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Abstract: This paper addresses the problem of the two-dimensional direction-of-arrival (2D DOA)
estimation of low-elevation or non-low-elevation targets using L-shaped uniform and sparse arrays
by analyzing the signal models’ features and their mapping to 2D DOA. This paper proposes a 2D
DOA estimation algorithm based on the dilated convolutional network model, which consists of two
components: a dilated convolutional autoencoder and a dilated convolutional neural network. If there
are targets at low elevation, the dilated convolutional autoencoder suppresses the multipath signal
and outputs a new signal covariance matrix as the input of the dilated convolutional neural network
to directly perform 2D DOA estimation in the absence of a low-elevation target. The algorithm
employs 3D convolution to fully retain and extract features. The simulation experiments and the
analysis of their results revealed that for both L-shaped uniform and L-shaped sparse arrays, the
dilated convolutional autoencoder could effectively suppress the multipath signals without affecting
the direct wave and non-low-elevation targets, whereas the dilated convolutional neural network
could effectively achieve 2D DOA estimation with a matching rate and an effective ratio of pitch
and azimuth angles close to 100% without the need for additional parameter matching. Under the
condition of a low signal-to-noise ratio, the estimation accuracy of the proposed algorithm was
significantly higher than that of the traditional DOA estimation.

Keywords: 2D DOA estimation; low-elevation-angle targets; L-shaped uniform array; L-shaped sparse
array; dilated convolutional autoencoder; dilated convolutional neural network; 3D convolution

1. Introduction

Array signal processing, which has a wide range of applications in communica-
tions, remote sensing, detection, and radar, involves the use of sensor arrays to achieve
signal parameter estimation, signal enhancement [1], etc. Accordingly, direction-of-
arrival (DOA) estimation is an important branch of research. This involves estimating
the direction of arrival of one or more signals in a region of space using theoretical
or technical methods. One-dimensional (1D) DOA estimation is the estimation of the
elevation angle of targets. Two-dimensional (2D) DOA estimation, as an extension
of 1D DOA estimation, enables the estimation of both the elevation and the azimuth
angles [2]. Two-dimensional DOA is of greater importance for spatial localization and
is, therefore, one of the main focuses of current research in the field. Two-dimensional
DOA estimation requires arrays to be arranged in a 2D plane, generally using L-shaped
arrays, surface arrays, parallel arrays, or vector sensors [3,4]. Most 2D DOA estimation
algorithms extend the 1D DOA estimation algorithm to a 2D spatial spectrum, such
as the 2D multiple-signal classification (MUSIC) [5] algorithm and 2D estimating sig-
nal parameter via rotational invariance techniques (ESPRIT) algorithm. The former
can produce asymptotic unbiased estimates with high estimation accuracy without
the need for parameter matching, but this algorithm requires a 2D spatial spectrum
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search and has a high computational demand. On the other hand, the latter does not
require a spatial spectral search, and the elevation and azimuth angles can also be
automatically matched, but the estimation accuracy of this method is low, especially
when the signal-to-noise ratio (SNR) is low. Yin et al. proposed a DOA direction matrix
method [6], where the elevation and azimuth angles could be directly obtained via
eigendecomposition of the DOA direction matrix, with automatic parameter matching;
however, this method is only applicable to specific arrays such as parallel linear arrays.
To improve the estimation accuracy and spatial freedom, sparse arrays are often used
in practice instead of uniform arrays [7]. In a study on the 2D DOA estimation of
sparse arrays, Liu et al. proposed a 2D DOA estimation method based on singular
value decomposition [8], taking advantage of the structural characteristics of T-shaped
arrays and co-prime array arrays to obtain three signal subspaces without using virtual
elements before using the signal subspaces to perform 2D DOA estimation. Wang
et al. designed a generalized coprime parallel linear array instead of the traditional
parallel uniform linear array, then improved the differential virtual array to obtain
greater degrees of freedom, and finally simplified the 2D search to two 1D searches
to reduce the number of operations [9]. However, the algorithm led to an increase in
the influence of the mutual coupling between array elements, and the compression
factor needed to be artificially chosen, restricting the performance of the algorithm. In
addition, when the elevation angle of the target incident array is low, multipath effects
can occur, which can result in the received signal including reflected waves that are
coherent with the direct wave, thereby complicating 2D DOA estimation. For the 2D
DOA estimation problem of low-elevation-angle targets, Ma et al. proposed a 2D DOA
estimation algorithm based on the alternating direction method of multipliers [10],
which transforms the 2D DOA estimation into two 1D DOA estimation problems and
avoids the problem of the high computational demand caused by 2D joint estimation;
however, the algorithm could only solve the 2D DOA estimation of a single target. Su
et al. and Park et al. proposed 2D DOA estimation algorithms for coherent signals
based on sparse reconstruction [11,12], which could be used for the decoherence of
low-elevation targets; however, the algorithms had a complex arithmetic process. Liang
et al. proposed a 2D DOA estimation algorithm for coherent sources based on Toeplitz
matrix reconstruction [13], which could estimate the elevation and azimuth angles
without loss of array aperture through a 1D search only; however, the algorithm was
only applicable to uniform arrays. Molaei et al. proposed a k-medoids clustering signal
separation method that could realize the 2D DOA estimation of multipath signals and
effectively separate coherent and noncoherent signals [14]; however, the method was
only applicable to rectangular arrays.

