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Abstract: Neural network models for hyperspectral images classification are complex and therefore
difficult to deploy directly onto mobile platforms. Neural network model compression methods can
effectively optimize the storage space and inference time of the model while maintaining the accuracy.
Although automated pruning methods can avoid designing pruning rules, they face the problem
of search efficiency when optimizing complex networks. In this paper, a network collaborative
pruning method is proposed for hyperspectral image classification based on evolutionary multi-task
optimization. The proposed method allows classification networks to perform the model pruning task
on multiple hyperspectral images simultaneously. Knowledge (the important local sparse structure of
the network) is automatically searched and updated by using knowledge transfer between different
tasks. The self-adaptive knowledge transfer strategy based on historical information and dormancy
mechanism is designed to avoid possible negative transfer and unnecessary consumption of com-
puting resources. The pruned networks can achieve high classification accuracy on hyperspectral
data with limited labeled samples. Experiments on multiple hyperspectral images show that the
proposed method can effectively realize the compression of the network model and the classification
of hyperspectral images.

Keywords: hyperspectral images classification; network pruning; multi-task optimization; knowledge
transfer; multi-objective optimization

1. Introduction

Hyperspectral images (HSIs) have become an important tool for resource exploration
and environmental monitoring because they contain a lot of spectral segments and extensive
spatial information. By using a convolutional neural network (CNN) [1–4], features of HSIs
were extracted [5] and classified, which greatly improved the classification performance.
Therefore, deep network methods have been widely applied in HSI classification.

However, the powerful feature representation ability of CNN relies on the complex
structure of the model and a large number of parameters. With the development of remote
sensing technology, the resolution is improved, which makes the size of the image larger,
and such data size significantly influences the computational and storage requirements [6,7].
This hinders the application of networks to satellites, aircraft, or other mobile platforms,
which greatly reduces the practical efficiency of remote sensing images. Therefore, reducing
the complexity of deep network models is an enduring problem for deploying on limited
resource devices [8]. Neural network model compression can be used to solve the problem.

Neural network pruning is regarded as a simple yet efficient technique to compress
model while maintaining their performance [9], which makes it possible to deploy the
remote sensing lightweight analysis model on hardware. Generally speaking, network
pruning methods can be classified as manual and automatic pruning methods. Pruning
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rules and selection of solutions in traditional manual methods are designed by domain
experts. LeCun [10] first proposed optimal brain damage (OBD), which removed the
low-value parameters by calculating the second derivative of parameters and sorting them.
Han et al. [11] used an iterative pruning method to prune the weights that were less
than a manually preset layer threshold. Lee et al. [12] proposed an importance score for
global pruning; the score was a rescaling of weight magnitude that incorporates the model-
level distortion incurred by pruning, and did not require any hyperparameter tuning.
Recent advances in neural tangent kernel (NTK) theory have suggested that the training
dynamics of sufficiently large neural networks was closely related to the spectrum of the
NTK. Motivated by this finding, Wang et al. [13] pruned the connections that had the
least influence on the spectrum of the NTK. The pruning method was applied to remote
sensing images. Qi et al. [14] used the original network as a teacher model and guided
the model to pruning through loss. Wang et al. [15] pruned according to the scaling factor
of the BatchNorm layer. Guo et al. [16] designed a sensitivity function to evaluate the
pruning effect of channels in each layer. Furthermore, the pruning rate of each layer was
adaptively corrected. It is important to note that the criteria of manual pruning methods
are not uniform, such as the absolute value of the network weights, the activation value
of the neurons, and so on. As a result, a lot of time and labor costs are required to design
and select appropriate pruning criteria for different networks. Furthermore, the sparse
network obtained by manual pruning is generally not optimal due to the limited exploration
space [17].

Different from the traditional manual pruning methods, automatic pruning meth-
ods can reduce the design cost [18]. As an automatic pruning method, evolution-based
pruning methods constructed the pruning of the network as an optimization task, which
can find and retain better sparse network structure in discrete space. Zhou et al. [19]
implemented pruning of medical image segmentation CNNS by encoding filter and skip-
ping some sensitive layers. By considering the sensitivity of each layer, our previous
work proposed a differential evolutionary pruning method based on layer-wise weight
pruning (DENNC) [20]. In addition, a multi-objective pruning method (MONNP) [21]
was proposed, which can balance the network accuracy and network complexity at the
same time. Furthermore, MONNP generated different sparse networks to meet various
hardware constraints and requirements more efficiently. Zhou et al. [22] searched sparse
networks at the knee point on Pareto-optimal front, and the networks create a trade-off
between accuracy and sparsity. Zhao et al. [23] compressed the model with a pruning
filter and applied the multi-objective optimization of CNN model compression to remote
sensing images. Wei et al. [24] proposed a channel pruning method based on differentiable
neural architecture search to automatically prune CNN models. The importance of each
channel was measured by a trainable score. In conclusion, evolutionary pruning methods
reduce the cost of manually designing pruning rules; however, network structures designed
for hyperspectral data are becoming more and more complex, which also causes certain
difficulties in evolutionary pruning methods.

For cases where the task is difficult to optimize, introducing additional knowledge
to facilitate the search process of the target task provides feasible ideas. Ma et al. [25]
proposed a multi-task model ESMM, which contains a main task CVR (post-click conversion
rate) prediction, and an auxiliary task CTCVR (post-view click-through conversion rate)
prediction. The CTCVR task was used to help the learning of CVR to avoid problems such
as over-fitting and poor generalization of CVR prediction due to small samples. Ruder [26]
pointed out that in multi-task learning, by constructing additional tasks, the prompts of
these tasks can promote the learning of the main task. Feng et al. [27] considered the
random embedding space as additional task for the target problem, which ensured the
effectiveness of the search on the target problem by simultaneously optimizing the original
task and the embedding task. Evolutionary multitasking can be used to optimize multiple
tasks simultaneously to achieve the promotion of their respective tasks. In evolutionary
multi-task optimization, effective facilitation between tasks relies on task similarity.
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In HSI classification, if there exists different HSIs from the same sensor, the spectral
information has a similar physical meaning (radiance or reflectivity) [28,29], and the simi-
larity between two images is high. As shown in Figure 1, the HSIs obtained by the same
sensor had the same spectral range. The comparison of spectral curves of the Indian Pines
and Salinas reflected the similarity between HSIs. If the ground features of different HSIs
are close, there is an underlying similarity between them. When the same network is
trained on similar data, the distribution of network parameters is close. Thus, there are also
similarities between structural sparsification tasks on different datasets. When dealing with
HSI, deep neural networks mainly learn the spectral characteristics of the data through the
convolution layer, and the parameters of the convolution layers realize the feature extrac-
tion of the data. Therefore, the structural information of the neural network is regarded
as the transferred knowledge, which can be used as prior knowledge for other parallel
tasks. In addition, the labels of hyperspectral data are limited, and CNN need enough data
to learn features, which affects the training process of neural networks. When distribu-
tion of network parameter is close, knowledge transfer can obtain useful representation
information from other image to alleviate the problem of limited labeled samples.

 Indian pines

Channle

Salinas

Channle Channle

 Indian pines

Channle

Salinas

Channle Channle

Figure 1. Spectral curves of Indian Pines and Salinas under AVIRIS.

In this paper, a network collaborative pruning method is proposed for HSI classifica-
tion based on evolutionary multi-task optimization. The main contributions of this paper
are as follows:

• A multi-task pruning algorithm: by exploiting the similarity between HSIs, different
HSI classification networks can be pruned simultaneously. Through parallel optimiza-
tion, the optimization efficiency of each task can be improved. The pruned networks
can be applied to the classification of limited labeled sample HSIs.

• Model pruning based on evolutionary multi-objective optimization: the potential
excellent sparse networks are searched by an evolutionary algorithm. Multi-objective
optimization optimizes the sparsity and accuracy of the networks at the same time,
and can obtain a set of sparse networks to meet different requirements.

• To ensure effective knowledge transfer, the network sparse structure is the transfer of
knowledge, using knowledge transfer between multiple tasks to achieve the knowl-
edge of the search and update. A self-adaptive knowledge transfer strategy based on
the historical information of task and dormancy mechanism is proposed to effectively
prevent negative transfer.
The rest of this paper is organized as follows. Section 2 reviews the background.
The motivation of the proposed method is also introduced. Section 3 describes the
model compression methods for HSI classification in detail. Section 4 presents the
experimental study. Section 5 presents the conclusions of this paper.

