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Jiří Janoušek 1 , Petr Marcoň 1,* , Přemysl Dohnal 1, Václav Jambor 2, Hana Synková 2 and Petr Raichl 1

1 Faculty of Electrical Engineering and Communication, Brno University of Technology,
61600 Brno, Czech Republic; xjanou09@vutbr.cz (J.J.); dohnalp@vut.cz (P.D.); xraich02@vut.cz (P.R.)
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Abstract: Estimating the optimum harvest time and yield embodies an essential food security
factor. Vegetation indices have proven to be an effective tool for widescale in-field plant health
mapping. A drone-based multispectral camera then conveniently allows acquiring data on the
condition of the plant. This article examines and discusses the relationships between vegetation
indices and nutritiolnal values that have been determined via chemical analysis of plant samples
collected in the field. In this context, emphasis is placed on the normalized difference red edge index
(NDRE), normalized difference vegetation index (NDVI), green normalized difference vegetation
index (GNDVI), and nutritional values, such as those of dry matter. The relationships between the
variables were correlated and described by means of regression models. This produced equations
that are applicable for estimating the quantity of dry matter and thus determining the optimum corn
harvest time. The obtained equations were validated on five different types of corn hybrids in fields
within the South Moravian Region, Moravia, the Czech Republic.

Keywords: corn; multispectral imaging; vegetation indices; nutritional analysis; correlation; pho-
togrammetry; optimal harvest time; UAV

1. Introduction
1.1. Remote Sensing

The remote sensing of the Earth’s surface has assumed a significant role in precision
agriculture, and has maintained this position on a long-term basis. Imaging agricultural
areas is enabled through satellites and hyperspectral or multispectral cameras [1]. These
are employed not only in remote sensing, but also, for example, in detecting dying trees in-
fested with pests [2], rotten or mechanically damaged fruit and vegetables [3], recognizing
fecal pollution [4], establishing cold-induced deterioration of cucumbers [5], measuring
fruit ripening [6], classifying wheat kernels infected with fungi [7], and many other ap-
plications [8,9]. Recently, the actual approach and associated methodologies have been
developing substantially.

The research outlined herein exploits a previously published case study [1], thus
building on, verifying, and markedly enhancing an already established correlation between
plant nutritional values and vegetation indices. Importantly, our latest conclusions were
formulated from data measured over three years, i.e., three harvest seasons, while the
referenced article [1] presents and analyzes results obtained during one season only.

The total harvested crop biomass consists of whole corn plants. The basic indicator of
plant phenophase is based on specifying the dry matter contents; these increase significantly
as the crop matures. In corn, the dry matter characterizes the growth maturity level, and
its volume influences the silage quality materially and procedurally [10]. The chemical
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composition of corn plants changes over the course of the growing period. Before the
plant develops ears, its energy is concentrated mainly in the fiber, whose proportion varies
between plants, depending on the actual harvest time. To ensure that the final corn silage
product comprises not only fiber but also starch, the harvesting has to be performed at the
wax maturity stage, namely, when the dry matter proportion values in the whole plant
reach between 280 and 330 g/kg. In such cases, the milk line stage attains 2/3 of the corn
grain. Another indicator of growth maturity is the ability to be ensiled, or, in other words,
to generate fermentation acids that preserve the silage.

The harvesting time and the total amount of biomass have an essential impact on the
character of the silage fermentation. The quality of the corn cultivation processes and the
subsequent ensiling follows from the weather conditions in a particular year, the choice of
a suitable hybrid with an appropriate FAO number to specify the earliness level, treatment,
and character of sowing.

Corn samples are routinely collected at diverse locations in the field to allow the
assessing of the condition and phenophase. When the milk line stage has been reached, the
samples are submitted to a laboratory for chemical analysis to determine the dry matter
content in both the grain and the whole plant. Depending on the degree to which the
plant and the dry matter have developed, the harvesting time is set preliminarily, varying
according to the planned target use for the corn, namely, milk production or methane
generation at biogas facilities.

As the dry matter content embodies a major parameter for defining the optimum
harvest time, it is important to establish whether more accurate data can be obtained on the
average dry matter value within an entire, non-homogeneous field. This article proposes
to solve the problem using an effective integration of different methods and technologies,
involving a drone with a multispectral camera, image data analysis to acquire vegetation
indices, and a chemical analysis of all samples collected in the field.

1.2. Field-Wide Image Data Capturing

Comprehensive data relating to the condition of a field and thus also the average
content of dry matter are obtainable via one of two fundamental technologies, namely,
satellite imagery or photogrammetry performed by using a multispectral or hyperspectral
camera mounted on an aerial vehicle. Both of these approaches can be applied to predict
the yield of agricultural crops.

Photogrammetric imaging with unmanned aerial vehicles (UAVs) utilizes different
types of multispectral or hyperspectral cameras [11–16]. The problem of crop yield predic-
tion from photogrammetric data acquired by UAVs has been addressed in the literature [11].
Our article expands on the previous research, presenting novel findings regarding the cor-
relation between dry matter yield and vegetation indices.

The other of the two imaging options relies on satellites. Satellite imagery differs from
the UAV-based method in the distance of the sensor from the area of interest. Satellites move
at a constant altitude of no less than 400 km along orbits—either geostationary ones, which
circle the Earth above the equator, or others. Importantly, the satellites with the latter type
revolve around the Earth progressively over its entire surface, in a north–south direction.