Usually, physical model algorithms suffer from limited applicability and complex
computational processes, whereas data-driven deep-learning-based algorithms have greater
applicability. Compared with traditional signal processing algorithms, deep-learning-
like algorithms convert the DOA estimation problem into a high-dimensional nonlinear
mapping relationship, i.e., realizing mapping between the covariance matrix of the received
signal or other variables and the DOA, which provides a new way of thinking for the study
of 2D DOA estimation methods. Marija et al. implemented the fast estimation of spatial
single-target 2D DOA using a multilayer perceptron [15]; however, the artificial neural
network (ANN) model needed to expand the signal covariance matrix into 1D data as
input, thereby losing the spatial characteristics of the covariance matrix. Zhu proposed
a 2D DOA estimation algorithm based on deep ensemble learning [16], using multiple
convolutional neural networks to output the elevation and azimuth angles. This approach
was not limited by the deployment method; however, there was a matching problem of
elevation and azimuth angles.

To address the practical problems of the above algorithms, this paper proposes a 2D
DOA estimation model based on the combination of a dilated convolutional autoencoder
and a dilated convolutional neural network, whereby the former solves the coherence
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problem of direct and reflected waves by suppressing the multipath signal, i.e., filtering
out the reflected wave components of the signal covariance matrix, while the latter is used
to implement 2D DOA estimation. Both the dilated convolutional autoencoder and the
dilated convolutional neural network are convolved in three dimensions to fully extract the
spatial features of the data; accordingly, the model is able to achieve the 2D DOA estimation
of non-low-elevation targets and hybrid targets in L-shaped uniform and L-shaped sparse
arrays without the need for parameter matching.

2. Signal Model
2.1. L-Shaped Array Signal Model

When the array arrangement is in one dimension, only 1D DOA estimation can be
realized. If 2D DOA estimation is required for the source, i.e., elevation and azimuth, the
array arrangement needs to be at least 2D. In this study, an L-shaped array was designed
to perform 2D DOA estimation. When the L-shaped array consists of two mutually
perpendicular uniform line arrays, its arrangement is as shown in Figure 1.
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The array elements are uniformly arranged along the X and Y axes, with an array
element spacing of d and less than half a wavelength λ; and the number of X- and Y-axis
array elements are M and N, respectively, with overlapping array elements at the origin
of the coordinate axis, so the total number of array elements is (M + N − 1). Consider
K(K < M + N − 1) far-field uncorrelated narrowband signals incident to the L-shaped
array in the directions (α1,β1), (α2,β2) . . . (αK,βK) (k = 1, 2, . . . , K), where αk and βk are
the angles of the target to the X and Y axis, respectively, also known as the spatial phase
factor; ϕk and θk denote the elevation and azimuth angles of the target, respectively; and
the correspondence between αk, βk and ϕk, θk is shown below:

cosαk = sinϕkcosθk, (1)

cosβk = sinϕksinθk, (2)

The received signals for a uniform line array along the X- and Y-axis directions are

x1(t) = A1s(t) + n1(t), (3)

x2(t) = A2s(t) + n2(t), (4)

where s(t) = [s1(t), s2(t), . . . , sK(t)]
T denotes the signal vector; n1(t) and n2(t) denote

gaussian white noise with noise power σ2 and uncorrelated with the signal, respectively;
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and A1 and A2 are the direction vectors of uniform line arrays in the X- and Y-axis direc-
tions, respectively.

A1 = [a(α1), a(α2), . . . , a(αK)], (5)

A2 = [a(β1), a(β2), . . . , a(βK)], (6)

X : a(αk) =

[
1, e−

j2πdcosαk
λ , . . . , e−

j2π(M−1)dcosαk
λ

]T
, (7)

Y : a(βk) =

[
e−

j2πdcosβk
λ , e−

j2π2dcosβk
λ . . . , e−

j2π(N−1)dcosβk
λ

]T
, (8)

Combining Equations (3) and (4) yields

x(t) =
[
x1

H(t)x2
H(t)

]T
= B(ϕ, θ)s(t) + n(t), (9)

where B(ϕ, θ) =
[
A1

H , A2
H]T and n(t) =

[
n1

H(t), n2
H(t)

]T , calculate the received signal
covariance matrix according to Equation (9), i.e.,

Rx = E
[
x(t)xH(t)

]
= B(ϕ, θ)RsBH(ϕ, θ) + σ2IM+N−1, (10)

where Rs = E
[
s(t)sH(t)

]
denotes the incident signal covariance matrix, and IM+N−1

denotes the unit matrix of dimension M + N − 1. The eigendecomposition of the received
signal covariance matrix Rx can be divided into a signal subspace and a noise subspace,

Rx = UΣUH = UsΣsUH
s + UnΣnUH

n , (11)

where Σ denotes the diagonal matrix constructed from all the eigenvalues obtained from
the eigen decomposition; U denotes the eigenvector matrix; Σs denotes the diagonal
matrix constructed from the K largest eigenvalues in Σ equal to the number of signals;
Us denotes the eigenvector corresponding to the K largest eigenvalues, considered as the
signal subspace; Σn denotes the diagonal matrix constructed from the remaining (M + N −
1− K) eigenvalues; Un the eigenvectors corresponding to the remaining eigenvalues, which
are regarded as the noise subspace. According to the theory of the MUSIC algorithm, the
signal subspace and the noise subspace have orthogonal properties, and Un is orthogonal
to b(ϕ, θ) column vector in B(ϕ, θ), and the spatial spectrum P(ϕ, θ) is calculated according
to the 2D MUSIC algorithm, as follows

b(ϕ, θ) = [a H(α), aH(β)
]T

, (12)

P(ϕ, θ) ==
1

bH(ϕ, θ)UnUH
n b(ϕ, θ)

, (13)

The elevation and azimuth angles (ϕ, θ) can be obtained by searching for the peak
points of the 2D spatial spectrum within the target airspace. Taking an L-shaped uniform
array with the number of elements in the X and Y axis being 8 and 9, respectively, as an
example, when three targets with elevation and azimuth angles of (10◦, 30◦), (20◦, 10◦),
and (40◦, 20◦) are incident on the array with SNR = 10 dB and snapshots = 100, the spatial
spectrum and its top view were obtained after a 2D search, as shown in Figure 2.