2. Background and Motivation
2.1. HSI Classification Methods

Classification methods based on deep neural networks utilize its strong representation
learning ability in the image field to automatically construct a representation structure
that extracts spectral and spatial features and realize the classification of pixels. The HSI
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classification methods based on deep learning require data preprocessing and construction
of the neural network structure before finally classifying the data [30], as shown in Figure 2.
In recent years, the commonly used deep learning network models have included stacked
autoencoder (SAE) [31], recurrent neural network (RNN) [32], convolutional neural network
(CNN) [5], and graph convolutional network (GCN) [33–35]. Hamida [36] proposed a 3D-
DL approach that enables joint spectral and spatial information processing. The 3D-DL
method combines the traditional CNN network with the application of 3D convolution
operations instead of using 1D convolution operators that only inspect the spectral content
of the data. The deep CNN with a large parameter scale has stronger nonlinearity, which
leads to high complexity and calculation of the neural network. If trained on limited
labeled samples, a neural network is overparameterized with respect to the limited training
samples, which causes the CNN to tend to overfit, so a large number of training samples
was needed to improve the generalization ability of the model and alleviate overfitting in
the case of limited samples.

PartI:Input HSI Data Cube PartII:Training Deep Network for HSI Classification

Labeled Samples

Unlabeled

 Samples

PartIII:Get the Classification Result

1

1

2

3

Figure 2. HSI classification based on neural networks.

A lightweight model can alleviate the requirement for the number of labeled samples.
Simplification methods of the model are mainly divided into model compression and
lightweight model design. Li et al. [37] proposed a compression network considering
the high dimensionality of HSI. A fast and compact 3-D-CNN with few parameters was
developed in [38]. Some efficient convolution operations have been explored to reduce the
number of network parameters. Lightweight model design still requires prior knowledge
to design the network structure. In the model compression method, this mainly includes
network parameter quantization, neural network pruning, knowledge distillation, and
tensor decomposition methods. Cao et al. [39] proposed a compressed neural network-
based HSI classification method that uses a large teacher network to guide the training of a
small student network, thereby achieving similar performance to the teacher network under
the premise of low complexity. Compared with other model compression methods, neural
network pruning is efficient and simple and has strong generalization. It can compress the
network model and prevent the network from overfitting.

2.2. Neural Network Pruning

Neural network pruning is a classic technique in the model compression filed. As
shown in Figure 3, network pruning requires a trained network, which is usually over-
parameterized. For a network N of depth L, the overall parameters contained can be
obtained by W =

{
w1, . . . , wL}, where wi denotes the parameter matrix of the i-th layer of

the network.
Neural network pruning is usually achieved by pruning mask M =

{
m1, . . . , mL}[40].

mi represents the pruning mask of each layer of the network, which is usually represented
by a binary matrix with the same dimension as wi. Specifically, 0 means that the parameter
is pruned and 1 means that the parameter is preserved. The pruned weight wi

prun is
obtained by performing a Hadamard product on mi and wi, and it can be expressed as
wi

prun = wi �mi. The process of neural network pruning is also shown in Figure 3.
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Figure 3. The procedure of neural network pruning.

Finally, the pruned network is fine-tuned. According to the pruning process, it can
be divided into iterative pruning and one-shot pruning, the difference between the two
pruning process is represented in Figure 3. Iterative pruning is a cyclical process of pruning
and retraining, and many successful pruning methods [11,41,42] in the past have been
based on iterative pruning. However, recent research [43,44] has suggested that such heavy
consumption and the selection of design undermine their utility. One-shot pruning is
trained after a one-time pruning process, and it can avoid the problem of iterative pruning.

2.3. Evolutionary Multi-Task Optimization

Evolutionary multi-task optimization (EMTO) [45–49] is an emerging paradigm in
the field of evolutionary computation. By sharing searched knowledge in similar tasks,
EMTO can improve the convergence characteristics and searching efficiency for each
task [50]. As shown in Figure 4, EMTO randomly marks the individuals with different task
cultures and maps them to the corresponding task space for evolving. Furthermore, the
knowledge in each task is transferred by genetic material among individuals in a unified
space. Furthermore, EMTO has been studied to solve similar tasks parallelly [51] and
handling optimization problems efficiently by building module tasks [52–55]. In avoiding
the possible negative transfer of knowledge, Gao et al. [56] reduced the divergence between
subpopulations belonging to different tasks by aligning the distributions in the subspaces.

MTOTraining
Data

Solutions 
Space1

Validation
Data

MO/SO 1

Solutions
Evaluation

Solutions 1

Solutions 
Space2

Solutions 
Space N

Solutions 2

Solutions N

Validation
Data

MO/SO 2

Validation
Data

MO/SO N

Solutions 
Optimization

Unified 
Space

Solutions 
Representation

Figure 4. The overview of evolutionary multi-task optimization.

A minimization EMTO problem with K optimization tasks have a unified space Ω.
The j task, denoted as Tj, is considered to have a search space Ωj on which the objective
function Fj : Ωj → Ω implements a mapping from subsearch space Ωj to uniform space Ω.
In addition, each task may be constrained by several equality and/or inequality conditions
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that must be satisfied for a solution to be considered feasible. EMTO aims to optimize
all tasks:

minimize{F1(x1), · · · , Ft(xt), · · · , Fk(xk)} (1)

In evolutionary multi-task optimization, each individual is assigned a skill factor
indicating the cultural trait of the associated task [51]. Then, the individuals are encoded in a
unified search space and the genetic operators are applied to produce offspring in this space.
The offspring also inherit the parents’ skill factors through the vertical cultural transmission.

2.4. Motivation

Deep neural networks achieve good classification results based on large-scale param-
eters. The complex nonlinear structure leads to complex calculation, which affects the
application of neural network for HSI classification on mobile platforms. Therefore, it is
necessary to compress the model of the existing large-scale network. Moreover, the training
of neural networks relies on a large number of training samples. HSIs need to be manually
labeled, so the labeled samples of HSIs are limited, which will lead to overfitting and
classification difficulties during complex neural network training.

Traditional network pruning methods based on deep neural networks only deal with
one image at a time, which has limited learning knowledge and does not make full use
of the common features between similar images. The multi-task framework can be used
to simultaneously prune the classification networks of multiple different images.Taking
advantage of the potential similarities between optimization tasks, the multi-task frame-
work can be used to simultaneously prune the classification networks of multiple different
images. Using existing HSI with high similarity, when the same network architecture is
trained on different datasets, its parameters characterize different datasets, so interaction
between tasks can alleviate the limited sample problem on a single dataset and help the
classification of the respective task. Although the existing evolutionary pruning methods
can avoid the cost and prior knowledge requirements of designing pruning rules, they
are difficult to optimize when facing more complex network structures. The proposed
multi-task optimization framework, using knowledge transfer between tasks, can also
effectively facilitate the respective optimization tasks.

3. Methodology

This section provides a comprehensive description of the proposed network collabora-
tive pruning method for HSI classification. Firstly, the overall framework of the method is
introduced. Secondly, compression of the model is achieved by an evolutionary multi-task
pruning algorithm, the algorithm is introduced, and the initialization of individual and
population, genetic operators, and self-adaptive knowledge transfer strategy are described
in detail. Finally, the complexity of the proposed method is calculated.

3.1. The Framework of the Proposed Network Collaborative Pruning Method for HSI Classification

The overall framework of the proposed method is shown in Figure 5. First, different
optimization tasks are constructed for two similar HSIs, i.e., there is a similarity between
the two sparsification tasks. The evolutionary algorithm is used to search the potential
excellent sparse network structure on the respective HSI. Genetic operators are designed
according to the representation of the network structure. In the process of the parallel
optimization of two tasks, interaction between tasks is needed to transfer the local sparse
network structure. At the same time, in order to avoid the possible negative transfer,
the self-adaptive knowledge transfer strategy is used to control the interaction strength
between tasks. After completing the pruning search in different tasks and fine-tuning on
the respective HSI, a set of sparse networks is obtained.
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Figure 5. Overall framework of proposed network collaborative pruning method for HSI classification.

3.2. Evolutionary Multi-Task Pruning Algorithm
3.2.1. Mathematical Models of Multi-Tasks

In the evolutionary pruning algorithm, modeling is performed on different HSIs and
the similarity between images is high. Therefore, the models of multi-tasks are given in (2).{

TI = max( facc(WtaskI), fspar(WtaskI)) WtaskI ∈ Ω
TI I = max( facc(WtaskI I), fspar(WtaskI I)) WtaskI I ∈ Ω

(2)

 facc(Wprun) = 1− eval(Dtest, Wprun)

fspar(W, Wprun) =
‖∑L

i=1 wi
prun‖l0

|∑L
i=1 wi|

(3)

where TI represents the classification and structure sparsification task on a certain HSI and
the search space of TI is Ω. Furthermore, the optimization of the task is achieved by search-
ing the result pruned network weights WtaskI . Similarly, TI I represents the classification
and structure sparsification task on a different HSI, the search space of TI I is also Ω, and the
pruned network weights obtained by searching is WtaskI I .