Artificial satellites ensure regular imaging with long stability and repeatability over
time, and these aspects embody the most significant advantage of the technique. By
contrast, the main drawback rests in a lower image resolution, an issue that substantiates
the use of drones in compiling high resolution maps. The satellites allow us to easily
determine their time of passage over the area being monitored; such time, however, cannot
be adjusted according to need or to suit the position of the area of interest, as the orbiting
speed remains constant. Furthermore, obtaining high quality images depends on favorable
weather incomparably more than in UAV reconnaissance; the process is vulnerable to
constraining effects that include, for instance, cloud bands.
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Satellites carry key sensors, such as multispectral and hyperspectral sensors, lidars,
and RGB cameras. Access to the images is nevertheless often limited, requiring pre-paid
services that provide an image database.

The largest number of satellites are operated by the US-based company Planet Labs
within the PlanetScope, a system comprising 175 satellites that supply multispectral images
with a spatial resolution of up to 3 m; the imaging is performed daily and covers the entire
surface of the Earth. The processing utilizes raw data, applying atmospheric corrections
and other relevant procedures, such as single-pixel classification [17,18].

1.3. Predicting Crop Yield

The prediction of crop yield via satellite imagery has been discussed in multiple
research articles. In this context, for instance, the authors of study [19] focus on the optimum
time to apply nitrogen chemicals to crops at a very early growth stage, investigating the
actual timing together with measurement of the vegetation index NDVI and plant height
as an indicator of dry matter output; however, despite this comprehensive approach, only
relative values over two years are provided.

Article [20] examines regression models for crop yield estimation via the NDVI index
and measurement of the relative crop output (paddy rice, winter wheat, and corn). The
authors identify the best period for estimating the crop yield reliably, characterizing the
model that showed a root mean square error of 206.59 kg/ha in corn as the best fit. The
models perform reasonably well in small regions, especially in areas where the crop types
are not exactly known.

In study [21], the NDVI was found to deliver an excellent rate of correlation with yield
values, albeit with a delay of 4–6 weeks, in grass used for biomass. In corn, the yield value
correlates with the NDVI with a delay of two weeks.

Measurements that rely on spectroradiometric equipment, where the active radiation
source for an NDVI measurement is active, show strong correlations between the NDVI and
durum wheat genotypes. A related article [22] nevertheless also suggests that the measuring
procedures may markedly depend on the spectrometer used, mainly as regards their overall
suitability for the purpose and the operating time required. Through the outcomes of other
research projects [23–25], the Moderate Resolved Imaging Spectroradiometer (MODIS)
appears to produce good results when predicting harvest volumes. Corn yield prediction
and uncertainty analysis based on remotely sensed variables using a Bayesian neural
network is addressed in study [26]. Other artificial intelligence methods for estimating crop
yield quantitatively are presented within sources [27–33].

Interestingly, a significant correlation has been revealed between stress-exposed corn
plants and water stress in relation to the amount of usable pixels having an informative
value [34]. By extension, some experts have [35] argued that using (NDVI) data acquired
with an NOAA–Advanced Very High Resolution Radiometer (AVHRR) enables corn pro-
duction to be predictable at least 2 months before the actual harvest and at an accuracy
multiple times higher than that of the water stress procedure. The referenced article [36]
also emphasizes that combining climatological NDVI data embodies a beneficial step to
increase the accuracy of the models; this assumption is confirmed within study [36]. A
combination of meteorological data and satellite images to predict aboveground biomass
and dry matter contents in Brachiaria pastures is outlined in [37].

The accuracy of NDVI-derived corn yield predictions apparently depends on the scan
time [38] and the volume of water in the plant during various periods of the day, regardless
of the sensor used [39,40].

A predicting approach that utilizes the Leaf area index (LAI) and estimates the dry
matter via field reflectance measurements executed with multispectral systems (Landsat 8,
RapidEye) is described in study [41].

Furthermore, regarding the problems relevant to the topic in general, several research
reports, articles, and papers discuss the relationship between the vegetation indices and
nutritional values, [42,43]; the latter source examines data correlation between vegetation
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indices and the nitrogen nutrition index (NNI), the investigation being focused solely on
pepper plants. The vegetation indices and the agronomic performance of corn varieties
under different nitrogen rates are compared in article [44]. Our efforts conceptually relate
especially to those outlined in report [45], which proposes an insight into the correlation
between canopy vegetation and the growth indices of corn varieties with different nitrogen
efficiencies; the authors of [45], however, do not show concrete mathematical expressions
to inspect the vegetation-to-nutritional index relationships that allow for the establishing
of the optimum corn harvest time.

Our article broadly expands on the knowledge, research, and applications available
to date. The actual novelty lies in the design of a new and more accurate methodology
(compared to, for instance, the solution adopted in [1]) for determining the optimum
harvest time by exploiting the correlation between diverse vegetation indices and the dry
matter content in various corn phenophases. With such an innovative approach, the farmer
is not required to sample the crop directly in the field and have it analyzed chemically, thus
saving a substantial amount of time and work. The definition of the appropriate harvest
time leads to a scenario where the entire procedural chain is optimized, starting from the
seed planting and proceeding through the ideal silage nutritional values to eventually
secure the maximum achievable yield in cow milk or biogas.

2. Materials and Methods

The data collection and the relevant mathematical processing are characterized through
the block diagram and presentation below. The left-hand portion of Figure 1A exposes
how a new equation is acquired via utilizing a regression model of the vegetation indices
and a chemical analysis of the corn plants; the right-hand segment (Figure 1B), by contrast,
displays the use of an experimentally generated equation for computing the dry matter
without having to perform a chemical analysis. The dry matter value then enables us to
establish the optimum harvest time in the crop being investigated.
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ships between the vegetation indices and nutritional values in various types of corn hybrids.

