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Abstract: Algal bloom has become a serious environmental problem caused by the overgrowth of
plankton in many waterbodies, and effective remote sensing methods for monitoring it are urgently
needed. Global navigation satellite system-reflectometry (GNSS-R) has been developed rapidly in
recent years, which offers a new perspective on algal bloom detection. When algal bloom emerges,
the water surface will turn smoother, which can be detected by GNSS-R. In addition, meteorological
parameters, such as temperature, wind speed and solar radiation, are generally regarded as the key
factors in the formation of algal bloom. In this article, a new algal bloom detection method aided by
machine learning and auxiliary meteorological data is established. This work employs the Cyclone
GNSS (CYGNSS) data and the fifth generation European Reanalysis (ERA-5) data with the application
of the random under sampling boost (RUSBoost) algorithm. Experiments were carried out for Taihu
Lake, China, over the period of August 2018 to May 2022. During the evaluation stage, the test true
positive rate (TPR) of 81.9%, true negative rate (TNR) of 82.9%, overall accuracy (OA) of 82.9% and
the area under (receiver operating characteristic) curve (AUC) of 0.88 were achieved, with all the
GNSS-R observables and meteorological factors being involved. Meanwhile, the contribution of each
meteorological factor and the error sources were assessed, and the results indicate that temperature
and solar radiation play a prominent role among other meteorological factors in this research. This
work demonstrates the capability of CYGNSS as an effective tool for algal bloom detection and the
inclusion of meteorological data for further enhanced performance.

Keywords: GNSS-R; CYGNSS; algal bloom detection; meteorological data; RUSBoost

1. Introduction

With the development of human society, more and more people settle down near
inland lakes, which causes the problems of water pollution and consequent water eu-
trophication [1]. The fertile water is a breeding ground for plankton, and algal bloom
will occur under this circumstance [2]. Algal bloom consumes a considerable amount of
oxygen and produces toxins in the water, which greatly affects the drinking water safety of
the surrounding cities [3,4]. Meanwhile, the frequent emergence of algal bloom will also
cause serious damage to the water environment, leading to the massive death of aquatic
organisms [5] and undermining the local aquaculture and fishery resources.

To reduce the threats of algal bloom to the lakes and the coastal areas, many moni-
toring methods have been applied. Traditional field investigations directly measure the
concentration of different kinds of algae and the toxins they have produced in the water,
but the number and range of the samples are quite limited [6]. The cost of field investiga-
tion is also very high, so it is difficult to obtain bloom information about the whole lake
and monitor its change in a rapid way. Remote sensing technology has been successfully
applied in the field of algal bloom monitoring and research during recent decades; it has the
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advantages of low expense and ability to observe targets at a large scale [7]. Optical remote
sensing data in visible light and infrared band can distinguish the algal bloom-covered area
from lake water well for the reason that the reflectance of bloom in different bands differs
from that of water, especially in the near-infrared band. Meanwhile, the optical remote
sensing method can also be used to perform regression analysis of the algal bloom density.
Commonly used spaceborne optical data from the Earth Observing System (EOS), Landsat
and Sentinel satellites are suitable for algal bloom observation [6]. However, on cloudy
or rainy days, optical sensors cannot obtain sufficiently high-quality data [8], leading to
gaps in the observation sequences. Moreover, the temporal resolution of spaceborne optical
data is usually not very high, for example, Landsat-8 and Sentinel-2 satellites need at least
8 days to pass the same area again [9].

Monitoring algal bloom in the microwave band has also proved to be effective. Com-
pared with optical sensors, it can observe targets day and night, and in bad weather.
Synthetic aperture radar (SAR) is an active microwave remote sensing method that mainly
relies on the backscattered radiation of the electromagnetic wave transmitted by itself to
detect the scattering surface. Wang et al. [10] showed that the bloom-covered lake surface
could suppress radar wave backscattering and result in a ‘dark area’ in SAR images. Al-
though SAR can overcome many of the shortcomings of the optical method, the temporal
resolution of most spaceborne SAR data still fails to meet the requirement of daily monitor-
ing [9]. The cost of SAR is relatively high among other remote-sensing instruments, as SAR
satellites need to carry the transmitter onboard, and the preprocessing methods for SAR
images are also complicated [11]. Airborne optical and SAR remote sensing methods are
relatively flexible in observation time and spatial resolution [12], but they are poor in both
spatial coverage and platform stability.

