (peak signal‑to‑noise ratio), SSIM (Struc‑
tural Similarity Index), and SAM (spectral angle mapper).

Firstly, whenperforminghyperspectral image super‑resolutionusing a single‑channel
network, we conducted related experiments on a 2DRes residual network alone, with the
addition of deformable convolution, and with the inclusion of ECA channel attention. The
results of these experiments are shown in Table 1. From the table, we can observe that
the performance is poorest when using only the 2D residual network. The addition of de‑
formable convolution improves the results by allowing the single‑channel network to ex‑
tract target features more flexibly, particularly enhancing the extraction of specific edges
such as buildings and rivers. The combination of 2DRes and ECA channel attention per‑
forms better than the previous two approaches, as the channel attention maximizes the
exploration of spectral features. However, it can be observed that when deformable con‑
volution is introduced, the performance improves in terms of PSNR and SSIM values due
to its focus on capturing deformable features and adaptively extracting relevant informa‑
tion. Compared to other combinations, the PSNR and SSIM values are higher. However, it
is worth noting that the SAM (Spectral AngleMapper) value, which represents the spectral
characteristics, is larger in this case. Finally, the complete single‑channel network achieves
optimal performance.

Table 1. Ablation study results on evaluating the efficiency of the MER.

Component Different Combinations of Components

2D Resnet ✓ ✓ ✓ ✓
Deformable Conv × ✓ × ✓

ECA × × ✓ ✓
MPSNR 33.906 34.270 34.415 34.445
SSIM 0.9443 0.9507 0.9480 0.9486
SAM 3.556 3.819 3.733 3.710

Furthermore, we conducted related ablation experiments on the superior‑performing
single‑channel network, multi‑channel network, context feature fusion module IF, and
Fourier‑transform‑based upsampling and reconstruction module in the overall network.
The results of these experiments are shown in Table 2. When onlyMER or 3DRes is present
in the network, the performance is poor. This is because when MER is used alone, it
cannot fully utilize the information between spectral bands and can only focus on the
current band’s information. Similarly, when Res3D is used alone, it fails to propagate
shallow information to deeper layers. However, by incorporating feature fusion, com‑
bining the features of the single‑channel and multi‑channel networks, better results are
obtained. The Fourier‑transform‑based upsampling module emphasizes global semantic
information compared to traditional upsampling methods. Finally, when all the modules
are combined, the overall network achieves the best performance.

Table 2. Ablation study results on evaluating the efficiency of the network structure.

Component Different Combinations of Components

MER ✓ × ✓ ✓ ✓ ✓
Res3D × ✓ ✓ ✓ ✓ ✓
IF × × × ✓ × ✓

Fourier Upsampling × × × × ✓ ✓
PSNR 34.445 34.926 36.073 36.299 36.189 36.321
SSIM 0.9486 0.9435 0.9547 0.9550 0.9564 0.9576
SAM 3.710 3.766 3.445 3.292 3.194 3.054
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3.3.2. Research on Different Types of 3D Convolutions
In the Res3D network, different types of 3D convolutions have different parameters

and feature extraction capabilities. Generally, 3D convolutions can be categorized as con‑
ventional 3D convolutions or separable 3D convolutions. In our Res3D network, we com‑
bine spectral symmetric 3D convolutions with separable 3D convolutions to achieve better
performance while significantly reducing the number of network parameters, making the
model more lightweight. We compared the results of using spectral symmetric 3D con‑
volutions and other 3D convolutions for the X2 super‑resolution task in the Pavia Center
dataset, as shown in Table 3.

Table 3. Performance of different types of 3D convolutions.

Type PSNR SSIM SAM Params

Regular 3D convolution 36.144 0.9498 2.977 2877 K

Separable 3D convolution 36.166 0.9551 2.987 2435 K

Spectral symmetric 3D convolution 36.321 0.9576 2.954 2200 K

3.3.3. Parameter Settings
In the proposed HSSPN network, the number of MER and Res3D modules has an

impact on the performance of our network. In this section, we discuss the influence of
different numbers of MER and Res3D modules on the parameters and performance. The
specific results can be seen in Table 4. Taking the Pavia Center dataset as an example for
the X2 super‑resolution task, we can observe that as the number of modules increases from
6 to 9, there is a noticeable improvement in metrics such as PSNR, SSIM, and SAM. How‑
ever, from 9 to 10, the increase becomes minimal while the network parameters still signif‑
icantly increase. Therefore, we set the number of MER and Res3D modules to 9.