2.1. Sensing Periods and Localities

The multispectral camera photogrammetric imaging and the manual sampling were
executed in corn fields at various spots of the South Moravian Region, Moravia, the Czech
Republic. The sampling operations were coordinated, even though the intervals separating
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the individual steps differed. The locations where samples were collected for chemical
analysis were recorded in multispectral images (Figure 2), and the preset locality selection
criteria had included factors such as sufficient vegetation heterogeneity, soil composition,
and climatic conditions [1]. In research year 1, the sampling was carried out near the village
of Troubsko from 23 July 2019 to 4 September 2019, at four and five diverse time intervals
of plant phenophase in the silage and the grain hybrids, respectively.
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Figure 2. (a) Visualizing the overall area of the experiment; (b) positioning the corn fields that were
subjected to the photogrammetric imaging in the relevant subsector of the South Moravian Region,
Moravia, Czech Republic.

In the period from 12 August 2020 to 7 October 2020, the sampling was carried out
between the municipalities of Šlapanice and Prace (both in the Brno country district). To
optimize and compare the samples from the first research year, we chose a higher sampling
frequency, collecting the items on 8 different days. The same amount of sampling was
allocated to the next year, when the experiments took place in a field near the town of Velké
Pavlovice (Břeclav district). The samples comprised two corn hybrids and were gathered
from 2 August 2021 to 21 September 2021.

To test the validity of the correlative relationships and to confirm the hypothesis that
changes in the computed vegetation indices are proportional to variations in the nutritional
analysis, we conducted a separate experiment near the village of Knínice (Blansko district),
involving 5 corn hybrids on the day of their actual harvest.

2.2. UAV Data Collection and Analysis

The photogrammetric data originated from a Micasence RedEdge-3 multispectral
camera mounted on a DJI Matrice 600 Pro unmanned aerial vehicle (Figure 3). The Red-
Edge device captures 5 different bands (Table 1) and is fitted with a 3DR GPS module, a
downwelling light sensor, Ethernet, and other interfaces.

Before evaluating the images, a sufficient volume of heterogeneous data has to be
obtained to allow methods to be compared that are suitable for achieving the best possible
correlation with the nutritional values of the plant samples.

The imaging was performed along pre-programmed automatic flight paths, each path
having a precisely defined, polygon-shaped scanning area within the region of interest.
In the experiment, we used the DJI autopilot and the Pix4D capture software to plane the
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path. The image processing relied on Structure-from-Motion (SFM), a key photogrammetric
technique used to handle multispectral images obtained from UAVs.
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Figure 3. Capturing the image data with a drone-mounted RedEdge camera.

Table 1. The parameters of the RedEdge Micasense camera bands.

Band Number Band Color Wavelength [nm] Bandwidth [nm] Calibration Panel Reflectance

1 Blue (B) 475 20 0.56
2 Green (G) 560 20 0.56
3 Red (R) 668 10 0.55
4 Near infrared (NIR) 840 40 0.54
5 Red Edge (RE) 717 10 0.50

The area covered for the testing was small, meaning that we assumed a fixed height;
this height then also constituted the basis for the image computation. In all of the three
research years, the mapping covered a rectangular zone of 361 m × 362 m, i.e., an area
of approximately 13.1 ha. The total flight path length reached 4.477 m. To scan the full
range of the investigated sector, a flight lasted 31 min, with an overlap of 70% between the
images. The UAV flew at a speed of 8.6 km/h and an altitude of 40 m above the ground. In
each of the spectral bands, we took invariably more than 330 images with a resolution of
2.78 cm/pixel. The measured data were processed with the Pix4D mapper at the user level;
we did not test the image resolution changes or processing via various other methods.

The multispectral imaging delivers vegetation indices, which contain information
on different reflectance values of the electromagnetic spectrum relating to the biological
properties of plants. The most widely used vegetation indices are those where quantitative
indicators, such as the volume of biomass within an area, can be determined. A large
amount of algorithms to calculate vegetation indices are available, arising from computation
from at least two spectral images; the images are selected in such a manner as to expose
vegetation reflectance changes, and in most cases they are functionally equivalent. More
than 150 vegetation indices have been published in the literature, but only a small subset
have a strong biophysical basis or have been systematically tested [46–48].
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Each vegetation index tracks specific vegetation characteristics and is convenient for
particular applications. Indices that do not utilize the near-infrared spectral band exhibit
limited (and limiting) properties and are therefore unsuitable in practical monitoring of
vegetation changes. To facilitate the analysis, we chose the ratio indices NDVI, NDRE,
and GNDVI, all of which are computed similarly; these tools, however, also contain dif-
ferent spectral bands, and thus they collectively offer a cross-section through important
wavelengths. Combining the indices then yields applicable modifications, whose data are
dissimilar to those delivered by the originally selected basic versions [49].

Vegetation indices are not constant, but depend on short-term weather changes and
the overall amount of sunlight. To refine the results of the multispectral sensing, we need
to run calibration; this step is executed in various growing seasons, under diverse weather
conditions, and at the same phase of the day. Importantly, a database had to be formed
containing the outcomes of several measurements, allowing us to choose the values that are
achievable in optimum circumstances. Calibrating the camera eliminates the inaccuracies
which stem from the use of one-off, single samples of the crops, and creating additional
images will facilitate comparison of the indices.