Remote Sens. 2023, 15, 3117 5 of 20
Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 20 
 

 

  
(a) (b) 

Figure 2. Spatial spectrum and top view of L-shaped uniform array. (a) Spatial spectrum of L-
shaped uniform array. (b) Top view of L-shaped uniform array. 

Figure 2 shows that the 2D MUSIC algorithm can effectively estimate elevation and 
azimuth with a high degree of accuracy. In practice, sparse arrays are often used instead 
of uniform line arrays to reduce the effect of the mutual coupling between array elements 
on the accuracy of DOA estimation and to increase the number of measurable sources [17]. 
Although the arrangement of sparse arrays can largely reduce the actual number of array 
elements, they often produce ambiguous angles, i.e., spurious spectral peaks, which inter-
fere with the judgement. Taking an L-shaped uniform sparse array with an array element 
spacing of 2𝜆 as an example, the spatial spectrum and its top view under the same condi-
tions as above are shown in Figure 3. 

  
(a) (b) 

Figure 3. Spatial spectrum and top view of L-shaped uniform sparse array. (a) Spatial spectrum 
of L-shaped uniform sparse array. (b) Top view of L-shaped uniform sparse array. 

Figure 3a shows that the spatial spectrum contains five distinct spectral peaks, the 
corresponding coordinates of which coincide with the center of the circle in Figure 3b, 
which are sharper than the spectral peaks in Figure 2. However, there are two blurred 
angles in it. To address the problem of the blurring generated by sparse arrays, the use of 
coprime arrays can avoid the generation of blurred angles, so coprime arrays are widely 
used in practice. The array element arrangements of the X and Y axes are changed to the 
mutual prime number (4, 5) and (3, 7), respectively; and the array element arrangement 
of the X and Y axis are 

𝑋: (0,4,5,8,10,12,15,16)𝜆/2, (14)

Figure 2. Spatial spectrum and top view of L-shaped uniform array. (a) Spatial spectrum of L-shaped
uniform array. (b) Top view of L-shaped uniform array.

Figure 2 shows that the 2D MUSIC algorithm can effectively estimate elevation and
azimuth with a high degree of accuracy. In practice, sparse arrays are often used instead of
uniform line arrays to reduce the effect of the mutual coupling between array elements on
the accuracy of DOA estimation and to increase the number of measurable sources [17].
Although the arrangement of sparse arrays can largely reduce the actual number of ar-
ray elements, they often produce ambiguous angles, i.e., spurious spectral peaks, which
interfere with the judgement. Taking an L-shaped uniform sparse array with an array
element spacing of 2λ as an example, the spatial spectrum and its top view under the same
conditions as above are shown in Figure 3.
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Figure 3a shows that the spatial spectrum contains five distinct spectral peaks, the
corresponding coordinates of which coincide with the center of the circle in Figure 3b,
which are sharper than the spectral peaks in Figure 2. However, there are two blurred
angles in it. To address the problem of the blurring generated by sparse arrays, the use of
coprime arrays can avoid the generation of blurred angles, so coprime arrays are widely
used in practice. The array element arrangements of the X and Y axes are changed to the
mutual prime number (4, 5) and (3, 7), respectively; and the array element arrangement of
the X and Y axis are

X : (0, 4, 5, 8, 10, 12, 15, 16)λ/2, (14)

Y : (0, 3, 6, 7, 9, 12, 14, 15, 18)λ/2, (15)
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The number of arrays on the X and Y axis is 8 and 9, respectively; and, under the same
conditions as above, the spatial spectrum and its top view were calculated as shown in
Figure 4.
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As can be seen in Figure 4, the spatial spectrum contains three spectral peaks, which
correspond to the center of the circle in the top view. The sharpness of the spectral peaks
is similar to that in Figure 3 and better than that in Figure 2, but there is no blurring of
the angles, and the resulting elevation and azimuth angles of the target are both highly
accurate. When replacing only the uniform line array in the X or Y axis with a coprime
array, but not both, the spatial spectrum is obtained as follows.

The blurred spectral peaks are also avoided when the array with only one axis is
replaced with a coprime array, as shown in Figure 5, which is slightly less sharp compared
with those in Figures 3a and 4a. A comparison of Figure 5a,b shows that the spectral peaks
are narrower in elevation when the X axis is a coprime array and narrower in azimuth
when the Y axis is a coprime array but still better than that in Figure 2a, overall.
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2.2. Low-Elevation-Target Signal Model

The multipath effect occurs when the elevation angle of the incident to the array is
low, producing a reflected wave that is coherent with the direct wave [18] in its elevation
angle dimension. The multipath effect is shown in Figure 6.
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Figure 6. Schematic representation of the multipath effect in the elevation angle dimension.