Global navigation satellite system-reflectometry (GNSS-R) is an emerging technology
in the field of remote sensing. It is an active remote sensing method, which collects the
forward reflected L-band signals transmitted by GNSS satellites from the earth’s surface
to infer information about the specular point (SP). Similar to other microwave remote
sensing methods, GNSS-R can avoid the signal attenuation caused by cloud and dust to a
great extent. So far, GNSS-R has been employed in many research domains, for instance, al-
timetry [13], sea ice detection and thickness measurement [14,15], flood and inland waterbody
mapping [11,16,17], sea surface wind retrieving [18,19] and soil moisture inversion [20–22].

The remote sensing of algal bloom using GNSS-R has become an interesting topic.
Rodriguez-Alvarez et al. [23] proposed using bistatic radar to monitor algal bloom in the
Gulf of Mexico for the first time. Ban et al. [24] studied the change of the sea surface
roughness and dielectric constant after being covered by the red tide. Zhang et al. [25]
firstly analyzed the feasibility of spaceborne GNSS-R algal bloom detection in Taihu Lake,
China. They used a GNSS-R observable called the power ratio (PR), with Sentinel-3 OLCI
data collected from April to August 2020 as a reference, and discussed the influence
of wind speed on the detection accuracy. They regarded PR > 2 as coherent reflection
or the existence of bloom, and they found that in the wind speed section of 1–2.5 m/s,
the PR-based detection method can achieve the best detection accuracy. Subject to the
temporal resolution of Sentinel-3 and the rainy summer climate of Taihu Lake, actually,
only 9 days of Sentinel reference data and only 120 preprocessed GNSS-R data points could
be obtained. In summary, the results and analyses of the current research are intuitive, and
the amount of employed data is insufficient. Additionally, wind speeds of less than 1 m/s
are not discussed, making the research results not convincing nor robust enough without
comprehensive assessment of the detection results. Although Zhang et al. [25] considered
the influencing factor of wind speed, other related meteorological factors, such as wind
direction and precipitation, remain to be investigated. Some meteorological factors, such as
temperature and solar radiation, do not immediately cause algal bloom. They mainly take
effect in the growth stage of plankton, which are also worth studying. To further verify the
feasibility of detecting algal bloom with GNSS-R and meteorological data, more observed
GNSS-R data and more meteorological factors with time memory should be involved.



Remote Sens. 2023, 15, 3122 3 of 18

The machine learning (ML) method is an effective tool in remote sensing [26,27].
Specifically, it has successfully addressed such problems as classification and regression in
remote sensing precisely and effectively. Since the adoption of neural networks for sea ice
sensing [28], combining ML with GNSS-R has become a new tendency in recent years. For
instance, Zhu et al. [29] applied decision tree (DT) and random forest (RF) in GNSS-R sea
ice concentration (SIC) inversion. Ref. [30] employed ML methods in GNSS-R SM retrieval.

In practical research, classification problems may occur such that the data of different
labels are imbalanced (‘imbalance’ refers to the disproportionate proportion in the class
label). Specifically, the data of one category can be much sparser than those of other types,
but the importance of the minority should be emphasized despite its lower proportion.
Algal bloom detection via GNSS-R faces such a challenge of an imbalanced dataset. In
other words, algal bloom will not take up a great proportion in the whole dataset, but its
damage is non-negligible. Traditional classifiers assume that the number of points in each
class is generally comparable, and they aim to reach the highest overall accuracy (OA).
However, if applying these traditional classifiers to imbalanced datasets, the minority class
will be neglected due to its small contribution to the OA, leading to the failure of identifying
the minority class. In order to deal with it, the random under sampling (RUS) boosted
(RUSBoost) algorithm [31], an algorithm designed for processing imbalanced datasets,
can be deployed. RUSBoost is an algorithm that combines RUS with adaptive boosting
(AdaBoost, an algorithm that trains many weak classifiters and integrates them into a
strong classifier to improve the classification performance; more details are in [32]) and
takes advantage of both of them. The RUS algorithm randomly removes samples from the
majority class until its number of samples is equal to that of the minority class. RUS can help
simplify the algorithm complexity effectively but suffers from a loss of information, while in
RUSBoost, with the combination of boosting, the disadvantage of losing information caused
by RUS can be well settled. Compared with another commonly used imbalanced data
classifier, synthetic minority oversampling technique boosted (SMOTEBoost), RUSBoost
saves a great deal of time in training, mostly has better performance, and can better avoid
the problem of overfitting.