2.2.1. NDVI (Normalized Difference Vegetation Index)

The NDVI is a numerical indicator of plant health that supplies data on vegetation
changes and, in a more detailed sense, the amounts of water stress and chlorophyll con-
tained in a plant. The index evaluates the monitored vegetation surface by using the ratio
of the reflectance of the red and near-infrared parts of the spectrum [50].

The NDVI utilizes the red visible band, which is strongly absorbed by the upper
portion of a plant’s surface, meaning that the lower levels do not significantly contribute
to the NDVI measurement. The correlation between the index and the plant’s volumetric
properties thus deteriorates; this is more prominent in taller plants with multiple leaf layers
(such as corn at later growth stages) [51,52].

The reflectance of the near-infrared spectrum enables the index to easily distinguish
subtle differences in vegetation. In the actual sensing, the factors of major importance
include shadows and the atmosphere, whose impact leads to reflectance changes within
the different bands; the atmospheric effect is eliminable via correction based on comparing
images taken at various times [49]. We have

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

where ρNIR and ρRed denote the reflectivities of the near-infrared and the red wavelength
bands, respectively.

2.2.2. NDRE (Normalized Difference Red Edge Index)

Similar to the above-characterized tool, the NDRE exploits the near-infrared spectrum
and the frequency band that lies in the transition region separating the visible and the
infrared spectra, i.e., the red edge; we have

NDRE =
ρNIR − ρRedEdge

ρNIR + ρRedEdge
. (2)

2.2.3. GNDVI (Green Normalized Difference Vegetation Index)

This method employs the green spectrum wavelengths rather than the red ones; these
are ρNIR and ρGreen, denoting the reflectance values in the near-infrared and the green bands,
respectively [53,54]. We have

GNDVI =
ρNIR − ρGreen
ρNIR + ρGreen

. (3)
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2.3. Chemical Analysis of the Samples Obtained from Field-Gathered Corn Plants

To obtain the nutritional parameters of the field samples of corn, we carried out a
dedicated laboratory chemical analysis. The vegetation indices and the outcomes of the
analysis were then correlated at various phenological growth stages of the monitored crops
to establish the ideal harvest time as regards the corn yield for silage making and animal
feed on the one hand, and methane production in biogas plants on the other.

The sampling was invariably performed at identical time intervals, together with the
multispectral imaging. To survey the quality of the corn hybrid, we opted for sampling
according to the methodology recommended by the Central Institute for Supervising and
Testing in Agriculture, Brno, Moravia, the Czech Republic [55]. The samples were acquired
from three different sectors to expose the local field growth homogeneity; in each of the
cases, we took a row of 10 whole corn plants and marked their positions on the multispectral
maps acquired over the areas specified in Figure 2.

Subsequently, we modified and analyzed the plants to determine the major quantities,
namely, the FM—Fresh matter (fresh weight)—and EW—Ear weight. In general terms,
the analysis also enables the following nutritional values to be established: the DM–dry
matter, meaning the dry matter volume–from which we then define the values of CP–crude
protein (nitrogenous compounds); CF—crude fiber (crude fiber); starch (starch content); ash
(ash presence); NDF—neutral detergent fiber (neutral detergent fiber); DNDF—digestibility
NDF (neutral detergent fiber digestibility rate); and DOM—digestibility organic matter
(organic matter digestibility rate). The analyzed data eventually allow us to calculate the
yield per hectare, comprising the YFM—yield of fresh matter (fresh matter share indicator)
and YDM—yield of dry matter (dry matter share indicator); in total, a hectare is assumed
to produce 80,000 corn plants.

2.4. Data Correlation

To define the relationships between the results acquired with the nutritional analysis on
the one hand (Nut) and the values of the vegetation indices (Veg) on the other, we calculated
the vegetation index values rNut,Veg according to Pearson’s correlation coefficient. The
degree of correlation is specified by the computed correlation coefficient, which can take
values from −1 to +1. The terminal values of the coefficient +1 represent a completely direct
relationship, and the first variable tends to increase; by contrast, the values of the coefficient
−1 represent a fully inverse relationship, and the first variable tends to decrease. If the
correlation coefficient equals zero, there is no linear relationship between the parameter
being monitored and the reflectance or vegetation index. We have

rNut,Veg =
1
n ∑n

i=1
(

Nuti − Veg
)(

Vegi − Nut
)

SNut·SVeg
(4)

SNut =

√
1
n

n

∑
i=1

(
Nuti

2 − Nut2
)

, (5)

SVeg =

√
1
n

n

∑
i=1

(
Vegi

2 − Veg2
)

, (6)

where Nut represents the nutrition analysis value, Veg denotes the vegetation index value,
Veg and Nut stand for the sample means, and SVeg and SNut are the standard deviations.

The quantity R2 indicates the coefficient of determination. It takes values from 0 to 1,
was computed to express the joint variability of the variables, and specifies the quality of
the regression model. A value of 1 means perfect prediction of the values of the dependent
variable, while a value of 0 signifies minimum information relating to the knowledge of the
dependent variable. The coefficient was computed by using the relationships below.
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A dataset has n values marked as y1, . . . ,yn (collectively known as yi or a vector
y = [y1, . . . ,y]n

T), each associated with a fitted (or modeled, predicted) value f 1, . . . ,fn
(denoted by fi).