To simplify the model, only multipath effects at the receiver side are considered. The
target direct wave signal is incident on the array at an elevation angle ϕd, reflected by a
smooth surface, and the reflected wave signal is incident on the array at an angle ϕs(ϕs < 0).
Let the height of the target be H and the height of the center of the array be h. The difference
in the wave range between the direct and reflected waves [19] is approximated as

∆R = Rd − Rs = Rd − (R1 + R2) ≈ 2hsinϕd, (16)

According to the position relationship in Figure 6, the relationship between the direct
and reflected angles satisfies Equation (17),

ϕs = arctan(
H + h
H − h

tanϕd), (17)

When there are K (K < M + N − 1) incoherent sources in a space that includes Q(Q ≤K)
low-elevation targets, the number of signals received by the array is (K + Q), which
includes Q direct wave signals from low-elevation targets, Q reflected wave signals from
low-elevation targets, and (K−Q) non-low-elevation signals. The direction vectors a(αk)
and a(βk) for non-low-elevation targets have the same Equation (5) to (7), while the
direction vectors a

(
αq
)

and a
(

βq
)

for low-elevation targets can be synthesized to include
both direct and reflected angles and are expressed as follows

a
(
αq
)
= a

(
ϕqd

)
+ ρa

(
ϕqs
)
, (18)

X :


a
(

ϕqd

)
=

[
1, e−

j2πdsinϕqdcosθqd
λ , . . . , e−

j2π(M−1)dsinϕqdcosθqd
λ

]T

a
(

ϕqs
)
=

[
1, e−

j2πdsinϕqscosθqs
λ , . . . , e−

j2π(M−1)dsinϕqscosθqs
λ

]T (19)

a
(

βq
)
= a

(
θqd

)
+ ρa

(
θqs
)

(20)

Y :


a
(

θqd

)
=

[
e−

j2πdsinϕqdsinθqd
λ , e−

j2π2dsinϕqdsinθqd
λ . . . , e−

j2π(N−1)dsinϕqdsinθqd
λ

]T

a
(
θqs
)
=

[
e−

j2πdsinϕqssinθqs
λ , e−

j2π2dsinϕqssinθqs
λ . . . , e−

j2π(N−1)dsinϕqssinθqs
λ

]T (21)

where a
(

ϕqd

)
and a

(
ϕqs
)

denote the direction vectors of the direct and reflected angles in

the X axis, respectively; a
(

θqd

)
and a

(
θqs
)

denote the direction vectors of the direct and
reflected angles in the Y axis,; ρ = ρ0exp(−j2π∆R/λ) denotes the multipath attenuation
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coefficient; and ρ0 denotes the specular reflection coefficient. In the spatial model, the
azimuthal angles of the direct and reflected waves are equal, i.e.,

θq = θqd = θqs (22)

Substituting Equations (17) and (22) into a
(

ϕqd

)
and a

(
ϕqs
)

as well as a
(

θqd

)
and

a
(
θqs
)
, i.e.,

X :

 a
(

ϕqd

)
=
(

exp
(
−j2π(i)dsinϕqdcosθq/λ

))
1×M

, i = 0, 1, M− 1

a
(

ϕqs
)
=
(

exp
(
−j2π(i)dsin

(
arctan

(
H+h
H−h tanϕqd

))
cosθq/λ

))
1×M

, i = 0, 1, M− 1
(23)

Y :


a
(

θqd

)
=
(

exp
(
−j2πidsinϕqdsinθq/λ

))
1×(N−1)

, i = 1, 2, . . . , N − 1

a
(
θqs
)
=
(

exp
(
−j2π(i)dsin

(
arctan

(
H+h
H−h tanϕqd

))
sinθq/λ

))
1×(N−1)

, i = 1, 2, . . . , N − 1
(24)

The direction vectors in the X and Y axis are

A1 =
[
a(ϕ1d) + ρa(ϕ1s), . . . , a

(
ϕQd

)
+ ρa

(
ϕQs

)
, a
(
αQ+1

)
, . . . , a(αK)

]
, (25)

A2 =
[
a(θ1d) + ρa(θ1s), . . . , a

(
θQd
)
+ ρa

(
θQs
)
, a
(

βQ+1
)
, . . . , a(βK)

]
(26)

The received signal and its covariance can be calculated according to Equations (9)
and (10). When the array is an L-shaped sparse array, the spacing of the array elements in
the signal direction vector will change, corresponding to the sparse array element spacing,
and the received signal and signal covariance matrix will change accordingly. The 2D DOA
estimation becomes more complex when there is a low-elevation signal in the received
signal, and the existing algorithms, whether for L-shaped uniform arrays or L-shaped
sparse arrays, are not easy and accurate to implement 2D DOA estimation, and most of
them can only be used for a specific array structure or a single low-elevation signal [20].
In contrast, from the signal model, there is a correspondence between the array signal
covariance matrix and the elevation and azimuth angles of the targets (including low-
elevation targets), i.e., in the absence of low-elevation targets, the 2D DOA relationship
between the received signal covariance matrix and the target can be regarded as

Rx → f ((ϕ1, θ1), (ϕ2, θ2), . . . , (ϕK, θK)) (27)

When low-elevation targets are present,

Rx → f
(
(ϕ1d, θ1), (ϕ1s, θ1), . . . ,

(
ϕQd, θQ

)
,
(

ϕQs, θQ
)
,
(

ϕQ+1, θQ+1
)
, (ϕK, θK)

)
(28)

which includes Q low-elevation targets, combined with Equation (17) above, Equation (23)
can be further rewritten as

Rx → f ′
(
(ϕ1d, θ1), . . . ,

(
ϕQd, θQ

)
, ,
(

ϕQ+1, θQ+1
)
, (ϕK, θK)

)
(29)

On this basis, the above mapping relations can be obtained with the help of deep
learning, providing new ideas and methods to solve the problem of 2D DOA estimation for
L-shaped uniform arrays or sparse arrays in the presence of low-elevation-angle signals.