In view of the shortcomings of the existing research and the challenge of fusing
different sources of data, in this paper, we propose a new algal bloom detection method that
combines spaceborne GNSS-R data with meteorological factors via the ML method.After
necessary preprocessing steps, we screened 2913 GNSS-R points, much more than previous
studies with only hundreds of points. Not only was the data amount increased, but also
meteorological factors with 10-day time memory before the observation date were added,
along with introducing the RUSBoost algorithm for dealing with the imbalanced multi-
source data for the first time in the field of spaceborne GNSS-R algal bloom detection. In
this way, the interference of wind speed to GNSS-R data was mitigated, and the factors
related to the growth mechanism of algal bloom were also considered. Relative to the
previous studies, the detection accuracy is progressed significantly in this research. This
paper is outlined as follows: Section 2 introduces the research area, datasets of the observed
GNSS-R data, auxiliary data of the reanalysis meteorological data and reference optical
remote sensing data. In Section 3, the GNSS-R observables and RUSBoost algorithm are
described in detail. Section 4 shows the detection results and provides discussion. Section 5
is the conclusion of this research.

2. Datasets
2.1. Area of Interest

Cyanobacteria bloom (a kind of algal bloom) is a commonly seen disaster and has
caused serious environment problems in Taihu Lake, China. For this reason, it is chosen
as the area of interest (30.9◦–31.6◦N, 119.9◦–120.6◦E) of this paper (shown in Figure 1).
Taihu Lake is the third largest freshwater lake in China, located in the densely populated
Yangtze River Delta. It experiences a subtropical monsoon climate [33]. Taihu Lake became
eutrophic in the 1980s. Later in the 1990s, cyanobacteria bloom started to emerge [2]. The
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average water depth of Taihu Lake is only about 2 m [34]; the shallow water and large
amount of lakebed silt also contribute to the growth of cyanobacteria [35,36], as they make
the lake water warmer and more fertile. Considering that the eastern part of Taihu Lake is
the aquatic plant zone, the growth of cyanobacteria and remote sensing observation here
are both influenced, so east of the lake surface to 120.24◦E is excluded.

Figure 1. MODIS image of Taihu Lake on 17 September 2021 and the response of three GNSS-R
observables (introduced in Section 3.1), where the lake surface is covered by cyanobacteria bloom
or not.
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In this work, information about CYGNSS observation data, auxiliary land component
of the fifth generation of European Reanalysis (ERA5-Land) data and reference moderate-
resolution imaging spectroradiometer (MODIS) data are introduced as follows.

2.2. CYGNSS Data

Cyclone GNSS (CYGNSS) data are widely used GNSS-R data in recent years on account
of their high performance in resolution and data quality. CYGNSS satellites were launched
at the end of 2016, and the mission was firstly designed for monitoring tropical cyclones
over low-latitude ocean (38◦S–38◦N) by GNSS-R. It is a constellation of eight satellites
working in the low earth orbit (LEO) of 510 km, whose revisit period is merely about
several hours [37]. Nowadays, applications of CYGNSS data have been expanded to
land observation and have received satisfactory results. Apart from the high temporal
resolution, the spatial resolution has also progressed a lot relative to previous GNSS-R
missions, and its highest spatial resolution is about 0.5 km × 3.5 km [38], which is sufficient
for cyanobacteria bloom monitoring. In this research, 2913 data points of CYGNSS Level 1
Version 3.0 product from August 2018 to May 2022 are employed from 212 days, where
the reference MODIS data with high quality could be obtained, and they are available at
https://podaac-tools.jpl.nasa.gov, accessed on 1 June 2022. Because of the inactive growth
of cyanobacteria on cold days, data in winter months (December, January and February)
are excluded. Delay-Doppler map (DDM) is the basic observable of GNSS-R; many other
observables can be calculated from it to judge the surface condition of SPs. In the CYGNSS
dataset, each DDM is saved in 11 Doppler shifts and 17 time delays, containing the reflected
signals from SP and the surrounding area. Basic information about every CYGNSS SP is
also included in the dataset, for example, its longitude and latitude coordinates, signal
incidence angle, and antenna gains. Data points with an incidence angle > 60 ◦ and receiver
antenna gain < 0 are removed in this study due to their low quality. It needs to be pointed
out that only CYGNSS data obtained from 7 a.m. to 7 p.m. on the days where (nearly)
cloud-free MODIS images could be accessed are adopted in the research.