Each task is a multi-objective optimization model which can be expressed by (3).
Generally speaking, in the search process, when the network sparsity is reduced, the ac-
curacy of the network will reduce; sparsity and accuracy are two conflicting goals. One
objective function facc represents the accuracy of the neural network on the test dataset
Dtest, and another objective function fspar represents the sparsity of the network, which can
be represented by the pruning rate of the network. Specifically, sparsity can be expressed
as the ratio of the number of all elements that are not zero to the number of all elements.

3.2.2. Overall Framework of Proposed Evolutionary Multi-Task Pruning Algorithm

The evolutionary pruning algorithm is shown in Figure 6. One-dimensional vectors
are designed for different tasks to represent different pruning schemes, which can also
be regarded as a set of sparse networks. In these two optimization tasks, the stepwise
optimization of the network structure within the task is achieved. Through the knowledge
transfer between different tasks, the optimization efficiency of the two tasks is further
improved. After the evolution is completed, a set of network pruning schemes that can
balance accuracy and sparsity are obtained. The specific implementation of the evolutionary
pruning algorithm based on multi-task parallel optimization is shown in Algorithm 1.
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Algorithm 1 The proposed evolutionary multi-task pruning algorithm

Input: pop: task population size, t: number of evolutionary iterations, P: parent population,
rmp: random mating probability, gen: maximum number of generation

Output: a set of trade-off sparse networks for multiple HSIs
1: Step (1) Train a state-of-the-art network N
2: Step (2) Construct task TI and task TI I in Ω
3: Step (3) Pruning
4: Set t = 1 then initialize the population Pt
5: while (t < gen) do
6: Pt ← Binary Tournament Selection (Pt)
7: Generate offspring Ct → Refer Algorithm 2
8: Rt = Ct ∪ Pt
9: Update scalar fitness in Rt

10: Select pop fittest members from Rt to form Pt+1 by NSGA-II
11: Self-adaptively update rmp→ Refer Algorithm 3
12: t = t + 1
13: end while
14: Step (4) Fine-tuning the optimized results in TI and task TI I

3.2.3. Representation and Initialization

In this paper, we adopt a one-dimensional vector to represent a layer-by-layer dif-
ferentiated pruning scheme, which can also represent a unique sparse network. This can
more comprehensively reflect the sensitivity differences of different layers in the neural
network, so as to achieve more refined and differentiated pruning. This encoding method
can be well extended to a variety of networks, only needing to determine the depth of the
network to achieve encoding and pruning. On the other hand, the use of one-dimensional
vector encoding makes the design of genetic operators more convenient. Each element
in the vector represents the weight pruning ratio of each layer of the network, which is
the proportion of 0 elements in the wi matrix. Thus, the encoding vector of layer i can be
represented by the wi as:

vector[i] = ‖wi‖l0
|wi| (4)

Similar to (3),
∥∥wi

∥∥
l0 represents the number of nonzero elements in the layer i, and

∣∣wi
∣∣

represents the number of elements in this layer. In the pruning process, the weights
are sorted from small to large according to the element value of the i-th bit of the one-
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dimensional vector, and the weight of the former vector[i]% is pruned. The upper and lower
bounds of vector[i] are 0 and 1, respectively. In this way, the network weights are pruned
layer by layer, and the sparse network structure corresponding to the one-dimensional
vector can be finally obtained. The search process tries to approach the real Pareto-optimal
front. The decoding operation is the reverse process of the encoding operation.

Specifically, as shown in Figure 7, for a pruning scheme, its i-th element is a and its j-th
element is b. Firstly, the weights of layers i and j are arranged from small to large. Suppose
that pruning a× 100% of the weights in the i-th convolution layer, the total parameter

∣∣wi
∣∣

of this layer is ki
w × ki

h × f i, where ki
h represents the height of the convolution kernel, ki

w
represents the width of the convolution kernel, f i represents the number of convolution
filters in this layer. Suppose that pruning b× 100% of the weights in the j-th fully connected
layer, the total parameter

∣∣wj
∣∣ is the product of the input neurons nj

in and output neurons

nj
out. After determining the pruned parameter,the corresponding bit is set to zero to indicate

that the parameter is pruned.
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Figure 7. The representation of individual initialization.

According to the depth L of the network and the population size pop, pop one-
dimensional vectors of length L are randomly generated to form the initial population of
task. This represents pop pruning schemes, which can also be regarded as pop different
sparse networks. The population is initialized in the same way for different tasks.

3.2.4. Genetic Operator

The genetic operators used in proposed algorithm include crossover and mutation
operators. It is necessary to judge the skill factor of the individual when two individuals
crossover. This is similar to MFEA [45]. If two randomly selected parent pruning schemes
have the same skill factor, they come from the same task and crossover directly. Otherwise, it
comes from different tasks, and rmp is needed to determine whether to carry out knowledge
transfer between tasks. After completing the crossover operation, the individual performs
the mutation operation. The generated offspring individuals inherit the skill factor of the
parent individual. If within-task crossover is performed, the skill factor of the offspring is
the same as that of the parents, otherwise, the offspring randomly inherits the skill factor
of one parent. The details are shown in Algorithm 2.
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Algorithm 2 Genetic operations

Input: p1, p2: candidate parent individuals, τi: the skill factor of the parent, rmp: random
mating probability, rand: a random number between 0 and 1

Output: offspring individual c1, c2
1: if τ1 == τ2 then or rand < rmp
2: c1, c2 ← Crossover(p1, p2)
3: for i select f rom{1, 2} do
4: ci ←Mutate(pi)
5: end for
6: if τ1 == τ2 then
7: ci inherits the skill factor from pi
8: else
9: if rand < 0.5 then

10: c1, c2 inherits τ1 from p1
11: else
12: c1, c2 inherits τ2 from p2
13: end if
14: end if
15: else
16: for i select f rom{1, 2} do
17: ci ←Mutate(pi)
18: ci inherits the skill factor from pi
19: end for
20: end if

Both between-task and within-task crossover operators are designed in the same single-
point crossover. The i-th value in vector of parents p1 and p2 are swapped to generate two
new individuals c1 and c2. As shown in Figure 8, when individuals crossover at a certain
bit, the bit on different individual vectors is swapped directly. Because pruning rate and
sparse structure correspond one-to-one, it is also directly exchanged at the weight matrix
of the network.

p1

p2

c1

c2

vector

0.25 0.90.7 0.90.70.8 0.40.8 0.4 0.25 0.90.70.8 0.4

0.5 0.750.4 0.750.40.25 0.30.25 0.3 0.5 0.750.40.25 0.3

0.25 0.750.4 0.750.40.25 0.30.25 0.3 0.25 0.750.40.25 0.3

0.5 0.90.7 0.90.70.8 0.40.8 0.4 0.5 0.90.70.8 0.4

00
0 00 0
0

0 0

00
0 00 0

0 0 00 0 0

0
0 0

0 0 0

weight structure

00
0 00 0
0

0 0

00
0 00 0

0 0 00 0 0

0
0 0

0 0 0

Figure 8. The illustration of crossover operator.

A polynomial-mutation [57] is designed when the crossover operation is complete.
Figure 9 depicts the mechanism of the designed mutation operator. Taking individual p1
for example, the i-th value changes as preset mutate probability from 0 to 0.25, which can
be calculated from the polynomial mutation in Figure 9. The change quantity βi in layer
i is related to the ui ∈ [0, 1) and the non-negative real number ηu. ηu is the distribution
exponent. The larger this value is, the more similar the offspring and the parent are, so
ηu = 10 is set as the mutation probability. There are four input neurons and three output
neurons in this layer for a total of 12 weight parameters. During pruning, the weights are
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sorted, then select the weight from small to large for pruning, and the sparse structure
obtained after mutation operation is unique. Therefore, a total of three bits in the matrix
need to be changed.

00
0 00 0
0

0 0

p1 0 0.750.4 0.750.40.25 0.30.25 0.3 0 0.750.40.25 0.3p1 0 0.750.40.25 0.3

c1 0.25 0.750.4 0.750.40.25 0.30.25 0.3 0.25 0.750.40.25 0.3c1 0.25 0.750.40.25 0.3

Polynomial

mutation

1

1

1

1

(2 ) 1, 0.5

1 [2(1 )] , 0.5

u

u

i i

i

i i

u u

u u







+

+


− 

 = 

− − 

vector weight structure

Figure 9. Illustration of mutation operator.