3. Dilated Convolution Network Model

Due to the significant difference in the direction vector generation process between
low-elevation signals and non-low-elevation signals, when there are low-elevation targets in
space, conventional algorithms will first decoherence and then implement DOA estimation.
The flow of the algorithm proposed in this paper is shown in Figure 7 below.
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As can be seen in Figure 7, when solving the DOA estimation problem, it firstly
determines whether there are low-elevation targets. When there are low-elevation targets,
the reflected wave components are filtered out by the dilated convolutional autoencoder
(DCAE) to achieve multipath suppression, and then the 2D DOA estimation is achieved
by the dilated convolutional neural network (DCNN). When there is no low-elevation
target signal in space, no multipath suppression is required, so the 2D DOA estimation
can be directly achieved by the DCNN. Output1 and Output2 in Figure 7 are two output
branches, which are the elevation angle sequence and azimuth angle sequence, respectively,
corresponding to the same position in two sequences that belongs to the same target, which
can be automatically matched.

It should be added that when the covariance matrix of the received signal is used
as the input to a neural network model for model training (decoherence or angle
estimation), the real part of the covariance matrix is usually retained or the real and
imaginary parts are stitched together to form an N× 2N (N denotes the total number of
array elements) real matrix, which may make the data information incomplete or affect
the extraction of spatial features. In the model design process, the real and imaginary
parts of the covariance matrix are expanded into a 3D matrix to form an N × N × 2 3D
matrix as the input and for training, so that the spatial features can be more fully and
comprehensively extracted.

3.1. Dilated Convolutional Autoencoder Mode

The convolutional autoencoder is a type of autoencoder, which is a self-supervised
learning algorithm that encodes and decodes data through convolutional operations so that
the output data can reproduce the input data, and has a wide range of applications in data
compression, data denoising, and anomaly detection [21,22]. The traditional convolutional
autoencoder consists of an encoding process and a decoding process, in which the former
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consists of alternating convolutional and pooling layers, with the convolutional layer used
to extract features and the pooling layer used to reduce the dimensionality of the data; the
latter consists of alternating deconvolution and upsampling layers, with the deconvolution
being essentially the same as the convolutional layer [23], and the upsampling layer mainly
achieving the recovery of data dimensionality. However, for the array received signal
covariance matrix, the number of array elements is limited and the size of the covariance
matrix is limited and often not very large, so the pooling layer is likely to cause insufficient
feature extraction and loss of relevant features. Therefore, we discarded the pooling layer
on the basis of the traditional convolutional autoencoder, and we introduced the dilation
convolution to achieve data compression without data loss, DCAE model is as shown in
Figure 8.
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In Figure 8, Rx denotes the received signal covariance matrix containing the reflected
angle, i.e., the original signal covariance matrix; R′x denotes the received signal covari-
ance matrix without the reflected angle, containing only the direct and azimuth angles of
the low-elevation target and the elevation and azimuth angles of the non-low-elevation
target; and Re(∗) and Im(∗) denote the real and imaginary parts of the signal, respec-
tively. The encoding and decoding processes are abstracted into the following mapping
relationships, respectively,

Encoding : y = fe(Rx), (30)

Decoding : R’
x = fd(y), (31)

Then, the dilated convolutional autoencoder action proposed in this paper can be
further described as

R’
x = fd( fe(Rx)), (32)

This means that a mapping between a covariance matrix with reflection angles and
a covariance matrix without reflection angles is achieved. In the encoding process, the
convolution operation proceeds as

hn = f (R ∗ wn + bn), (33)

where R denotes the input 3D matrix; w denotes the 3D convolution kernel, whose
number is n; bn denotes the bias; and f (∗) denotes the activation function. The decoding
process performs the deconvolution operation, which is essentially the same as the con-
volution operation. The two convolutional layers in the blue box in Figure 8 are regular
convolutional operations with padding, which aims to preserve the boundary features.
The two convolutional layers in the green box are dilated convolutional operations, the
sizes of the convolutional kernels are 3× 3× 2 and 3× 3× 1, and the dilation rate is
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(3, 3, 1). The loss function of the DCAE model is a binary cross-entropy function, whose
expression is

bce = −∑N
i=1 ∑N

j=1 (rijlog(r′ij) + (1− rij)log(1− r′ij)), (34)

where N denotes the total number of samples; and rij and r′ij denote the predicted and true
values, respectively.

Dilated Convolution

Dilated convolution is a kind of convolution idea to address the problem of information
loss caused by connecting pooling layers after the standard convolution process [24]. The
principle involves adding holes to the standard convolution map, using the holes to make
the original convolution kernel have a larger reception field without increasing the number
of parameters and operations [25]. Taking 2D convolution as an example, the dilation rate
contains two values, which represent the magnitude of the distance between the value
in the convolution kernel in the horizontal and vertical directions and its adjacent value
position; when the convolution kernel size is 3 × 3, the reception field at different dilation
rates is as shown in Figure 9.
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Figure 9. Reception fields at different dilation rates: (a) dilation rate = (1,1), (b) dilation rate = (2,2),
and (c) dilation rate = (3,3).

The blue dots in Figure 9 represent the values of the convolution kernel, and the
blue boxes represent the receptive fields under the convolution kernel; the positions in
the receptive field area not filled with dots are hole., When the convolution operation is
performed, the empty positions are filled with a value of 0. As shown in Figure 9a, the
dilation rate is (1, 1), which is the standard convolution; the values in the convolution
kernel are adjacent to each other; and the sizes of the receptive field and the convolution
kernel are the same. The dilation rate in Figure 9b is (2, 2), i.e., the difference in the
position between adjacent values in the convolution kernel is 2, so when the dilation
rate is (2, 2), the size of the receptive field is the same as when the convolution kernel is
5 × 5. In Figure 9c, the dilation rate is (3, 3), the difference in the position of the values
is 3, and the size of the receptive field is 7 × 7. The dilated convolution achieves an
increase in the receptive field with the same convolution kernel and avoids an increase
in computational effort.