2.3. Auxilliary ERA5-Land Data

ERA5-Land data are released by European Centre for Medium range Weather Forecasts
(ECMWF) and provide climate reanalysis data from 1950 to the present [39]. They are the
latest generation reanalysis data of ECMWF, with their spatial and temporal resolution,
model parameterization and data assimilation method being vastly improved relative to
other reanalysis products [40], which can be obtained from https://cds.climate.copernicus.
eu, accessed on 30 July 2022. The hourly ERA5-Land data are in the grid of 0.1◦× 0.1◦,
with the spatial and temporal coverage being the same as those of the research area.
Meteorological factors that can affect the growing and gathering process of cyanobacteria
are selected, including wind speed and direction (WS and WD, calculated from dataset
‘10m u/v component of wind’), temperature (T, ‘2m temperature’), total precipitation of
one day (ToP, ‘total precipitation’), pressure (P, ‘Surface pressure’) and solar radiation
downwards (SRD, ‘surface solar radiation downwards’) during the period of 10 days before
the observation date is read and averaged from the ERA5-Land dataset. The averaged
ERA5-Land data in this time period will pair up with the selected CYGNSS data points
on the observation date. CYGNSS data points and ERA5-Land data rasters are spatially
matched based on latitude and longitude coordinates.

2.4. Reference MODIS Data

Here, MOD02QKM data (MODIS L1B product, downloaded from https://ladsweb.
modaps.eosdis.nasa.gov, accessed on 15 October 2022) are used for calculating the normal-
ized difference vegetation index (NDVI) reference data. The reason for making the reference
data by ourselves is that the daily resolution NDVI products in the region of Taihu Lake are
not easy to be found. The MODIS L1B product comes with geographic location information
and radiometric calibration parameters; in this way, it can be preprocessed directly by the

https://podaac-tools.jpl.nasa.gov
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https://cds.climate.copernicus.eu
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Georeference MODIS tool in ENVI 5.6. Red light band and near-infrared band are contained
in MOD02QKM data with the original spatial resolution of 250 m × 250 m and in the daily
resolution. Then, calculating the NDVI index by the two bands above is as follows:

NDVI =
NIR− R
NIR + R

, (1)

where R refers to the reflectance in the red band and NIR refers to that in the near-infrared
band. Pixels with a NDVI value > 0.05 will be regarded as occupied cyanobacteria bloom.
When verifying the correctness of detection, if there are more than 15 bloom pixels in the
5 × 5 pixels, the central pixel of which the CYGNSS data point is located, this CYGNSS
data point is labeled as a cyanobacteria bloom point.

3. Detection Method
3.1. Employed CYGNSS Observations

GNSS-R is sensitive to the roughness change over lake surfaces, and this change can
be seen clearly in the DDMs of CYGNSS (Figure 2). The open water surface tends to be
rough when wind blows [41], but when a large-scale floating object exists, it will turn
smoother, making the GNSS-R reflected signals coherent [42]. The coherent reflections are
easily distinguished through observables extracted from DDMs, which are also the basis of
GNSS-R sea ice and oil slick detection.Once the plankton in water reproduce quickly, a kind
of green paint-like substance will appear over the water surface, leading to an increase in
water surface tension and reduction in the formation of waves, making the GNSS reflected
signals coherent. Therefore, monitoring cyanobacteria bloom with the employment of
GNSS-R is theoretically feasible. The relationship between the forward scattered GNSS
signals and delay-Doppler is represented by a two-dimension function. The maximum
power point in the DDM is usually associated with the SP. When the area of SP is covered
by cyanobacteria bloom, the reflected GNSS signals are typically coherent, and the power
is concentrated near the maximum power point in DDM, but the power will spread into
a ‘horseshoe’ shape when the signals come from a rough water surface. In this way, the
cyanobacteria bloom can be detected by the observables extracted from DDM (Figure 2).

Based on the reasons above, the pixel number (PN) observable of each DDM, GNSS-R
reflectivity (SR, Γ) and signal-to-noise ratio (SNR) of every CYGNSS data point are selected
to detect the suspicious coherent signals from the lake surface. The PN observable, called
the DDM spreadness, that can effectively determine the surface roughness surrounding SP
sensitively [42], is employed here and defined as the number of pixels with its value > 0.1
in the normalized DDM.