The crossover and mutation operators adopted in this paper not only realize the self-
evolution within tasks but also transfer the effective sparse structure so as to promote the
search efficiency of two tasks.

3.2.5. Self-adaptive Knowledge Transfer Strategy

Although there is a high similarity between the two tasks [58], negative transfer is
still inevitable; this affects the search efficiency and solution quality. So, a self-adaptive
knowledge transfer strategy based on historical information and a dormancy mechanism
is designed. The intensity of transfer can be adjusted adaptively by taking advantage
of individual contributions. The dormancy mechanism is used to suppress irrelevant
knowledge transfer, reduce the interference of useless knowledge to task search, and save
computing resources.

Algorithm 3 introduces the self-adaptive knowledge transfer strategy. New individ-
uals generated by knowledge transfer between tasks are labeled as {ptki|i = 1, 2, . . . , n}.
After the fitness evaluation of the generated offspring, the Pareto rank of the offspring
individual in the non-dominated ranking is obtained. The knowledge transfer contribution
TKCR can then be represented by the rank of the individual with the best non-dominated
rank result among these newly generated individuals. Then, TKCR controls the value of
rmp. Notice that when comparing the Pareto rank of the offspring, the task to which the
offspring belongs is not distinguished.

Algorithm 3 Self-adaptive knowledge transfer strategy

Input: Np1, Np2: the population size in multi tasks, rankmin: minimum rank of non-
dominated sort, ptki: new individuals generated by knowledge transfer, ε: preset
threshold

Output: random mating probability rmp
1: rankmin ← minrank(ptk1, ptk2, . . . , ptkm)
2: δ← rankmin/(Np1 + Np2)
3: Transfer knowledge contribution TKCR←1− δ
4: if TKCR > ε then
5: rmp← TKCR
6: else
7: rmp← 0.1
8: end if

When the value of TKCR is less than the set threshold ε of population interaction,
the dormancy condition of the population is reached, and rmp is set to a small fixed value.
When the value of TKCR is greater than ε, the transfer of useful knowledge is detected at
this time, the self-adaptive update is resumed, and then, the value of rmp is the value of
TKCR. Through the self-adaptive strategy to control the frequency of knowledge transfer
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in the evolution process and the dormancy mechanism, the impact of negative transfer
between tasks on task performance can be effectively avoided.

3.3. Fine-Tune Pruned Neural Networks

After pruning, a set of sparse networks is obtained. Then, they are retrained, as studied
in [59]. In detail, these networks are trained with the Adam optimizer, and the initial
learning rate, weight decay, and training epochs are set differently according to different
data. The learning rate is adjusted by cosine annealing with the default setting.

3.4. Computational Complexity of Proposed Method

An analysis of the computational complexity of the proposed method is calculated
in two parts: the computational cost of evolutionary computation and the computational
cost of fine-tuning. In the pruning parts, the computational complexity is O(GPC), where
G is the number of generations, P is the number of individuals, and C is the cost of given
function. Assuming the computational cost of training for each epoch is O(T), the fine-
tuning computational complexity is O(ET), E denotes the number of training epochs.
Therefore, the computational complexity of the proposed approach is O(GPC + PTE).
Because the proposed method is multi-task optimization and is able to handle two HSIs
pruning tasks simultaneously, it is twice the computational complexity of a single evolution
and fine-tuning process.

4. Experiments

In this part, experiments that are carried out on HSIs to verify the effectiveness of
the proposed method are described. Firstly, it is verified that the pruned network has
better classification accuracy with limited labeled samples on multiple HSIs. The proposed
method is compared with other neural network pruning methods, and the relevant pa-
rameters of the pruned network are compared with other methods. After that, the sparse
networks obtained on the Pareto-optimal front are compared to prove the effectiveness of
the multi-objective optimization. The effectiveness of the proposed self-adaptive knowl-
edge transfer strategy is proven by quantifying the knowledge transfer between tasks.
Finally, the proposed method is validated on more complex networks and larger HSI.

4.1. Experimental Setting

A 3DCNN [36] trained on the HSI was used to validate proposed method. The struc-
ture of network is composed of convolutional layers of different stride. The convolutional
layer with stride 1 is called Conv, and the convolutional layer with stride 2 is called Con-
vPool. Excluding the classification layer, the number in the network structure is the number
of the filter of the convolutional layer, and the network structure can be expressed as:
3DConv(20)-1DConvPool(2)- 3DConv(35)- 1DConvPool(2)-3DConv(35)- 1DConvPool(2)-
3DConv(35)-1DConvPool(35)-1DConv(35)-1DconvPool(35).

HSIs use Indian Pines, Salinas, and University of Pavia datasets. Data in the real world
not only have the problem of limited labeled samples, but also the labeled samples often
cannot reflect the real distribution of the data. For example, only part of the HSI in a certain
area of the ground are sampled in the detection, and these data are continuous but may not
be comprehensive. In order to simulate limited sample data, 10% labeled samples were set
for each dataset, and the sample of the corresponding comparison methods was also 10%.

The Indian Pines (IP) dataset is collected by the sensor AVIRIS [60] from a pine forest
test site in northwest India. Its wavelength range is 400–2500 nm. After removing the water
absorption area, there are 200 spectral segments in total, and the spatial image size of each
spectral segment is 145× 145, with a total of 16 types of labels. The spatial resolution of
this dataset is only 20 m. Figure 10 shows the pseudo-color plots and labels of Indian Pines.
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Figure 10. The false-color image and reference image on Indian Pines dataset.

The Salinas (SA) dataset is collected from the Salinas Valley in California by the sensor
AVIRIS. After removing the water absorption area, there are a total of 200 spectral segments,
and the spatial image size of each spectral segment is 521× 217, with a total of 16 labels.
The spatial resolution of this dataset is 3.7 m. Figure 11 show the pseudo-color plots and
labels of Salinas.
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Figure 11. The false-color image and reference image on Salinas dataset.

The University of Pavia (PU) dataset is collected by the sensor ROSIS near the Univer-
sity of Pavia, Italy. After removing the water absorption area, there are a total of 103 spectral
segments, and the spatial image size of each spectral segment is 610× 340, with a total of
nine categories of labels. The spatial resolution of this dataset is 1.3 m. Figure 12 shows the
pseudo-color plot and labels of the University of Pavia.

Figure 12. The false-color image and reference image on University of Pavia dataset.

The proposed method was compared with five deep learning methods, including
1DCNN [61], 3DCNN [62], M3DCNN [63], DCCN [64],HybridSN [65], ResNet [66],
and DPRN [67]. In the experiment, three evaluation metrics—overall accuracy (OA),
average accuracy (AA), and Kappa coefficient (κ)—were used to evaluate the classification
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effect of the proposed method. The parameters of our proposed method are shown in
Table 1.

Table 1. Parameters used in proposed method.

HSI Datasets

Offspring size in pruning task I 50

Offspring size in pruning task II 50

Maximum number of generation 50

Mutation probability 10

Crossover probability 10

The initial value of transfer 0.5

The dormancy condition 0.1

The experimental server included four Intel(R) Xeon(R) Silver 4214R cpus @ 2.40 GHz,
192 GB DDR4 RAM, Two NVIDIA Tesla K40 12 GB Gpus and eight NVIDIA Tesla v1000s
Gpus were used. The software environment used the Ubuntu operating system with
Pytorch framework and Python 3.6 as the programming language. The optimizer of
the convolutional neural network was set to Adam optimizer, the weight decay was 0,
betas = (0.9, 0.999), and eps = 1× 10−8. The initial learning rate was 1× 10−4, the learning
rate decay was adopted by cosine annealing, the number of training epochs of the network
was 200, and the batch size was 100.

4.2. Results on HSIs
4.2.1. Classification Results

In the experiment, two groups of experiments were constructed to analyze the influ-
ence on the performance of the proposed method. The first group uses the Indian Pines
dataset and the Salinas dataset, and the second group uses the University of Pavia dataset
and the Salinas dataset. The Indian Pines dataset and Salinas dataset are from the same
sensor, and the University of Pavia dataset and Salinas dataset are from different sensors.

The classification result of the Indian Pines dataset is shown in Figure 13, and the
specific classification result table is shown in Table 2. Although the pruned network do not
obtain the best results on the three evaluation metrics, it obtain the highest classification
accuracy on the seven categories, all of which are 100%. The network for Indian pines
dataset is able to prune 91.2% of the parameters.