Table 4. Study investigating the influence of the number of MER and Res3D modules.

Evaluation Accuracy 6 7 8 9 10

PSNR 35.950 36.144 36.291 36.321 36.329

SSIM 0.9551 0.9552 0.9570 0.9576 0.9591

SAM 3.599 3.547 3.457 3.054 2.939

Params 1533 k 1758 k 1980 k 2200 k 2405 k

Flops 581 G 712 G 965 G 1259 G 1406 G

The network’s parameters include 2D convolution filters and are 64, and the ADAM
optimizer (with β1 = 0.9 and β2 = 0.999) was used to optimize the designed model. The
initial learning rate for all layers was set to 10−4, and it was halved every 35 epochs. All ex‑
perimentswere conducted on anUbuntu 18.04 system, using an Intel(R) Xeon(R)Gold 6130
CPU and an NVIDIA GeForce GTX 3090 GPU with the PyTorch 1.80 deep
learning framework.

3.4. Results and Analysis
In order to comprehensively evaluate the superiority of our method, this paper com‑

pares and analyzes it with current mainstream hyperspectral super‑resolution algorithms,
including Bicubic, VDSR, EDSR, MCNet, and SFCSR. The experimental results are ana‑
lyzed from three datasets, CAVE, Pavia, and Chikusei, respectively.

3.4.1. CAVE
To visualize the face_ms test image in the CAVE dataset, the 26th, 17th, and 9th bands

were used as RGB channels. As shown in Figure 6 for the 2x super‑resolution compari‑
son, respectively, it can be observed that the high‑spectral reconstruction images obtained
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by Bicubic, VDSR, EDSR, MCNet, and SFCSR differ greatly from the original image, es‑
pecially those obtained by Bicubic and VDSR. Moreover, due to the lack of learning be‑
tween spectral features, the details of the images generated by EDSR are very blurry. Al‑
though MCNet and SFCSR utilize spectral features based on 2D/3D convolutions, there
is still a slight spatial distortion in bright areas. From a visual perspective, the proposed
method has better detail recovery than other methods. In terms of the evaluation metrics
in Table 5, the proposed method outperforms other methods in terms of PSNR, SSIM, and
SAM calculations.
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Table 5. Quantitative evaluation on the CAVE dataset.

Scale Evaluation Accuracy Bicubic VDSR EDSR MCNet SFCSR Ours

×2
MPSNR 39.898 43.543 43.988 44.920 45.870 46.335
SSIM 0.9663 0.9685 0.9734 0.9749 0.9765 0.9812
SAM 2.985 2.784 2.675 2.241 2.113 1.998

×4
MPSNR 33.667 37.335 38.587 39.026 40.323 41.218
SSIM 0.9071 0.9211 0.9292 0.9319 0.9398 0.9409
SAM 4.121 4.097 3.904 3.292 3.221 3.131

To further prove our advantage in spectral information reconstruction, we randomly
selected the reflectance of pixels in different spectral bands from the face_ms image
in Figure 7. It is clear that the spectral information generated by our method is closest
to the HR image. The first few bands contain less bright information, and it is difficult to
reflect the differences in algorithm performance. As the spectral wavelength increases, the
accumulation of details in the bands gradually becomes prominent, and the differences in
the detail reconstruction abilities of different algorithms becomemore pronounced. At the
same time, due to the use of data normalization, the proposed method is also sensitive to
the small features in the first few bands, which helps to reconstruct the overall detailed
spectral characteristic curve of the HSI.
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3.4.2. Pavia Center
In the Pavia dataset, the 13th, 35th, and 60th spectral bands were used to synthesize a

false‑color image, and Figure 8 shows the details of the RGB images restored by all meth‑
ods at a upsampling ratio of 2. From the figure, it can be seen that most methods, such
as Bicubic, EDSR, and VDSR, cannot reconstruct the details of the roof stripes well. The
roof stripes generated by MCNet and SFCSR are relatively blurry, and some tile details
are missing, so they cannot reconstruct the real roof details. Our proposed method can
effectively reconstruct the contour details in detail. The quantitative analysis results are
shown in Table 6. From the perspective of spatial information reconstruction and spectral
information distortion reduction, our proposed method is significantly better than other
methods. It can be seen from the experimental results and analysis that our proposed
method demonstrates superior performance. The spectral reconstructed reflection curves
of quadruple and double hyper‑segmented random pixel points on the Pavia center data
are also shown in Figure 9.