3.2. Dilated Convolutional Neural Network Model

When there is no low-elevation target in the space target or the signal covariance
matrix containing the low-elevation target has been suppressed by the DCAE model, the
elevation and azimuth angles of the signal are obtained by the DCNN model. The structure
of the model is shown in Figure 10.
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As can be seen in Figure 10, the model consists of five convolutional layers and four
fully connected layers. The first two of the convolutional layers are standard convolu-
tional layers with convolutional kernel sizes of 3× 3× 2, and the last three are dilated
convolutional layers with convolutional kernel sizes of 3× 3× 2, 3× 3× 1, and 3× 3× 1,
separately. The model contains two separate output branches for elevation and azimuth
angles. Because the output of a convolutional neural network is sensitive to order, the two
output branches for the elevation and azimuth angles correspond in order and no match-
ing is required. Similar to DCAE, the input to the model, which consists of the real and
imaginary parts of the covariance matrix in three dimensions, and the convolutional layers
in the model are all 3D convolutional operations; the pooling layer is also removed from
the convolutional neural network. The activation function for both the convolutional and
fully connected layers is the ReLU function [26], which is characterized by fast convergence
and no saturation of gradients, so is widely used in the training of convolutional neural
network models [27]. Both output branches of the model are estimated angular values,
which are regression problems, so the loss function of the model is the mean squared loss
function, i.e.,

mse =
∑N

i ((ϕi − ϕ′i)
2 + (θi − θ′i)

2
)

2N
, (35)

where ϕi and ϕ′i denote the real and estimated values of the elevation angle, respectively;
θi and θ′i denote the real and estimated values of the azimuth angle, respectively; and N
denotes the number of targets.

4. Simulation Experiments and Analysis of Results

In the simulation experiment, we used 16 array elements; 8 and 9 uniform arrays
in the X and Y axis, respectively; and the sparse arrays were two coprime arrays with
coprime numbers (4, 5) and (3, 7). The total number of arrays was 16 due to the existence
of a common element at the origin. The range of low elevation angles in the spatial signal
where multipath effects occur was (0◦, 10◦], the range of non-low elevation angles was (10◦,
60◦], and the range of azimuth angles was [−90◦, 90◦]. The DCAE and DCNN models are
shown in Figures 8 and 10 above. The number of convolutional kernels for each layer of the
encoding process in the DCAE model was 200, 200, 150, and 150 in order in the decoding
process, i.e., 150, 150, 200, and 200. The size of the kernels and the dilation rate were set
as in Figures 8 and 10. The number of neurons in each layer of the fully connected layer
was 1500, 1500, 1000, and 1000 in that order. The capacity of the training set for different
formations was 50,000, the size of the test set was 2000, the number of iterations was 5000,
and the batch size was 100.

4.1. Verification of Dilated Convolutional Autoencoder Mode Validity

Test case 1: The formation is an L-shaped uniform array. There are two targets in space,
one of which is a low-elevation target with direct and reflected angles of 3.216◦ and−5.957◦

for elevation, respectively, and 38.472◦ for the azimuth; the other is a non-low-elevation
target with a 38.293◦ elevation and 48.506◦ azimuth; SNR is 10 dB; and snapshot is 100.
After multipath suppression, the angle was estimated by the 2D MUSIC algorithm (the 2D
search angle interval was 1◦), and the spatial spectrum is shown in Figures 11 and 12.
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As can be seen in Figures 11 and 12, there are two distinct spectral peaks in the spatial
spectrum, corresponding to the low-elevation target and the non-low-elevation target in
the signal; there is no spectral peak for the reflected angle in Figure 12a. Comparing the
azimuth of the low-altitude target, the spectral peaks of its elevation angle are sharper,
while the difference between the sharpness of the azimuth and elevation angles of the non-
low-altitude target is not significant. From the angle estimation accuracy and Figure 12a,b,
we concluded that the elevation and azimuth angles of the low-altitude target are about 3◦

and 38◦, respectively; and the elevation and azimuth angles of the non-low-altitude target
are about 38◦ and 49◦, respectively, which are close to the target angle in test case 1, for
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the existence of a low-elevation target in space. The DCAE model can effectively filter the
reflected angular component of a low-elevation target and a non-low-elevation target in
space, without interfering with the direct angle of arrival and the non-low-elevation target.

Test case 2: The array is L-shaped sparse array. There are two low-elevation targets
and one non-low-elevation target in space, where the direct and reflected angles of the
low-elevation targets are 1.999◦ and −3.708◦, and 8.000◦ and −18.937◦, respectively; the
azimuth angles of the two low-elevation targets are 1.904◦ and 1.478◦; the elevation and
azimuth angles of the non-low-elevation targets are 33.743◦ and 30.509◦, respectively; SNR
is 10 dB; and the snapshot is 100. After filtering the reflected angle, the angle was estimated
by the 2D MUSIC algorithm (the 2D search angle interval was 1◦), and the spatial spectrum
is shown in Figure 13.
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Figure 13. Spatial spectrum of test case 2 obtained by DCAE MUSIC: (a) 3D view of the 2D spatial
spectrum, (b) top view of the 2D spatial spectrum, (c) spatial spectrum of azimuth angles, and
(d) spatial spectrum of elevation angles.

Figure 13a shows the spatial spectrum of the 2D search, and Figure 13b shows the top
view of the spatial spectrum, from which it can be seen that there are three spectral peaks
in the spatial spectrum, with the non-low-elevation target having the lowest peak value.
Figure 13c shows the azimuth angle, containing three spectral peaks corresponding to 1◦,
2◦, and 31◦; Figure 12d shows the elevation angle, also containing three spectral peaks
corresponding to 1◦, 8◦ and 33◦. The elevation and azimuth angles of the three targets
obtained from Figure 13 are essentially the same as the actual angles in test case 2 and are
not affected by the formation. When the three targets in test case 2 were estimated with
2D MUSIC (without the reflected angles), the spatial spectrum was obtained as shown in
Figure 14.