Assuming that the reflected signals are coherent, the surface reflectivity Γ is also
employed and calculated by [22]

Γ =
σ(Rt + Rr)2

4π(RtRr)2 , (2)

where σ is the bistatic radar cross section, Rt and Rr are the distance from the SP to GNSS
satellite and from the SP to CYGNSS satellite, respectively.

The last observable employed is SNR, which can be read directly from the CYGNSS
dataset. An approximate correlation between the cyanobacteria bloom condition and the
three observables mentioned above can be seen in Figure 1.
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Figure 2. (a) Typical DDMs with SP on cyanobacteria bloom and (b) on normal lake surface.

3.2. Function of Meteorological Data

Unlike hard sea ice, paint-like cyanobacteria bloom over the water surface is more
like oil and usually eases the surface roughness. Such factors as wind speed can affect the
reflected GNSS signals by changing the surface roughness. In other words, the presence of
low wind speed or cyanobacteria bloom can either lead to smooth surface. Therefore, it is
beneficial to have access to wind speed data in this situation. Moreover, meteorological
factors not only affect the GNSS reflect signals but also perform an important role in the
growth and gathering process of cyanobacteria. Meteorological factors mainly contribute to
the growth period of the cyanobacteria, and their abrupt change may promote the eruption
of the bloom. Here we take the temperature, solar radiation and wind factors as examples.
Sufficient solar radiation, suitable temperature, pressure and precipitation are essential
to the growth of cyanobacteria [43]. The sudden decrease in wind speed and the abrupt
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change of wind direction usually lead to the gathering of cyanobacteria because the constant
blowing of the wind above a certain speed will increase the dissolved oxygen in the water,
which is beneficial for the growth of cyanobacteria, but will block the accumulation of
cyanobacteria. Once the wind speed weakens, the grown cyanobacteria have a chance to
rise and gather together. The abrupt change of wind direction will inversely affect the water
current of the lake surface and will also help the cyanobacteria to rise and gather. Taking
the relationship between wind and cyanobacteria [44] into account, meteorological factors
are involved as an auxiliary to further confirm the bloom existence with the application
of the RUSBoost algorithm. As such, both the remote sensing observation results and
cyanobacteria bloom formation mechanism are considered.

3.3. Classification Algorithm

Throughout most of the observation period, there is no cyanobacteria bloom that oc-
curs over the lake surface, so the training data are an imbalanced dataset, and points without
cyanobacteria bloom presence are in the majority class, while those with cyanobacteria
bloom are in the minority class but need to be emphasized. To deal with the imbalanced
data classification problem, we employ the RUSBoost algorithm. The RUSBoost algorithm
targets the minimization of the misclassification rate of each class; instead of pursuing the
highest OA, it randomly selects some points from the majority class, with its number being
equal to that of the minority class, and then trains weak learners by iterations to adjust
the weight of each sample until the goal of classifying the imbalanced datasets is achieved.
Firstly, we give an imbalanced dataset S and weights D; S includes n dimensions vector
x = {x1, x2, ..., xi, ..., xn} and class label y = {y1, y2, ..., yi, ..., yn}, yi = 0 or 1. The initial
weight of each sample is set as 1/n in the first iteration (D1(i) = 1/n). In the tth iteration of
total T iterations, the temporarily balanced dataset S

′
t ⊂ St is created by the RUS method,

and the corresponding weights D
′
t ⊂ Dt are also created at the same time. The next step

is using S
′
t and D

′
t to train the weak hypothesis ht by some classification algorithms, such

as WeakLearn. The weak hypothesis performs just a little better than random classifica-
tion (accuracy around 50%), but combining them together to form a final hypothesis, the
classification accuracy is much enhanced. Then, we calculate the pseudo-loss εt, while
pseudo-loss is computed as the following formula:

εt =
n

∑
i=1

Dt(i)(1− ht(xi, yi) + ht(xi, 1− yi)). (3)

In every iteration, the weights Dt are updated by the updating factor αt = εt/(1− εt):

Dt+1(i) = Dt(i)α
1
2 (1+ht(xi ,yi)−ht(xi ,1−yi))
t . (4)

Then, we normalize Dt+1 by

Dt+1(i) =
Dt+1(i)

∑m
i=1 Dt+1(i)

. (5)

By this point, the process of one iteration is finished. If the iteration number t is not
bigger than T, the iteration will continue, or it will be stopped. Finally, the output of the
final hypothesis H(x) is formed:

H(x) = arg max
y∈0,1

T

∑
t=1

ht(x, y) log
1
αt

. (6)

All steps of the RUSBoost algorithm are posted in the flowchart (Figure 3); for more
detailed information about RUSBoost, refer to [31]. According to the discussions above, a
new method for GNSS-R algal bloom detection is proposed, and the flowchart is displayed
in Figure 4.
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Figure 3. Flowchart of RUSBoost algorithm.