From the overall evaluation metrics, it can be seen that when the Indian Pines dataset
from the same sensor is used as an another task, it obtains relatively better results, and prun-
ing 87.2% of the network weights. By transferring the existing knowledge, the method
successfully improves the classification accuracy of the network and greatly reduces the
complexity of the network model. It is basically superior to other deep learning methods in
the OA and AA. Although the number of samples in each category of data is not balanced,
the knowledge transfer can improve the overall performance of the sparse network, so that
the network still achieves a high κ, that is, the distribution of classification accuracy on
each category is balanced.

The classification result of the University of Pavia dataset is shown in Figure 13, and the
specific classification results are shown in Table 3. It can be seen that although 83.1% of
the parameters are pruned, the pruned network still obtains high OA, AA, and κ values,
which are 97.57%, 97.84%, and 96.79%, respectively. In addition to this, the best results are
achieved in three categories. This proves that leveraging the knowledge transferred from
other images can facilitate the training of the network on the current image.
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Table 2. Classification accuracy (%) for the collaborative pruning task (Indian Pines and Salinas).
Best results are reported in bold.

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 87.15%

OA (%) 91.78 ± 1.45 92.05 ± 1.37 90.51 ± 0.98 95.66 ± 2.06 91.68 ± 1.71 93.68 ± 1.03 97.14 ± 0.77 95.70 ± 1.31
AA (%) 96.13 ± 2.33 95.50 ± 2.67 95.41 ± 2.56 98.05 ± 0.42 96.10 ± 2.11 97.46 ± 1.68 98.59 ± 1.09 98.14 ± 0.69

Kappa (%) 90.87 ± 2.06 91.13 ± 2.01 89.45 ± 2.79 95.17 ± 1.78 90.77 ± 2.21 92.99 ± 1.51 96.10 ± 0.68 95.14 ± 0.74

1 99.95 99.90 99.70 98.45 98.35 99.75 99.10 99.70
2 99.59 99.81 99.27 99.78 99.81 100.00 99.88 100.00
3 98.93 86.33 97.36 99.84 98.27 99.39 100.00 99.24
4 99.78 99.92 99.28 98.78 99.71 99.85 99.03 99.07
5 98.39 98.99 99.62 100.00 96.34 98.80 99.49 99.03
6 99.99 99.99 99.98 99.99 99.99 100.00 100.00 99.97
7 99.52 99.30 99.46 99.94 99.49 99.97 99.81 99.47
8 80.09 88.59 77.82 85.04 76.69 78.79 93.17 88.31
9 99.06 99.64 98.37 99.91 98.59 99.48 99.82 99.77
10 90.69 95.21 91.03 96.06 93.47 97.98 98.42 98.26
11 99.06 99.90 99.25 99.06 98.68 99.06 100.00 99.34
12 99.01 97.76 99.01 100.00 98.96 99.89 99.71 99.95
13 99.34 99.45 99.23 99.01 98.79 100.00 100.00 100.00
14 99.06 97.38 97.75 99.34 98.69 98.31 99.55 100.00
15 77.06 66.82 72.45 94.04 81.89 88.44 89.32 88.37
16 98.61 99.00 96.90 99.50 99.88 99.61 99.74 99.89

Category 1DCNN 3DDL M3DCNN DCNN HybridSN ResNet DPRN Pruned 91.27%

OA (%) 80.93 ± 4.37 91.45 ± 3.62 95.18 ± 3.74 92.17 ± 3.79 95.38 ± 2.91 93.24 ± 2.86 97.46 ± 1.50 88.90 ± 1.27
AA (%) 90.15 ± 3.77 96.84 ± 2.81 98.07 ± 1.72 93.45 ± 2.26 98.12 ± 0.58 97.89 ± 1.43 98.05 ± 0.49 95.38 ± 0.81

Kappa (%) 78.38 ± 4.69 90.33 ± 2.84 94.52 ± 2.94 91.11 ± 3.19 94.75 ± 1.67 93.11 ± 2.48 95.97 ± 1.39 87.46 ± 0.93

1 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
2 65.68 96.42 93.20 82.56 89.28 91.75 96.68 76.96
3 73.97 96.14 97.34 91.20 97.22 96.26 98.23 95.66
4 100.00 100.00 100.00 95.78 100.00 100.00 100.00 100.00
5 96.48 100.00 100.00 96.27 99.17 100.00 100.00 99.37
6 99.31 99.86 99.45 98.63 99.86 100.00 100.00 98.35
7 100.00 100.00 100.00 92.86 100.00 100.00 100.00 100.00
8 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
9 100.00 100.00 100.00 90.00 100.00 100.00 100.00 100.00
10 64.19 88.58 93.10 91.67 100.00 93.18 97.48 91.15
11 72.66 73.28 88.55 91.57 97.42 81.92 93.74 76.65
12 75.71 97.97 98.65 86.34 90.17 97.95 99.03 92.91
13 100.00 100.00 100.00 100.00 98.14 100.00 100.00 100.00
14 95.25 99.84 98.81 97.00 100.00 98.37 99.28 95.81
15 99.22 97.40 100.00 95.34 98.89 100.00 100.00 99.22
16 100.00 100.00 100.00 86.02 99.74 100.00 100.00 100.00

Sub-optimal results were obtained on the different sensor University of Pavia dataset,
which still has certain advantages compared with other deep learning methods. Using the
University of Pavia dataset as another task, 84.3% of network parameters were pruned.
Compared with the results on the Indian Pines dataset, the number of retained parameters
is greater, and the classification performance and consistency are lower.

These two groups of experiments show that the search efficiency of task can be
promoted by transferring the important sparse structure of the SOTA network from the
another task. In view of the differences between the two groups of experiments due to
the same physical imaging logic under the same sensor device the similarity between the
datasets is higher, and the spectral features are more common, so the better results can
be achieved. Due to the lack of labeled training samples and the high complexity of the
network model, the parameters are too large, so the evaluation metrics of the unpruned
neural network is low, which reflects the limitation of the lack of labeled samples on the
network training.
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Table 3. Classification accuracy (%) for the collaborative pruning task (University of Pavia and
Salinas). Best result are reported in bold.

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 84.30%

OA (%) 91.78 ± 1.45 92.05 ± 1.37 90.51 ± 0.98 95.66 ± 2.06 91.68 ± 1.71 93.68 ± 1.03 97.14 ± 0.77 95.02 ± 0.98
AA (%) 96.13 ± 2.33 95.50 ± 2.67 95.41 ± 2.56 98.05 ± 0.42 96.10 ± 2.11 97.46 ± 1.68 98.59 ± 1.09 98.03 ± 0.30

Kappa (%) 90.87 ± 2.06 91.13 ± 2.01 89.45 ± 2.79 95.17 ± 1.78 90.77 ± 2.21 92.99 ± 1.51 96.10 ± 0.68 94.03 ± 1.12

1 99.95 99.90 99.70 98.45 98.35 99.75 99.10 99.60
2 99.59 99.81 99.27 99.78 99.81 100.00 99.88 99.97
3 98.93 86.33 97.36 99.84 98.27 99.39 100.00 99.60
4 99.78 99.92 99.28 98.78 99.71 99.85 99.03 99.28
5 98.39 98.99 99.62 100.00 96.34 98.80 99.49 99.44
6 99.99 99.99 99.98 99.99 99.99 100.00 100.00 99.97
7 99.52 99.30 99.46 99.94 99.49 99.97 99.81 99.66
8 80.09 88.59 77.82 85.04 76.69 78.79 93.17 84.86
9 99.06 99.64 98.37 99.91 98.59 99.48 99.82 99.97

10 90.69 95.21 91.03 96.06 93.47 97.98 98.42 98.14
11 99.06 99.90 99.25 99.06 98.68 99.06 100.00 100.00
12 99.01 97.76 99.01 100.00 98.96 99.89 99.71 99.95
13 99.34 99.45 99.23 99.01 98.79 100.00 100.00 100.00
14 99.06 97.38 97.75 99.34 98.69 98.31 99.55 99.91
15 77.06 66.82 72.45 94.04 81.89 88.44 89.32 88.06
16 98.61 99.00 96.90 99.50 99.88 99.61 99.74 100.00

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 83.14%

OA (%) 88.32 ± 3.76 81.67 ± 3.17 94.36 ± 1.43 97.43 ± 1.12 93.47 ± 1.69 97.72 ± 1.19 98.48 ± 0.86 97.57 ± 1.40
AA (%) 91.29 ± 2.86 85.11 ± 3.84 94.87 ± 2.77 96.12 ± 2.01 94.81 ± 2.17 97.14 ± 1.28 98.36 ± 0.92 97.84 ± 0.95