If y is the mean of the observed data,

y =
1
n

n

∑
i=1

yi, (7)

then the dataset variability can be measured with two sums-of-squares formulas. First, let
us note the sum of the squares of residuals, also called the residual sum of squares:

SSres = ∑
i
(yi − fi)

2. (8)

The latter equation embodies the total sum of squares (proportional to the data vari-
ance), reading

SStot = ∑
i
(yi − y)2. (9)

The most general definition of the coefficient of determination is

R2 = 1 − SSres

SStot
. (10)

In the best case, the modeled values exactly match the observed ones, resulting in
SSres = 0 and R2 = 1. A baseline model, which always predicts y, will have R2 = 0; models
that deliver predictions worse than the baseline will assume a negative R2 [56].

To obtain another parameter for determining whether the correlation coefficients
take a value that effectively implies an inter-coefficient relationship, we computed their
statistical significance.

The statistically significant rate was established by using a continuous probability
distribution based on Student’s concept (t-distribution); we have

tscore = (rNut,Veg·
√

n − 2)√(
1 − rNut,Veg2

) ), (11)

where n is the amount of the observed correlation phases.
When seeking a statistically relevant value, we selected a significance level of 2%,

corresponding to a quartile of 99%. The t-distribution values for seven, four, and three
degrees of freedom equal 2.998, 3.747, and 4.541, respectively. If the correlation coefficient
exceeds the critical value, the correlation can be considered statistically relevant.

2.5. Method to Verify the Resulting Equations: A Separate Corn Field

The equations defining the linear relationship of the dry matter values to the correlated
vegetation indices NDVI, NDRE, and GNDVI were validated against the outcomes of a
single-shot experiment for 5 hybrids (the ES Joker, ES Wellington, KTG Karlaxx, Absolutis-
simo, and Rudolfinio) on the day of their actual harvest. The dry matter content predictions
covered hybrids grown for grain, with the ideal harvest window shifted to values between
380 g/kg and 420 g/kg.

In each of these hybrids, the interaction of the acquired relationships (14)–(16) was
set down and verified. Using nutritional analysis, we determined the dry matter volume
in the whole plants, and this quantity was denoted as the dry matter conventional true
value, DMCTV . Subsequently, we applied the vegetation indices to compute the predicted
dry matter value, DMPV , and established the absolute and relative deviations, ∆DM and
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δDM, respectively, of the dry matter conventional true value from the predicted one. The
equations read

∆DM [g/kg] = DMPV − DMCTV . (12)

δDM [%] =
∆DM [g/kg]

DMCTV
·100 =

DMPV − DMCTV
DMCTV

. (13)

3. Results
3.1. Chemical Analysis

Tables 2–6 below contain the values that followed from the chemical analysis. In
2020, the harvest plan enabled us to expand the pre-defined experiment within the harvest
window to cover a longer period, and thus we eventually included a total of eight sampling
dates; this step then enabled us to determine a larger number of corn plant nutritional
parameters through the chemical analysis and computing the yield characteristics (Table 4).

Table 2. The laboratory nutritional data relating to the individual silage corn sampling instances
in 2019.

2019 Silage Hybrid Sampling Cases
1. 2. 3. 4.

Nutritional Analysis

DM [g/kg] 179.7 216.9 303.8 340.3
CP [g/kg DM] 117.0 93.4 81.40 94.2
CF [g/kg DM] 343.3 317.6 224.7 194.1
Starch [g/kg DM] 10.8 13.6 17.2 29.8
Ash [g/kg DM] 56.2 49.7 33.5 32.6
NDF [g/kg] 624.7 638.2 473.1 345.2

Table 3. The laboratory nutritional data relating to the individual grain corn sampling instances
in 2019.

2019 Grain Hybrid Sampling Cases
1. 2. 3. 4. 5.

Nutritional Analysis

DM [g/kg] 198.4 237.0 338.6 390.8 462.5
CP [g/kg DM] 118.5 104.6 100.4 99.4 91.6
CF [g/kg DM] 312.6 304.9 226.1 329.6 320.2
Starch [g/kg DM] 2.7 31.1 81.7 303.7 393.2
Ash [g/kg DM] 57.0 48.1 44.6 60.3 63.9
NDF [g/kg] 613.4 603.7 370.5 343.8 338.4

In 2021, we repeated the procedure of 2020, the only difference being that, to achieve a
higher variability, we experimented with two different corn hybrids, the DKC 3568 and
the DKC 4279, at the same site; each of these hybrids has a specific maturation period. The
resulting parameters are presented in Table 5 (the DKC 3568) and Table 6 (the DKC 4279).

3.2. Data Correlation Results

In Table 7 below, we present the statistically relevant values computed according to
reference [8] from the data correlated between the vegetation indices and the nutritional
values of the corn hybrids examined over the three-year project. The statistically significant
values are in bold.
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Table 4. The laboratory nutritional data relating to the individual silage corn sampling instances
in 2020.