Comparing Figures 13 and 14, the two spatial spectral distributions are basically the
same. We verified that when there are multiple low-elevation targets in space, the DCAE
algorithm can effectively suppress multipath without interfering with the estimation of
direct-angle and non-low-elevation targets. Test cases 1 and 2 verify that the DCAE model
can effectively achieve “de-multipathing” and that the DCAE model is valid.
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Figure 14. Spatial spectrum of test case 2 (without the reflected angles) obtained with 2D MUSIC:
(a) 3D view of the 2D spatial spectrum. (b) Top view of the 2D spatial spectrum. (c) Spatial spectrum
of azimuth angles. (d) Spatial spectrum of elevation angles.

4.2. Verification of Dilated Convolutional Neural Network Model Validity

The arrays were L-shaped uniform (LUA) and L-shaped sparse array (LSA), as de-
scribed above; SNR was 10 dB; snapshot was 100; the numbers of targets were 2 and 3,
respectively; and all were non-low-elevation targets. The efficiency rate, matching rate, and
root mean square error of the angle estimation were used as the performance evaluation
metrics of DCNN for 2D DOA estimation. When the angular error in the output is not
greater than 5◦, the angle is regarded as a valid angle. The proportion of valid angles to
all output angles is the efficiency rate PE; the matching rate PM indicates the proportion
of azimuth and elevation angles that are accurately matched according to their positions,
and the root mean square error (RMSE) is a common measure in DOA angle estimation; its
expression is

RMSE =

√√√√ 1
N

N

∑
i=1

(
θ′i − θi

)2, (36)

where N denotes the total number of test sets, θ′i denotes the angle estimate output by the
model, and θi denotes the actual angle value. After 200 Monte Carlo experiments, PE, PM,
and RMSE were statistically obtained as shown in Table 1,

Table 1. PE, PM, and RMSE for non-low-elevation targets obtained with DCNN.

Type Target Number PE/% PM/% RMSE/◦ RMSEe/◦ RMSEa/◦

LUA
2 99.98 100 0.3697 0.2901 0.4352
3 99.97 100 0.3083 0.2710 0.3412

LSA
2 99.99 100 0.3507 0.2548 0.4256
3 100 100 0.2768 0.2602 0.2759

In Table 1, RMSE/◦ indicates the RMSE for all outputs; RMSEe and RMSEa denote
the RMSE for elevation and azimuth angles respectively. From Table 1, it can be seen that
all PE values are close to 100%, PM reaches 100%, and the elevation and azimuth angles
of the targets in the two output branches can achieve one-to-one correspondence without
parameter matching. From the RMSE results, 2D DOA estimation accuracy is better than
that of the L-shaped uniform array when the array type is L-shaped sparse array, and the
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estimation effect is better than that when the number of sources is three than when the
number of sources is two. The estimation accuracy for elevation angle is slightly higher
than that for azimuth angle in all conditions above.

When there were three targets in a space that contains two low-elevation-angle targets,
PE, PM, and RMSE were calculated after 200 Monte Carlo experiments using the DCAE-
DCNN and DCNN models (without the reflected angle in the model output); the results
are shown in Table 2.

Table 2. PE, PM, and RMSE for low-elevation targets obtained with DCNN and DCAE-DCNN. “Low”
and “Non-Low” denote the elevation angle of low-elevation target and non-low-elevation target in
all targets, respectively.

Type Model PE/% PE/% RMSE/◦
RMSEe/◦

RMSEa/◦Low Non-Low

LUA
DCNN 85.74 97.35 1.6782 1.5757 1.5302 1.7946
DCAE-
DCNN 99.98 100 0.3441 0.2913 0.2893 0.3898

LSA
DCNN 87.36 96.77 1.6813 1.6710 1.6276 1.7125
DCAE-
DCNN 99.99 100 0.2975 0.2851 0.2720 0.3124

Table 2 shows that when only DCNN was applied for the 2D DOA estimation for
multiple targets including low-elevation targets, it was not effective. Despite the high PE,
PM is low, and the RMSEs of the elevation and azimuth angles are much higher than those
of DCAE-DCNN method, which indicates that the 2D DOA estimation problem could
not be directly solved when the signal contained low-elevation targets using the DCNN
method alone. As such, decoherence or de-multipathing of the received signal is necessary.
Additionally, when the DCAE-DCNN algorithm was used, PE and PM were close to 100%,
RMSEs were lower, and PE and PM were higher when the array type was LSA than LUA.
The RMSE of the elevation angle was slightly lower than that of the azimuth angle; the
RMSEs of the non-low-elevation targets were slightly lower than those of the low-elevation
targets. Comparing Tables 1 and 2, the results using the DCAE-DCNN algorithm when
low-elevation angle targets are present in the signal are similar to those when only the
DCNN algorithm is used when low-elevation angle targets are not present. The RMSE
of the former is slightly higher, which proves that the DCNN algorithm is effective and
stable, and the DCAE-DCNN algorithm has a better estimation effect for the presence of
low-elevation targets.

4.3. RMSE of 2D DOA Estimation at Different SNRs with Non-Low-Elevation Targets

In general, the variation in the SNR has a significant effect on the accuracy of DOA
estimation. In this set of simulation experiments, 3 non-low-altitude targets were in space,
array types were LUA and LSA, the number of snapshots was 200, and SNR was −10 dB,
−5 dB, 0 dB, 5 dB, 10 dB, 15 dB, or 20 dB. The proposed DCNN model was used for
angle estimation, and its results were compared with those of the 2D MUSIC algorithm to
calculate the RMSE, as shown in Figure 15.