Figure 4. Flowchart of this research. Blue boxes are the processing steps about CYGNSS data, orange
box is about ERA5-Land data, red boxes are about MODIS data and green boxes are the modeling
and evaluation steps.
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4. Experiments and Evaluation

To prove the effectiveness of GNSS-R data and meteorological data in cyanobacteria
bloom detection, as well the superiority of the RUSBoost method, three assessment stages
are involved in this section, which are the manual threshold value method classified by the
single GNSS-R observable, and the results with/without meteorological factors considered
through the ML method and error analysis. Meanwhile, the training and testing process of
the RUSBoost algorithm and the performance indexes are also illustrated.

4.1. Threshold Value Method

Figure 5 shows the probability density function (PDF) of the three GNSS-R observables
under the circumstance with or without cyanobacteria bloom occurrence. We manually
selected a threshold in each PDF to make the classification accuracy relatively the same
in each class, and the thresholds are marked by red lines in the PDFs. In the PDF of
PN, we expect that the power from points with cyanobacteria bloom coverage is mostly
concentrated in the PN values between 10 and 20, as the coherent power of reflected GNSS
signals is less spread when the surface is smooth, similar to specular reflection. As we
can see in Figure 5a and Table 1, the threshold we selected is 17.5, which generally agrees
with our expectation. While in the PDF of SR, the situation is the opposite, the stronger
the coherent reflection, the higher the reflectivity. So, the conclusion is readily drawn that
the cyanobacteria bloom points tend to show the character of high SR values. Actually,
Figure 5b also proves this tendency, and the threshold is set as 0.08. The last GNSS-R
observable employed in this paper is SNR; its tendency is similar to SR, but the data
distribution of it is more even relative to PN and SR, and the threshold is set as 12.1 dB
(Figure 5c). The results of the threshold value classification via PDF are recorded in Table 1.
In order to indicate the classification accuracy, we employed the performance indexes
including the true positive (TP) rate (TPR), true negative (TN) rate (TNR) and OA. TP and
TN refer to the two correctly classified situations, and OA is calculated as follows:

OA =
TP + TN

TP + TN + FP + FN
(7)

These three performance indexes range from 0 to 1, and the closer they are to 1, the
better the results. In this method, TPR, TNR and OA are mostly better than 65%, which
shows the ability to distinguish cyanobacteria bloom from the clean water surface using
GNSS-R observables. However, the accuracy of it is still unsatisfactory, the probable reason
being that there are some situations where the surface is calm due to low wind speed
instead of actual cyanobacteria bloom, or a strong wind suddenly blows and roughens the
lake surface but the cyanobacteria bloom is not blown away. To better fix these mistakes, a
scheme is designed to combine GNSS-R data and meteorological data with the help of the
ML method.

Table 1. Results of threshold value method for three GNSS-R observables.

PN SR SNR

Threshold 17.5 0.08 12.1
TNR 69.6% 66.8% 64.5%
TPR 67.9% 67.0% 63.5%
OA 0.68 0.67 0.64
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Figure 5. PDFs of three GNSS-R observables with cyanobacteria bloom covered or not, red lines and
numbers refer to the classification threshold.
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4.2. Machine Learning Method
4.2.1. Training

After data quality control and collocation, 2913 samples were obtained in total in
the training procession, 1942 of which were used while the remaining 971 were used for
testing. Three GNSS-R observables and six kinds of meteorological factors were input to
the classifier as features; the samples with bloom coverage (NDVI > 0.05) were labeled as 1
or 0 for bloom or no bloom, respectively. The RUSBoost algorithm was realized through the
Classification Learner in the Machine Learning and Deep Learning Toolbox of MATLAB
R2021b. The numbers of weak learners, learning rate and the cost of misclassification were
set as 100, 0.1 and 1, respectively, as they performed the best during exhaustive tests.