2020 Silage Hybrid Sample Number
1. 2. 3. 4. 5. 6. 7. 8.

Nutritional Analysis

DM [g/kg] 197.2 193.2 224.4 319.7 308.8 355.7 359.4 449.5
CP [g/kg DM] 114.6 102.6 98.1 91.1 88.0 78.4 79.0 76.6
CF [g/kg DM] 364.0 335.0 306.8 238.0 250.1 198.8 223.3 225.7
Starch [g/kg DM] 6.0 21.8 153.9 273.2 319.8 344.5 349.6 398.8
Ash [g/kg DM] 68.4 56.5 55.8 48.4 45.7 39.0 44.0 41.4
NDF [g/kg] 684.1 639.6 598.6 403.0 452.4 410.0 432.3 448.1
DNDF [%] 43.6 51.6 55.6 50.3 52.7 58.9 50.2 56.4
DOM [%] 52.3 60.5 58.7 73.3 76.2 76.9 77.1 78.8

Yield Characteristics

FM [kg/10 plants] 8.7 9.2 10.6 10.6 9.9 9.8 9.8 7.3
EW [kg/10 plants] NA NA NA 0.0 NA 3.4 3.6 2.9
YFM [kg/ha] 69,360 73,947 84,560 84,667 78,960 78,693 78,347 58,320
YDM [kg/ha] 13,737 14,317 18,979 27,080 24,456 28,013 28,173 26,186

Table 5. The laboratory nutritional data relating to the individual instances of sampling the corn
hybrid DKC 3568 in 2021.

2021 DKC 3568
Sample Number

1. 2. 3. 4. 5. 6. 7. 8.

Nutrition Analysis

DM [g/kg] 218.30 243.53 325.60 349.53 401.43 424.37 479.33 522.87
CP [g/kg DM] 105.0 93.00 72.10 72.80 70.0 68.0 65.0 65.0
CF [g/kg DM] 300.0 275.5 246.2 250.2 406.3 433.6 412.7 428.5
Starch [g/kg DM] 15.0 27.5 81.2 208.8 250.0 300.0 350.0 380.0
Ash [g/kg DM] 50.0 42.3 38.0 26.2 33.0 31.2 32.8 30.9
NDF [g/kg] 630.0 604.5 531.2 552.9 656.7 661.3 657.2 662.8
DNDF [%] 55.0 58.7 51.4 48.7 25.7 24.0 22.4 26.9
DOM [%] 70.0 72.3 74.3 67.4 41.5 41.4 41.2 44.1

Yield Characteristics

FM [kg/10 plants] 7.0 6.73 6.99 5.99 5.50 5.40 5.10 4.80
EW [kg/10 plants] NA NA NA NA NA NA NA NA
YFM [kg/ha] 56,000 53,840 55,920 47,920 44,000 43,200 40,800 38,400
YDM [kg/ha] 12,225 13,112 18,208 16,750 17,663 18,333 19,557 20,078

3.3. Regression Model Results

The details of the relationships between the analyzed vegetation indices and the dry
matter values are plotted in Figure 4. Using a linear regression model, we found the
following proportions:

NDVI = −0.0007·DM + 1.0712, (14)

NDRE = −0.0007·DM + 0.7031, (15)

GNDVI = −0.0005·DM + 0.9277. (16)

These formulas facilitated establishing the graphical relationships between the vegeta-
tion indices and the dry matter values, Figure 5.
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Table 6. The laboratory nutritional data relating to the individual instances of sampling the corn
hybrid DKC 4279 in 2021.

2021 DKC 4279
Sample Number

1. 2. 3. 4. 5. 6. 7. 8.

Nutrition Analysis

DM [g/kg] 213.60 228.43 256.30 294.77 338.23 357.90 389.00 470.33
CP [g/kg DM] 105.0 79.2 101.8 73.3 70.0 68.0 65.0 65.0
CF [g/kg DM] 300.0 288.7 271.3 248.8 330.7 378.3 385.8 430.0
Starch [g/kg DM] 15.0 2.6 60.3 141.7 250.0 300.0 350.0 380.0
Ash [g/kg DM] 50.0 53.0 53.7 41.3 31.0 32.4 37.0 35.1
NDF [g/kg] 630.0 572.0 578.1 487.4 545.7 597.0 616.4 687.8
DNDF [%] 55.0 46.5 51.0 34.9 25.3 23.8 25.4 26.5
DOM [%] 70.0 65.6 68.3 67.7 51.1 45.7 37.9 42.3

Yield Characteristics

FM [kg/10 plants] 7.0 7.53 6.29 6.87 5.50 5.40 5.10 4.80
EW [kg/10 plants] NA NA NA NA NA NA NA NA
YFM [kg/ha] 56,000 60,240 50,320 54,960 44,000 43,200 40,800 38,400
YDM [kg/ha] 11,962 13,761 12,897 16,200 14,882 15,461 15,871 18,061

Table 7. The statistical relevance of the correlated data acquired through the multispectral scanning
and the chemical analysis.

Sampling Vegetation
Index

Nutritional Analysis Yield Characteristics

DM
[g/kg]

CF
[g/kg DM]

Starch
[g/kg DM]

DNDF
[%]

DOM
[%]

FM
[kg/10
plants]

YFM
[kg/ha]

YDM
[kg/ha]

2019 silage
hybrid

NDVI 2.99 2.87 10.49 NA NA NA NA NA
NDRE 5.16 4.74 36.40 NA NA NA NA NA

GNDVI 4.05 3.65 2.18 NA NA NA NA NA

2019 grain
hybrid

NDVI 8.51 0.13 4.04 NA NA NA NA NA
NDRE 11.93 0.14 4.54 NA NA NA NA NA

GNDVI 12.97 0.36 7.40 NA NA NA NA NA

2020 silage
hybrid

NDVI 5.74 3.24 4.62 1.67 4.19 0.99 0.99 2.87
NDRE 5.90 3.03 4.26 1.01 3.30 1.13 1.13 2.95

GNDVI 5.08 2.12 2.79 1.26 2.10 1.53 1.53 2.07

2021 DKC
3568

NDVI 5.42 5.51 5.51 5.45 5.21 5.69 5.69 3.00
NDRE 4.03 2.22 2.80 2.38 2.01 2.45 2.45 3.41

GNDVI 4.25 3.13 3.14 3.21 2.98 3.18 3.18 3.31

2021 DKC
4279

NDVI 5.63 6.36 5.23 3.00 4.60 4.70 4.70 2.76
NDRE 3.32 3.84 3.34 2.55 2.94 3.44 3.44 2.00

GNDVI 7.49 4.39 5.59 3.12 3.79 5.90 5.90 3.15

3.4. Validating the Regression Models

To determine the predicted dry weight value from the above Equations (14)–(16),
we analyzed the previously acquired multispectral images, establishing the values of the
spectral reflectance and the vegetation indices (Table 8).