As can be seen from Figure 15a,b, the RMSE of both the elevation and azimuth angles
decrease as SNR increases, and the higher SNR, the higher the estimation accuracy. From
Figure 15a,b, it can be seen that the estimation accuracy of LSA is higher than that of LUA
for the same algorithm. For the same array type, when the SNR was less than 10 dB, the
estimation accuracy of both the elevation and azimuth angles significantly improved as the
SNR increased, and the estimation performance of the DCNN algorithm was significantly
better than that of 2D MUSIC. When the SNR was greater than 10dB, the decreasing trend
of the RMSE became slower; for LUA, the DCNN algorithm’s estimation accuracy for
the azimuth angles was slightly lower than that of 2D MUSIC, and for elevation, it is
slightly higher than that of 2D MUSIC. For LSA, DCNN algorithm’s estimation accuracy for
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elevation was better than that of 2D MUSIC, while the estimation accuracy for the azimuth
angles was approximately equal between the two. By comparing Figure 15a,b, it can be
seen that for either array type, DCNN algorithm’s estimation accuracy for elevation angles
is higher than that for the azimuth angles under each SNR condition, while the difference in
the estimation performance of the 2D MUSIC algorithm for elevation and azimuth angles
is not significant.
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Figure 15. RMSE comparison at different SNRs with non-low-elevation targets: (a) elevation angles
and (b) azimuth angles.

4.4. RMSE of 2D DOA Estimation at Different SNRs with Low-Elevation Targets

In this set of simulations, the number of spatial targets was 3, including 2 low-elevation
targets; the array type was the above LUA and LSA; the number of snapshots was 200; and
the SNR was −10 dB, −5 dB, 0 dB, 5 dB, 10 dB, 15 dB, or 20 dB. The DCAE-DCNN model
proposed in this paper was used to perform 2D DOA estimation according to the process
in Figure 7. Because most of the sparse array decoherence before 2D DOA estimation is for
uniform surface arrays or other specific arrays, the Toeplitz matrix reconstruction algorithm
proposed in the literature [13] and MSSP-MUSIC for 2D DOA estimation of LUA were
used as comparison experiments in this set of simulations. The calculated RMSEs for the
elevation and azimuth angles under each algorithm are shown in Figure 16.

In Figure 16, with the increase in the SNR, the RMSE of each algorithm for the es-
timation of elevation and azimuth angles shows a decreasing trend, and the estimation
performance increases accordingly. When the SNR is less than 10 dB, RMSE significantly
decreases as SNR increases, and the estimation accuracy of the proposed algorithm is
significantly higher than that of the other two algorithms. When the SNR is greater than 10
dB, the decreasing trend in RMSE decreases, and the estimation accuracy of the proposed
algorithm for LUA is close to multiple Toeplitz matrices reconstruction (MTOEP) method in
the literature [13]. Comparing Figures 15 and 16, when there is a low-elevation target in the
signal, the estimation accuracy of both the elevation and azimuth angles is degraded after
de-multipathing by the proposed DCAE model, because when the signal is de-multipathed
by the DCAE model, it may lead to new errors in the signal covariance matrix, which affects
the estimation accuracy to a certain extent.

The estimation accuracy for the elevation angle is slightly higher than that for the
azimuth angle for both algorithms proposed in this paper and MTOEP method proposed in
the literature [13] in Figures 15 and 16. For the proposed algorithm, the reason for this is that
when designing the DCNN model, the output sequence of the elevation angle is arranged
in the order from smallest to largest, and the angles with the same position number in both
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outputs correspond to the same target, while the order of the azimuth angle is affected by
the elevation angle, resulting in the output of branch 2 being affected by branch 1. The
MTOEP method in the literature [13] estimates the azimuthal angle based on the elevation
angle first, so the RMSEs for the azimuthal angle of the above two algorithms are slightly
larger than those for the elevation angle. However, when the MUSIC algorithm performs
a two-dimensional search, it traverses the entire two-dimensional space, and the priority
traversal order of the elevation and azimuthal angles does not affect the results, which
are equivalent, so the difference between the RMSE of the elevation angle and azimuthal
angles is not significant.
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5. Discussion

For a long time, 2D DOA estimation has been of great importance in the field of array
signal processing. The 2D DOA estimation of low-elevation targets, especially when the
array elements are sparsely arranged, is a key and difficult problem for research in this
field. The development of deep learning has provided new ideas to solve such problems.
To address this problem, we developed a 2D DOA estimation algorithm based on a dilated
convolutional autoencoder and s dilated convolutional neural network, which requires
the total number of targets in space and the presence of low-elevation angles to be known
quantities. When low-elevation targets are present in space, multipath suppression is
applied to the received signal covariance matrix with DCAE, and then DCNN is used for
2D DOA estimation. Additionally, when there is no low-elevation target in space, 2D DOA
estimation can be directly achieved using DCNN. The simulation experiments showed
that when there are low-elevation targets in space, DCAE can effectively achieve multipath
suppression and filter out the reflected angle components in the covariance matrix; when
there is no low-elevation target in space or after multipath suppression is completed, DCNN
can effectively achieve 2D DOA estimation with high estimation accuracy and without the
need for further parameter matching.

In the proposed algorithm, the choice of hyperparameters for the model is not strict
and needs to be optimized and adjusted according to the output results. In addition, we
used simulation data for validation and comparison experiments, and there are certain
differences between the simulation and measured data. The next study will focus on
analyzing and comparing the similarities and differences between the simulation data and
the measured data, so that the simulation data and the experimental scenarios can be set
closer to the actual situation, thus increasing the applicability of the.
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