4.2.2. Detection Results

Another performance index suitable for evaluating the imbalanced data classification
effect is area under curve (AUC), also employed here for evaluating the performance of
the RUSBoost algorithm. In addition, AUC is an indicator calculated from the receiver
operating characteristic curve (ROC; it is in the coordinate system where the TPR is on
the y-axis and the false positive rate (FPR) is on the x-axis [45]), which is the size of the
area under ROC and also shows the performance of the classifier. The detection results
of different feature combinations are listed in Table 2, and the visualization of Table 2 is
shown in Figure 6. We considered eight different feature combinations, and they can be
roughly divided into three groups: only GNSS-R observables (combination A in Table 2);
GNSS-R observables + all employed meteorological factors (combination H); and GNSS-R
observables + one of the employed meteorological factors (combinations B-G). In these
three groups, one can come to the conclusion that the involvement of meteorological
factors can apparently improve the detection accuracy, while the contributions of each
meteorological factor are varied. When no meteorological factors are involved, the accuracy
results for cyanobacteria bloom detection (TPR), clean lake surface detection (TNR), OA
and AUC are 63.4%, 68.9%, 68.7% and 0.70, respectively. Compared with the threshold
value method used before, there is almost no significant improvement in the combination
of the three observables, but the application potential of GNSS-R in this field can still be
proven because the AUC value here is greater than 0.5, which indicates the effectiveness of
the imbalanced data classification. After all the meteorological factors were engaged, the
performance indexes improved a lot and were able to reach 81.9%, 82.9%, 82.0% and 0.88 in
the four performance indexes, respectively, gaining 10–20% more than before, showing the
prospect of the GNSS-R cyanobacteria bloom detection method by taking meteorological
factors into consideration. Through doing so, some disturbing factors are excluded. For
instance, on one certain day, the wind speed is quite low, so the coherent reflection from
the lake surface is received such that it looks like cyanobacteria bloom exists, but the
temperature on this day, or in the period ten days before, is lower than 10 ◦C (which
hinders cyanobacteria growth), so the possibility of cyanobacteria bloom occurrence can
be ruled out. This proposed method effectively overcomes the shortcomings of GNSS-R
data (failure to identify the actual reason that leads to the smoothness of the lake surface).
Then, the contributions by single meteorological factor to the final result were evaluated. In
Table 2 and Figure 6, the performance of combination B-G is better than that of combination
A but worse than that of combination H. This means that the six meteorological factors
involved are effective in the research, and considering all of them can produce the best
result. Temperature (combination C) and solar radiation (combination G) contribute most
compared to other factors. The two combinations improve by 8.7%, 7.4% in OA, 14.6%,
14.6% in TPR, 8.5%, 7.1% in TNR and 0.17, 0.14 in AUC, respectively, relative to combination
A. The result that temperature and solar contribute most to cyanobacteria bloom detection
fits the conclusion in [43] well, in which it is found that suitable light and temperature are
the key factors that affect the growth of cyanobacteria bloom.
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Figure 6. Line chart of the results in Table 2. The letters at the botton of the figure refer to the feature
combinations in Table 2.

Table 2. Test results of different feature combinations.

Combination Results Acuracy OA AUC

A GNSS-R
TNR 68.9%

0.69 0.70
TPR 63.4%

B GNSS-R + WS
TNR 73.1%

0.73 0.77
TPR 75.6%

C GNSS-R + T
TNR 77.4%

0.77 0.87
TPR 78.0%

D GNSS-R + P
TNR 72.6%

0.73 0.80
TPR 75.6%

E GNSS-R + ToP
TNR 74.2%

0.74 0.79
TPR 75.6%

F GNSS-R + WD
TNR 74.4%

0.74 0.78
TPR 65.9%

G GNSS-R + SRD
TNR 76.0%

0.76 0.84
TPR 78.0%

H All Features
TNR 81.9%

0.82 0.88
TPR 82.9%
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4.3. Error Analysis