Kappa (%) 84.85 ± 3.21 76.24 ± 3.65 92.59 ± 1.79 96.60 ± 2.24 91.46 ± 2.60 96.91 ± 1.28 97.19 ± 1.06 96.79 ± 0.69

1 83.47 69.91 85.03 95.53 86.98 92.35 94.12 95.58
2 87.08 82.99 96.24 99.52 93.71 98.92 99.48 98.14
3 88.42 74.08 89.09 88.61 88.58 95.41 96.86 96.95
4 96.57 94.48 96.34 96.01 96.96 96.99 97.94 97.74
5 99.99 99.95 99.99 100.00 99.99 100.00 100.00 99.77
6 91.05 72.51 98.03 98.01 97.43 99.97 99.63 98.60
7 91.42 83.75 95.78 97.66 96.76 98.84 99.60 99.92
8 84.46 90.82 94.16 95.54 93.18 97.48 94.41 95.05
9 99.15 97.57 99.15 94.19 99.47 99.62 99.52 98.83

(a) 1DCNN (b) 3DDL (c) M3DCNN (d) DCNN (e) H-SN (f) ResNet (g) DPRN (h) P91%

(i) 1DCNN (j) 3DDL (k) M3DCNN (l) DCCN (m) H-SN (n) ResNet (o) DPRN (p) P83%

(q) 1DCNN (r) 3DDL (s) M3DCNN (t) DCCN (u) H-SN (v) ResNet (w) DPRN (x) P87% (y) P84%

Figure 13. Classification maps on Indian Pines, Salinas and University of Pavia. Where P represents
Pruned Network.
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4.2.2. Comparison with other Neural Network Pruning Methods

The proposed method was compared to three neural network pruning methods in
Table 4. NCPM is the network collaborative pruning method proposed in this paper.
Because NCPM is a multi-objective optimization method, it selects a sparse network on the
Pareto-optimal front.

The first pruning method L2Norm [68] is based on L2 norm, which sets a threshold for
pruning for each layer by comparing the weight value of network parameters in each layer.
In addition, NCPM is compared with MOPSO [21], a method based on particle swarm
optimization. LAMP [12] is an iterative pruning method. LAMP utilizes a layer-adaptive
global pruning importance score for pruning.

The three comparison methods and the proposed method all use the 3D-DL network.
The original three pruning methods are all proposed based on 2DCNN and are suitable
for image classification datasets, such as MNIST and CIFAR10. Therefore, the original
pruning method needs to be changed to the pruning of 3DCNN. When training the network
model, the same experimental settings such as the optimizer and learning rate are used as
in NCPM.

Table 4. Classification results of the networks obtained by different pruning methods on the
three HSIs. Best result are reported in bold.

HSI Method L2Norm MOPSO LAMP NCPM

Salinas
Pruned (%) 87.00 85.24 87.00 87.15

OA (%) 86.66 90.40 94.28 95.02
AA (%) 91.48 94.65 97.68 98.03

Kappa (%) 85.24 89.31 93.64 94.03

Indian Pines
Pruned (%) 91.00 90.23 91.00 91.27

OA (%) 66.49 72.68 89.31 88.90
AA (%) 81.44 84.61 94.90 95.38

Kappa (%) 62.52 69.23 87.90 87.46

University of Pavia
Pruned (%) 83.00 84.11 83.00 83.14

OA (%) 87.03 90.67 96.86 97.57
AA (%) 87.4 87.70 97.54 97.84

Kappa (%) 83.1 87.51 95.87 96.79

NCPM obtains the best pruning results on Salinas and University of Pavia, and the
OA of the pruned network is much better than that of L2Norm and MOPSO with the same
pruning rate. The pruned network on Indian Pines is highly similar to the LAMP method,
but both are better than L2Norm and MOPSO.

From the three HSIs, it can be clearly seen that the sparse network searched by
the L2Norm is sub-optimal due to the single redundancy evaluation criterion, and the
evolutionary pruning method can search a better sparse network structure. Due to the lack
of diversity in selecting solutions, the sparse network searched by MOPSO is inferior to the
NCPM method. The LAMP method is an iterative pruning method, and it will be retrained
in an iteration process, which will cause additional computational complexity.

Compared with other pruning methods, NCPM can simultaneously prune two hyper-
spectral data classification networks, which improves the search efficiency. At the same
time, the multi-objective optimization of the sparsity and accuracy of the network structure
can obtain a set of sparse networks after one run.

4.2.3. Complexity Results of the Pruned Network

Table 5 shows the comparison results between the pruned network and the original
network, as well as other neural networks, where the training time refers to a training
time of 200 epochs. Our method is able to prune the 3D-DL network, and when compared
with the original network, 3D-DL, the pruned network can cut most of the parameters
and can also accelerate the test time of the network in a certain range. On the Univeristy of
Pavia dataset, the training time was reduced by 18.23%, on the Salinas dataset, the training
time was reduced by 4.18%, and on the Indian Pines, the time was almost unchanged.
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The pruned network achieves the best results when compared to other methods the Indian
Pines and University of Pavia datasets. The comparison experiment proves the significance
and necessity of neural network pruning.

Table 5. Comparison results of the complexity of the pruned network.

HSIs Methods 1DCNN M3DCNN HybridSN ResNet 3DDL Pruned

Indian pines
EpochTrainTime/s 40.5771 49.8241 73.0636 67.3195 60.1175 60.4814

Parameter 246,409 263,584 534,656 414,333 259,864 22,868
OA (%) 80.93 95.18 95.38 93.24 91.45 88.90

Pavia University
EpochTrainTime/s 40.3595 43.3423 79.7415 56.5454 41.6149 34.0278

Parameter 246,409 263,584 534,656 534,656 259,864 43,918
OA (%) 88.32 94.36 93.47 97.50 81.67 95.02

Salinas
EpochTrainTime/s 64.9641 85.6064 173.6447 134.5664 68.5989 65.7300

Parameter 246,409 263,584 534,656 534,656 259,864 33,262
OA (%) 91.78 90.51 91.68 93.68 92.05 95.70

4.2.4. The Result of the Sparse Networks Obtained by Multi-Objective Optimization

Figure 14 represents the Pareto-optimal front without fine-tuning in both two exper-
iments. The Pareto-optimal front obtained for the Indian Pines dataset is uniformly dis-
tributed, whereas the Pareto-optimal front obtained for the University of Pavia is sparsely
distributed. For the comparison of the Salinas dataset Pareto-optimal front in different
experiments, the diversity of solutions is better in the multi-task optimization experiment
of the Indian Pines dataset with the same sensor.

(a) Indian Pines & Salinas

(b) University of Pavia & Salinas

Figure 14. The Pareto-optimal front without fine-tuning after completing evolutionary search on two
groups experiments.

The hypervolume curve Figure 15 is used to represent the convergence of the evolu-
tionary search process. The hypervolume of each generation is determined by the sparse
network on the Pareto-optimal front, and the diversity and quality of the sparse network
affect the hypervolume. The initialization of the two experiments is random, so the initial
hv is different. By comparing the results on the Salinas dataset in different experiments, it
can be seen that the Salinas hypervolume curve optimized by the Indian Pines multi-task
optimization converges faster and improves more, which again verifies the influence of the
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similarity between tasks on the results of multi-task optimization. In addition, the growth
trend of the hvscore is the same in the two sets of experiments, and the period of faster
growth of hvscore coincides, which can be understood as the promotion effect of knowledge
transfer between the two tasks for their respective tasks.

(a) Indian Pines & Salinas (b) University of Pavia & Salinas

Figure 15. Hypervolume curves of the evolutionary process on two groups experiments.

Four networks on the Indian Pines dataset were selected for comparison with the
original unpruned network in Table 6. We can see that although about 80–90% of the pa-
rameters were pruned, after fine-tuning, the total accuracy was about 3% different from the
original network. In some categories, such as classes 1, 4, and 7, the classification accuracy
can be basically guaranteed to be 100%. Through multi-objective optimization, a set of
sparse network structures can be obtained after one run, which have different sparsity and
accuracy, and are suitable for different application conditions and application scenarios.

Table 6. Results after fine-tuning sparse networks on the Pareto-optimal front on collaborative
pruning task (Indian Pines and Salinas). Best results are reported in bold.