Table 6. Quantitative evaluation on the Pavia.

Scale Evaluation Accuracy Bicubic VDSR EDSR MCNet SFCSR Ours

×2
MPSNR 32.383 34.798 35.216 35.404 35.942 36.321
SSIM 0.9020 0.9401 0.9453 0.9493 0.9501 0.9576
SAM 4.159 3.123 3.437 3.445 3.411 3.054

×4
MPSNR 27.672 28.317 28.684 28.907 28.931 30.377
SSIM 0.7111 0.7404 0.7630 0.7726 0.7976 0.8088
SAM 5.776 5.714 5.658 5.587 5.499 5.331
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3.4.3. Chikusei
In the Chikusei dataset, the 70th, 100th, and 36th spectral bands were used to syn‑

thesize a false‑color image, and Figure 10 shows the details of the RGB images restored
by all methods at a upsampling ratio of 2. From Figure 10, it can be seen that the bicu‑
bic method results in overly smooth road details and a loss of edge information due to
its smooth interpolation. VDSR learns more features through a residual network, but its
network structure is simple and limited in terms of learning feature content. The Chikusei
dataset mainly contains outdoor land area information, and the difference in information
between multiple bands is small. Therefore, compared to MXNet and SFCSR, which use
3D convolution, EDSR performs better on this dataset. In addition to using 3D convolu‑
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tion, the reconstruction module of our proposed method also relies on Fourier transform
upsampling to explore global information, which is superior to EDSR in restoring road de‑
tails. Specific objective evaluation indicators can be seen in Table 7, where EDSR performs
best compared to our proposed method. Our proposed method outperforms EDSR and
SFCSR in PSNR, SSIM, and SAM indicators. When the upsampling ratio is 2, compared to
EDSR, PSNR improves by 0.198, SSIM improves by 0.0004, and SAM decreases by 0.020;
when the upsampling ratio is 4, PSNR improves by 0.050, and SSIM improves by 0.0039.
To demonstrate the superiority of our proposed method in spectral preservation, we ran‑
domly selected two pixels in the images that were magnified 2 and 4 times, respectively,
and plotted their spectral reflectance curves. The results are shown in Figure 11. It can
be clearly seen that the spectral reflectance of our proposed method is closer to that of the
real image.
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Figure 11. Visual comparison of spectral distortion for Chikusei image: (a) pixel position (2248, 2093),
(2037, 2124) on the Chikusei dataset with a scale factor of 2; (b) pixel position (1922, 2013), (1897, 1924)
on the Chikusei dataset with a scale factor of 4.
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Table 7. Quantitative evaluation on the Chikusei.

Scale Evaluation Accuracy Bicubic VDSR EDSR MCNet SFCSR Ours

×2
MPSNR 39.222 43.155 46.112 45.556 45.964 46.310
SSIM 0.9654 0.9711 0.9875 0.9797 0.9871 0.9879
SAM 4.862 3.210 2.766 2.835 2.801 2.746

×4
MPSNR 33.211 36.988 38.315 37.898 38.003 38.365
SSIM 0.7925 0.8986 0.9231 0.9011 0.9185 0.9270
SAM 6.668 5.9354 4.989 5.553 5.135 5.079

4. Conclusions
In this paper, a hybrid convolution and spectral symmetry preservation network is

presented. Observation has demonstrated that hybrid convolution had excellent perfor‑
mance on the spatial information of hyperspectral images; in this way, mixed 3D convolu‑
tion and 2D convolution enable hierarchical extraction of spatial information and spectral
information. The entire network can be divided into five modules: image input, feature
extraction, feature fusion, image reconstruction, and image output. Feature extraction is di‑
vided into two parallel networks: single‑channel feature extraction and multi‑channel fea‑
ture extraction to extract spatial and spectral information at multiple scales. Feature fusion
proposes a multi‑band fusion method and a contextual feature incremental fusion mod‑
ule to simplify the information redundancy in hyper‑resolution networks of hyperspectral
images while exploring more spectral information. Image reconstruction explores global
image information through Fourier transform upsampling. Experimental results and data
analysis on three datasets, which were captured by different sensors, have demonstrated
the effectiveness of the proposed method. However, the method presented in this paper
still suffers from excessive model parameters and a relatively redundant model structure,
indicating the need for further optimization.
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