To better find the error sources in the detection results, we mapped the correctly classi-
fied and misclassified points on a day together. Through the observation, we discovered
that the misclassified points mostly appear near the edge of the actual cyanobacteria bloom-
covered zone. On 30 May 2021, cyanobacteria accumulated and covered almost the entire
lake (Figure 7a). On this day, 11 CYGNSS points were available in the test dataset, and they
all correctly classified as positive for the existence of cyanobacteria bloom, showing the
great accuracy of the proposed method. On the days that nearly no cyanobacteria bloom
occurred, such as 17 August 2020 (Figure 7b), the detection results are also satisfactory,
and mistakes are seldom seen in this situation. Therefore, we conclude that the detec-
tion accuracy of this method is reliable when the surface condition is rather uniform (no
cyanobacteria bloom or massive coverage). As Figure 7c shows, our method also shows the
ability to identify the cyanobacteria bloom zone to a certain degree when a small amount
of cyanobacteria bloom exists. Misclassification usually occurs when the lake is partially
covered by cyanobacteria bloom. We take 22 May 2019 and 11 October 2020 (Figure 7d,e) as
examples where half of the total points are classified incorrectly (3/7 and 4/8, respectively).
By inspecting the misclassified point locations with the cyanobacteria bloom area on that
day, the misclassified points usually are located not far away from the cyanobacteria bloom
zone, which covers a considerable area of the lake. We speculate that the probable reason
for it is that the cyanobacteria bloom zone nearby not only limits the wave height in the
zone itself but also the surrounding area, even the whole lake. Although this situation is a
kind of misclassification, it does not influence the application value of this method seriously,
as it can detect the possible cyanobacteria bloom existence in the lake, especially for some
real-world applications, where exact edge information is not required. Relative to optical
remote sensing data, it has progressed a lot since this method can warn of the dangers of
cyanobacteria bloom occurrence during overcast weather, but optical data are not accessible.
Another kind of misclassification is from the confusing weather conditions. On 23 May
2019 (Figure 7f), most points are judged incorrectly (11/13). On this day, only some parts of
the lake surface are covered by cyanobacteria bloom, but the average wind speed near the
SPs is mostly less than 3 m/s, leading to coherent reflection from the lake surface, while the
average wind speed ten days before the day is around 3.5 m/s. The average temperature is
more than 21 ◦C, and the average atmosphere pressure is around 1010 hpa on the observing
day and ten days before, which are generally suitable for the growth and gathering of
cyanobacteria, but not much cyanobacteria bloom actually emerges. This phenomenon is
not usual in the research period. It needs to be pointed out that despite the involvement of
meteorological factors successfully reducing the misclassification to a large extent, they still
cannot overcome it completely. More countermeasures remain to be proposed in the future
to further decrease the misclassification rate of GNSS-R algal bloom detection.

Figure 7. Cont.
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Figure 7. Detection results on different days during the research period, where green area is cyanobac-
teria bloom coverage (NDVI > 0.05), and red points are the SPs being classified correctly, while the
red crosses are misclassified.

5. Conclusions

This research presents a machine learning algorithm-based GNSS-R algal bloom
detection method with auxiliary meteorological data. GNSS-R observables extracted from
CYGNSS DDMs and meteorological factors are selected as input to the RUSBoost model,
an algorithm designed for classifying imbalanced datasets. In the beginning, we proved
the feasibility of detecting algal bloom by a single GNSS-R observable using the manual
threshold value method and achieved a detection accuracy around 65%. To pursue further
improvement in the detection results, we introduced meteorological reanalysis data of
ERA5-Land and the ML method. By comparing different feature combinations, we can
conclude that with the aid of meteorological factors, the detection accuracy can be improved
to a relatively great extent, especially when all the meteorological factors we considered
are involved (test TPR = 82.9%, TNR = 81.9%, OA = 82.0% and AUC = 0.88). The influence
of different meteorological factors on the final result was also evaluated. Among all other
factors, temperature and solar radiation downwards have the best correlation with the
bloom conditions, with improvements of around 10% being observed in the results, though
lower than the feature combination containing all meteorological factors. Finally, we
discussed the performance of the proposed method under different surface conditions and
the probable reason for the mistakes in the detection results, and found that when the lake
surface is rather uniform (nearly full of algal bloom or with no bloom), the performance
is plausible, while on days where the lake surface is partly covered by algal bloom, the
mistake rate increases. Moreover, there are still some conditions in which GNSS-R and
meteorological data are not enough to successfully distinguish the existence of algal bloom.

Some problems remain to be solved in the future. The detection accuracy needs to
be further progressed, which may be realized by applying other ML methods, and more
features can be considered. Besides this, the employment of meteorological reanalysis
data in this research represents the mechanism of algal bloom growth and dissolves the
uncertainty by GNSS-R coherent detection. For comparison, the measured in situ meteoro-
logical data can be utilized, and the performance between the measured data and that of
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ERA5-Land reanalysis data should be discussed. After the classification method becomes
mature, regression analysis will be conducted.
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PDF Probability Density Function
PN Pixel Number
ROC Receiver Operating Characteristic Curve
RUS Random Under Sampling
SNR Signal-to-Noise Ratio
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