Category ORG Pruned Networks in Salinas Category ORG Pruned Networks in Indian Pines

Pruned (%) 0.00 84.09 87.15 92.93 96.49 97.21 Pruned (%) 0.00 83.66 84.00 84.86 91.27
OA (%) 92.05 95.25 95.70 95.42 95.51 95.42 OA (%) 91.45 89.75 89.87 89.64 88.90

KAPPA (%) 91.13 94.72 95.22 94.90 95.01 94.90 KAPPA (%) 90.33 88.39 88.52 88.29 87.46
AA (%) 95.50 97.97 98.14 97.96 97.98 97.83 AA (%) 96.84 95.02 94.85 95.02 95.38

1 99.90 99.55 99.70 100.00 99.65 99.65 1 100.00 100.00 100.00 100.00 100.00
2 99.81 99.75 100.00 100.00 100.00 99.86 2 96.42 88.16 79.20 83.89 76.96
3 86.33 99.24 99.24 98.83 99.03 98.07 3 96.14 91.20 95.54 89.75 95.66
4 99.92 99.56 99.06 98.42 99.42 98.63 4 100.00 100.00 97.46 97.46 100.00
5 98.99 98.84 99.02 98.73 99.25 98.31 5 100.00 96.48 94.61 93.78 99.37
6 99.99 99.94 99.97 99.97 99.97 100.00 6 99.86 98.63 96.71 98.08 98.35
7 99.30 98.60 99.46 99.66 99.86 99.46 7 100.00 100.00 100.00 100.00 100.00
8 88.59 86.65 88.30 87.96 89.73 87.75 8 100.00 100.00 100.00 100.00 100.00
9 99.64 99.59 99.77 99.48 99.96 99.14 9 100.00 100.00 100.00 100.00 100.00
10 95.21 98.35 98.26 97.13 97.22 97.31 10 88.58 83.12 86.41 93.10 91.15
11 99.90 99.90 99.34 100.00 99.90 99.81 11 73.28 80.61 85.41 78.28 76.65
12 97.76 100.00 99.94 99.89 99.89 99.74 12 97.97 87.52 91.23 88.36 92.91
13 99.45 100.00 100.00 100.00 99.78 99.89 13 100.00 100.00 100.00 100.00 100.00
14 97.38 99.43 100.00 99.81 99.53 98.87 14 99.84 94.70 91.85 97.94 95.81
15 66.82 88.23 88.37 87.65 84.86 88.96 15 97.40 100.00 99.22 99.74 99.22
16 99.00 99.94 99.88 99.88 99.66 99.88 16 100.00 100.00 100.00 100.00 100.00

Four networks on the University of Pavia dataset were selected for comparison with
the original unpruned network in Table 7. Compared with the original network, the OA
of the pruned network was improved, and the OA reached 97.58% when the pruning rate
was 92.93%. With the improvement of pruning rate, the obtained sparse network can still
maintain the optimal classification accuracy on many categories.

Five of the sparse networks on the Salinas dataset obtained from each of the two experi-
ments were selected for comparison with the original unpruned networks in Tables 6 and 7.
Implementing multi-task pruning with the Indian Pines dataset pruned 87.15% of the
networks, and obtained the best results. Each class in the original network did not reach
100%, but the network after pruning can be completely classified correctly in multiple
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classes, which indicates that the training of the network is limited in the case of limited
samples, and the problem of limited samples can be alleviated after knowledge transfer
between tasks. Different sparse networks obtain the best classification accuracy on different
categories, which provides a choice for different classification requirements.

Table 7. Results after fine-tuning of sparse networks on the Pareto-optimal front on collaborative
pruning task (University of Pavia and Salinas). Best results are reported in bold.

Category ORG Pruned Networks in Salinas Category ORG Pruned Networks in University of Pavia

Pruned (%) 0.00 84.30 90.33 93.33 95.97 98.18 Pruned (%) 0.00 83.14 89.98 92.08 92.93
OA (%) 92.05 95.02 95.26 95.46 94.26 93.83 OA (%) 91.67 97.57 97.55 97.18 97.58

KAPPA (%) 91.13 94.46 94.73 94.95 93.61 93.13 KAPPA (%) 76.24 96.79 96.76 96.28 96.80
AA (%) 95.50 98.02 98.08 98.07 97.17 96.95 AA (%) 85.11 97.84 97.77 97.48 97.66

1 99.90 99.60 99.95 99.90 99.95 99.80 1 69.91 95.58 95.11 94.78 94.85
2 99.81 99.97 100.00 99.91 100.00 99.43 2 82.99 98.14 98.25 97.73 98.72
3 86.33 99.59 99.74 99.24 95.95 95.34 3 74.08 96.95 97.33 94.94 95.66
4 99.92 99.28 99.06 99.28 98.70 98.85 4 94.48 97.74 96.86 96.96 98.95
5 98.99 99.43 99.47 99.66 97.90 97.34 5 99.95 99.77 100.00 99.62 100.00
6 99.99 99.97 99.97 99.97 100.00 100.00 6 72.51 98.60 99.18 98.52 97.81
7 99.30 99.66 100.00 99.91 99.63 98.99 7 83.75 99.92 99.24 99.17 99.62
8 88.59 84.86 87.08 87.88 87.68 86.40 8 90.82 95.05 94.94 96.19 94.32
9 99.64 99.96 99.51 99.06 98.98 99.16 9 97.57 98.83 99.04 99.36 99.04
10 95.21 98.13 98.23 97.62 95.72 95.85
11 99.90 100.00 100.00 100.00 99.53 99.62
12 97.76 99.94 100.00 100.00 100.00 99.94
13 99.45 100.00 99.89 99.89 99.89 100.00
14 97.38 99.90 100.00 99.25 99.53 99.71
15 66.82 88.05 86.46 87.60 81.70 81.24
16 99.00 100.00 99.94 100.00 99.66 99.55

The proposed method uses the evolutionary multi-objective optimization model to
realize the simultaneous optimization of network performance and network complexity,
and automatically obtains multiple sparse networks. Some points on the Pareto-optimal
front are selected for comparison, the classification results of the pruned network obtained
on the Pareto-optimal front on different HSIs are shown in Figure 16. With the increase in
the sparsity, the OA and AA of the network gradually decrease, but they are better than
the neural network method directly trained on limited labeled sample data. In general,
the proposed method can obtain a set of non-dominated sparse network solution at the
same time, and the quality of sparse network is high, which can provide reference for
practical datasets without labeled, and the method can be applied to different datasets.

(a) P83.66% (b) P84.00% (c) P84.86% (d) P91.27%

(e) P83.14% (f) P89.98% (g) P92.08% (h) P92.93%

Figure 16. Cont.
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(i) P84.09% (j) P87.15% (k) P92.93% (l) P96.49% (m) P97.21% (n) P84.30% (o) P90.33% (p) P93.33% (q) P95.97% (r) P98.18%

Figure 16. Classification maps on Indian Pines, Salinas, and University of Pavia datasets. GT
represents ground truth and P represents pruned network.

4.2.5. Effectiveness Analysis of Self-Adaptive Knowledge Transfer strategy

For the quality of knowledge transfer between tasks, three metrics are given:

• Proportion of migrated individuals: After the elite retention operation of NSGA-II,
the proportion of individuals who survived through knowledge transfer in the new
population is calculated in the whole population, and the overall quality of the transfer
is evaluated. The higher the ratio is, the better the quality of knowledge transfer is,
which can greatly promote the population optimization.

• Transfer knowledge contribution degree: the minimum non-dominated rank of all
transfer individuals after non-dominated sorting of the main task. The smaller the
rank is, the more excellent the transfer individual is in the population, which indicates
the greater contribution of the population optimization.

• Self-adaptive knowledge transfer probability (rmp): the variable used to control the
degree of knowledge transfer in the self-adaptive transfer strategy. A larger value of
rmp represents a stronger degree of interaction.

As shown in Figure 17, there are more individuals with transfer knowledge in the
early stage of evolution, with the proportion distribution ranging from 50% to 10%. Al-
though the rmp curve shows that the strength of knowledge transfer is almost the same,
which indicates that the knowledge transfer in the early evolution can greatly help the
search, but with the continuous optimization and convergence of the population, the ef-
fect of knowledge transfer is declining. Because of the contribution degree of transfer
knowledge—although fewer individuals survive through knowledge transfer—part of the
knowledge is still of high quality, which is still very effective for promoting the optimization
of tasks.

Because the search of the task has not converged in the early stage, knowledge can
provide a general network structure to guide the search. However, with the continuous
optimization of the task, it is necessary to transfer very high-quality knowledge to promote
search. At this time, although the knowledge transfer is heavy, only the part of individuals
containing high quality can survive. Therefore, the self-adaptive knowledge transfer
strategy based on the historical information is necessary.