In Table 9 below, we show the outcomes of analyzing the relationships between the
conventionally true dry matter value determined through the chemical analysis of the
corn samples and the predicted dry matter value established via the vegetation indices
according to Equations (14)–(16).
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Table 8. The vegetation indices computed from the spectral reflectance values.

Corn Hybrid Name
Spectral Reflectance Vegetation Indices

B [%] G [%] R [%] RE [%] NIR [%] NDVI NDRE GNDVI

EC Joker 4 10 8 25 56 0.750 0.383 0.697
EC Wellington 4 10 8 24 55 0.746 0.392 0.692
KTG Karlaxx 5 9 7 24 59 0.788 0.422 0.735
Absolutissimo 6 9 7 23 54 0.770 0.403 0.714
Rudolfinio 6 9 7 23 58 0.785 0.432 0.731

3.5. Mapping the Vegetation Indices

Selected vegetation index maps are shown in Figure 6; all of the items, and others in
their set, were acquired with the RedEdge camera carried by the UAV.
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Table 9. The conventionally true and the predicted dry matter values for the individual hybrids.

Corn Hybrid EC Joker EC Wellington KTG Karlaxx Absolutissimo Rudolfinio

Nutritional analysis DMCTV [g/kg] 459.11 470.83 383.53 423.17 398.67

NDVI
DMPV [g/kg] 458.86 464.53 404.74 429.58 409.41

∆DM [g/kg] −0.26 −6.31 −21.21 −6.41 −10.74
δDM [%] −0.03 −1.36 −5.24 −1.49 −2.62

NDRE
DMPV [g/kg] 457.69 443.85 402.02 429.29 387.14

∆DM [g/kg] −1.42 −26.98 18.49 6.12 −11.52
δDM [%] −0.31 −6.08 4.60 1.43 −2.98

GNDVI
DMPV [g/kg] 461.46 470.78 384.81 426.83 392.71

∆DM [g/kg] 2.35 −0.05 1.28 3.66 −5.95
δDM [%] 0.51 −0.01 0.33 0.86 −1.52
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4. Discussion
4.1. Discussing the Results of the Chemical Analysis

The evaluated nutritional parameters indicate that the volume of dry matter (DM)
in corn increases with progressing phenophase. The rising share of corn grain is then
accompanied by a gradually increasing presence of starch in the entire plant; the starch is the
plant’s main source of energy. In other parts of the plant, the amount of nitrogenous matter
(CP) progressively decreases, and the fiber digestibility rate (NDF) drops markedly due to
overall lignification. The ideal harvest window for the monitored plants was identified at
the penultimate stage of the field experiments. This optimum time corresponds with the
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dry matter values between 280 and 330 g/kg and an average starch content of 270 g/kg
(DM) to 320 g/kg (DM), and the ideal value at 300 g/kg (DM) corresponds to 2/3 of the milk
line stage of the grain. During the observed period, we also traced changes in nutritional
indicators such as the digestibility of organic matter (DOM), which exhibited a tendency to
grow owing to a rising share of ears that contain high digestibility starch. Simultaneously,
the remaining fiber (NDF) lignified gradually, and its digestibility declined accordingly.
A rise was also evident in the fresh matter yield (YFM) and the dry matter yield (YDM),
which generally behave in an uneven manner and depend markedly on the phenophase
and maturation stage of the crop.

4.2. Discussing the Outcomes of the Chemical Analysis

This section outlines the statistical relevance of the correlation coefficients. All cor-
relations between the dry matter volume and a vegetation index were strong, with all of
the field experiments in each of the years having been classified as very significant. An
exception lies in a hybrid harvested for the NDVI index in the first year; this hybrid cannot
be considered statistically relevant. A major statistical significance is assigned also to the
correlations of the starch with the vegetation indices; here, we also identified exceptions
in some years when the correlation appeared statistically irrelevant. The starch content
notably influences the resulting quality of the harvested corn, among other aspects. The
values of the NDVI, NDRE, and GNDVI correlate with the computed YDM values; in
selected cases, the correlations are strong or even very strong. Thus, it follows that the
heavy correlations in the NDVI and GNDVI can be employed to not only determine the
appropriate harvest time but also predict the amount of organic matter within the yield
of the crop being harvested, a factor of major importance for determining the organic
matter yield.

4.3. Discussing the Results Obtained through Verifying Equations

The relationships characterized in Figure 4 have produced three equations to relate
the dry matter and the vegetation indices. In the NDVI, we acquired Equation (14) and the
highest value of the coefficient of determination, R2 = 0.7085; the NDRE to dry matter, by
contrast, showed the lowest value of the coefficient of determination, R2 = 0.579. Regarding
the GNDVI, the coefficient R2 took the value of 0.6506.

4.4. Discussing the Results Obtained through Verifying the Equations

The absolute differences between the predicted, DMPV , and the conventionally true,
DMCTV , dry matter content values ranged from −0.01 to −26.98 g/kg. The largest differ-
ences separating the predicted and the true contents were identified in the NDRE.

The average relative deviations, δDM, for the dry matter values computed from the
NDVI and the NDRE equaled 2.154% and 3.078%, respectively; the smallest relative error
in the dry matter of the five hybrids was achieved with the GNDVI, the value being 0.645%.

The very strong correlation between the GNDVI and the dry matter values allow us
to claim that the GNDVI also provides the best prediction performance within the linear
model. In most of the hybrids studied, the dry matter estimation was below 1%, namely,
0.51% in the ES Joker, −0.01% in the ES Wellington, 0.33% in the KTG Karlaxx, and 0.86%
in the Absolutissimo. The Rudolphino also showed a small relative deviation, at −1.52%.
The advantage of the GNDVI lies in its high correlation with the biophysical parameters
of the plants and low sensitivity to the other areas observed. The reflectance at the green
wavelengths responds better to variations in the leaf chlorophyll content and the plant
health. With the green band, the probability of capturing nutrient deficiency differences,
which correlate with the eventual plant production, is higher.

Using the dry matter values established as shown above facilitates predicting the
optimum harvest in any corn hybrid.
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4.5. Comparing the Results

This article develops the outcomes of study [1], connecting them with novel research
and outlining a more comprehensive approach to the problem. While the referenced
source [1] evaluates one corn hybrid in one season, the present article discusses the relation-
ship between the dry matter and the vegetation indices over data collected during three
years, confirming that the results are valid for not merely a single hybrid, but generally. In
contrast, no statistically significant relationship to the CF has been shown, and the starch
value appeared to be relevant only in the NDVI.

Article [20] examines regression models for estimating crop yield via the NDVI and
measurements of relative crop yields (paddy rice, winter wheat, and corn); the authors rec-
ommend using the models especially in areas where the crop types are not exactly known.

In report [41], the dry matter value was confirmed via field reflectance measurements
executed with multispectral systems (Landsat 8, RapidEye). By comparison, our approach,
when confronted with the satellite image-based data acquisition, offers the advantage of a
higher resolution in the imaging and map forming, and this capability then ensures better
data accuracy.

The results of the experiment herein confirm the vegetation-to-nutritional index data
correlation detailed elsewhere, especially in the referenced source [45]. The central asset
of our article nevertheless lies in the specified mathematical relationships between the
vegetation and the nutritional indices; these instruments, importantly, facilitate determining
the dry matter value from an entire field and thus optimizing the harvest time.

4.6. Limitations of the Approach

The proposed method of UAV multispectral camera field scanning and vegetation-index-
based dry matter computation includes uncertainties; these uncertainties rest in the quality
of the multispectral sensor and also its calibration to suit the season and environment.

The repeatability of the procedure depends on the weather conditions, as the operation
of an unmanned aerial vehicle is affected by rain, wind, and location of the crops to be
monitored (for example, in a drone flight restriction zone). A major disadvantage is the
limited range of an UAV: Over areas larger than 200 ha, imaging with this method becomes
challenging due to the battery capacity. Alternatively, fixed-wing UAVs may be employed
because they provide a longer range per battery (~50 min); the eBee X, however, delivers
up to 90 min. Using a drone is effective only for large vegetation units.

5. Conclusions

Analyzing multispectral images by using precise knowledge of crop health is one of
the processes that supports the transition from traditional farming to precision agriculture.
Increasing the quality of harvested corn and reducing the feed crop consumption by
determining the correct harvest time will produce an innovative approach, namely, non-
contact analysis of the plant at different stages of growth; this technique will offer a potential
for automated and rapidly scalable application in most types of cultivated vegetation. In
corn, the appropriate harvest time is established from the amount of dry matter, depending
on whether the chopped plants are to be ensiled for fodder or used as methane production
material in a biogas plant. Thus, up-to-date, accurate knowledge of the nutritional values,
ideally collected across the crop field, embodies an essential factor in selecting the right
time window.

Such goals and tasks can be effectively performed by means of remote sensing with a
UAV-mounted multispectral camera and via the equations set out in Figure 4. The discussed
method eliminates the need for chemical analysis of samples collected from only a few
locations in a large field that supports heterogeneous vegetation. Specifying the optimum
harvest period is assigned considerable ecological and economic importance, especially if
related to the entire processing chain; The authors proceed from optimum corn harvesting
based on the pre-determined volume of dry matter to methane production in biogas plants,
respecting also the links between feed crop and cow milk.
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The vegetation relationship graphs in Figure 4 lead to equations that find use in pre-
dicting the optimum harvest time via dry matter values. Evaluating the information from
the above chapters, we can conclude that the greatest prediction relevance is embedded in
Equation (16), which defines the relationship between the GNDVI and dry matter. Results
characterizable as very good but somewhat inferior to those obtained for the GNDVI were
found in the NDVI–dry matter relationship (15). The GNDVI and NDVI values also allow
for estimating the yield characteristics, such as the YFM and YDM.

In view of the very strong correlation between the GNDVI and dry matter content
values, the GNDVI can be described as having the best prediction results in the linear model.

The main benefits of the method include the general validity of the relationships
between the vegetation indices and the dry matter for different corn hybrids. Conversely, a
central disadvantage lies in the sensitivity to climatic conditions; The sensing is not feasible
during rain or heavy winds.
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