During the evolution of the University of Pavia dataset as another task, as shown in
Figure 17, a long dormancy mechanism is triggered, which indicates that the self-adaptive
transfer strategy during this period considers the knowledge as invalid and intrusive. This
may be due to the fact that there are differences between the datasets collected by different
detection devices and there are few spectral features in common. Therefore, it is more
useful to build multi-task optimization with datasets collected by the same sensor.
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(a)Proportion of migrating individuals

(c)Transfer knowledge contribution degree

(b)Random mating probability

Figure 17. Knowledge transfer between tasks: the left column uses the Indian Pines dataset as another
task of collaborative pruning, and the right column uses the University of Pavia datatset as another
task of collaborative pruning.

4.2.6. Discussion

In this part, the proposed method is validated on more complex networks and larger
HSI dataset. The proposed method is used to prune the complex network CMR-CNN [69]
for HSI classification, the number of parameters is 28,779,784. A new cross-mixing residual
network denoted by CMR-CNN is developed, wherein one three-dimensional (3D) resid-
ual structure responsible for extracting the spectral characteristics, one two-dimensional
(2D) residual structure responsible for extracting the spatial characteristics, and one as-
sisted feature extraction (AFE) structure responsible for linking the first two structures
are designed.

Table 8 shows the pruning results of CMR-CNN on different HSIs. For this network,
there is almost no decrease in the OA of the network after pruning nearly 75% of the
parameters, and the OA of the network on Indian Pines is improved by 0.46%, which
proves that our method can be applied to complex networks and can alleviate the overfitting
problem of training on complex networks. Compared with the original network, the pruned
network can cut most of the parameters, and can also accelerate the test time of the network
in a certain range. On the University of Pavia dataset, the training time is reduced by 9.58%
and on the Salinas dataset, the training time is reduced by 14.8%. The above comparison
experiment proves the significance and necessity of neural network pruning.
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Table 8. Pruning results of CMR-CNN.

HSIs Salinas Indian Pines University of Pavia

Method CMR-CNN NCPM CMR-CNN NCPM CMR-CNN NCPM

Pruned (%) 0.00 73.44 0.00 76.85 0.00 75.2
TrainTime (s) 9283 7909 2088 2058 7832 7082

Parameter 28,779,784 7,643,640 28,779,784 6,662,135 28,779,784 7,137,390

OA (%) 99.97 99.97 98.69 99.15 99.65 99.63
AA (%) 99.94 99.93 98.6 98.52 99.32 99.05

Kappa (%) 99.97 99.97 98.51 99.03 99.54 99.5

In addition, AlexNet [6] and VGG-16 [7] are pruned on image classification dataset
CIFAR10, The Naive-Cut [70] method is a manual pruning method that uses the weight
size as the redundancy.

The comparison results after fine-tuning are shown in Table 9. As the complexity
of the network and the number of parameters increase, the gap between the proposed
method and other neural network pruning methods becomes larger. Compared with the
traditional single-objective pruning methods Naive-Cut and L2-pruning, the proposed
method can obtain a set of networks with different sparsity and accuracy values in one run.
At close accuracy, the solution obtains more sparse results. This is because the proposed
evolution-based method has strong local search capability and is able to obtain sparse
network structures in the search space. Due to the higher search efficiency and better
diversity maintenance strategy, the proposed method can better ensure the population
diversity in the evolution process than MOPSO.

Table 9. Pruning results of AlexNet and VGG-16.Best results are reported in bold.

Models Methods Accuracy Parameter Pruned (%) CR

AlexNet
Naive-Cut 80.33 564,791 85.00 6.7×
L2-pruning 80.90 338,874 91.00 11.1×

MOPSO 80.97 364,854 90.31 10.3×
NCPM 95.18 304,610 91.91 12.4×

VGG-16
Naive-Cut 87.47 6,772,112 53.98 2.17×
MOPSO 83.69 1,358,248 90.77 10.83×
NCPM 95.91 2,096,970 85.75 7.017×

The Pavia Center is captured by the ROSE-3 satellite, and the photographed terrain
is the urban space of the University of Pavia, Italy. This dataset has a spatial resolution
of 1.3 m and an image size of 1096× 715 pixels. The dataset contains 114 spectral bands
with spectral wavelengths ranging from 430 to 860 nm. After removing the noise bands,
the number of bands used for classification is 104. Figure 18 show the pseudo-color plots
and labels of Pavia Center.

Background

Water
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Asphalt
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Blocking 

Bricks
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Shadows
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Figure 18. The false-color image and reference image on Pavia Center dataset.

Table 10 compares the classification results of the pruned network with the results
of other neural network methods. Figure 19 shows the classification maps of different
methods on Pavia Center. In the collaborative pruning task in the University of Pavia
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and Pavia Center datasets, a sparser network structure is obtained on the Pavia Center.
OA is still maintained at 97.45%. On the University of Pavia dataset, a 97.39% OA is
obtained in Pavia Center, which is better than the original network 3DDL, as well as the
results on 1DCNN and M3DCNN. This also proves that proposed method can be applied
to larger HSIs.

Table 10. Classification accuracy (%) for collaborative pruning task (University of Pavia and Pavia
Center datasets). Best results are reported in bold.

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 90.88%

OA (%) 88.32 81.67 94.36 97.43 93.47 97.72 98.48 97.45
AA (%) 91.29 85.11 94.87 96.12 94.81 97.14 98.36 96.25

Kappa (%) 84.85 76.24 92.59 96.60 91.46 96.91 97.19 96.62

1 83.47 69.91 85.03 95.53 86.98 92.35 94.12 97.78
2 87.08 82.99 96.24 99.52 93.71 98.92 99.48 99.43
3 88.42 74.08 89.09 88.61 88.58 95.41 96.86 89.37
4 96.57 94.48 96.34 96.01 96.96 96.99 97.94 96.02
5 99.99 99.95 99.99 100.00 99.99 100.00 100.00 99.85
6 91.05 72.51 98.03 98.01 97.43 99.97 99.63 95.13
7 91.42 83.75 95.78 97.66 96.76 98.84 99.60 93.08
8 84.46 90.82 94.16 95.54 93.18 97.48 94.41 96.03
9 99.15 97.57 99.15 94.19 99.47 99.62 99.52 99.57

Category 1DCNN 3DDL M3DCNN DCCN HybridSN ResNet DPRN Pruned 91.70%

OA (%) 96.55 97.71 97.90 99.55 99.20 99.06 99.10 97.39
AA (%) 89.57 92.57 92.50 98.71 96.92 96.78 96.75 91.32

Kappa (%) 95.11 96.76 97.03 99.37 98.87 98.68 99.16 96.91

1 99.63 99.93 99.99 99.99 99.99 99.94 99.99 99.96
2 95.65 95.64 96.51 96.77 97.06 98.31 99.43 95.76
3 89.51 94.43 89.44 98.83 96.18 90.45 99.31 91.13
4 67.37 81.48 79.32 97.24 88.97 96.01 99.53 70.73
5 83.38 92.64 96.47 99.72 98.73 99.72 99.17 92.95
6 97.05 96.30 96.75 98.36 99.18 99.59 99.19 98.14
7 84.67 85.22 87.42 99.17 98.94 94.82 99.86 83.47
8 98.67 99.80 99.70 99.93 99.71 99.59 99.18 99.13
9 90.18 87.67 86.90 98.39 93.53 92.59 99.01 90.63

(a) 1DCNN (b) 3DDL (c) M3DCNN (d) DCCN

(e) HybridSN (f) ResNet (g) DPRN (h) P91.70%

Figure 19. Classification maps on Pavia Center. Where P represents Pruned Network.

5. Conclusions

Classification and network pruning tasks for several HSIs are established. In the
evolutionary pruning search within each task, important local structural information is
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acquired and learned. Knowledge transfer between tasks is used to transfer important
structures for representation in other tasks to the current task, which guides the learning
and optimization of the network on limited labeled samples. It effectively improves the
problem of network model overfitting and difficult training caused by limited labeled
samples in each task. The self-adaptive transfer strategy based on historical information
and dormancy mechanism achieves the original design goal: transferring as much good
knowledge as possible and avoiding as much negative knowledge as possible.

Experiments on HSIs show that the proposed method can simultaneously realize
classification and structure sparsification on multiple images. By comparing with other
pruning methods on image classification data, the proposed method can search for sparser
networks while maintaining accuracy. For structured pruning, which is currently more
popular, the computation of sparse weight matrices can be avoided, so our future work will
consider applying the proposed framework to structured pruning. Therefore, it is necessary
to consider knowledge and knowledge transfer strategy in structured pruning. This will
further expand our work in the area of neural network architecture optimization. Finally,
the proposed method needs to be tested on hardware devices to verify the feasibility and
practicability of the method.
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