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Abstract: To understand forest dynamics under today’s changing environmental conditions, it is
important to analyze the state of forests at large scales. Forest inventories are not available for
all regions, so it is important to use other additional methods, e.g., remote sensing observations.
Increasingly, remotely sensed data based on optical instruments and airborne LIDAR are becoming
widely available for forests. There is great potential in analyzing these measurements and gaining an
understanding of forest states. In this work, we combine the new-generation radiative transfer model
mScope with the individual-based forest model FORMIND to generate reflectance spectra for forests.
Combining the two models allows us to account for species diversity at different height layers in the
forest. We compare the generated reflectances for forest stands in Finland, in the region of North
Karelia, with Sentinel-2 measurements. We investigate which level of forest representation gives the
best results and explore the influence of different calculation methods of mean leaf parameters. For
the majority of the forest stands, we generated good reflectances with all levels of forest representation
compared to the measured reflectance. Good correlations were also found for the vegetation indices
(especially NDVI with R2 = 0.62). This work provides a forward modeling approach for relating
forest reflectance to forest characteristics. With this tool, it is possible to analyze a large set of forest
stands with corresponding reflectances. This opens up the possibility to understand how reflectance
is related to succession and different forest conditions.

Keywords: forest model; radiative transfer; vegetation indices; individual-based; forest reflectance

1. Introduction

Forests play a major role in the terrestrial component of the global carbon cycle.
They account for about 55% of the global above-ground carbon stock [1] and represent
approximately 40% of the global terrestrial carbon sink [2,3]. Forests shape the surface of
the Earth by comprising 31% of the land area [4] and they influence the energy balance
by reflecting and absorbing sunlight. They are important for sustaining biodiversity and
provide habitat for 70% of all faunal species [5–7]. Forests exhibit a diversity of spatial
structures that can be dynamic due to natural succession, management or disturbances [8].

To monitor the state of forests, the conventional standard practice for foresters and
ecologists alike has long been the measurement of forest inventories. Collecting inventories
is time-consuming. However, in tropical forests, national forest inventories are often
missing. Another approach to monitor forests is based on remote sensing observations,
which provide relevant data at large scales. The amount of data is significantly raising
with more and more Earth-observing satellite missions launched in the last ten years [9].
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The spatial and temporal remote sensing observations offer the opportunity to gain a
better understanding of forests with respect to their structure and dynamics. Satellite
measurements vary in their resolution and coverage. Thus, for global observations, there is
a trade-off between the spatial and temporal resolution of satellite (e.g., Landsat, Sentinel)
and airborne products. The combined methods of remote sensing and field observations
offers the opportunity to gain a better understanding of forests with respect to their structure
and dynamics. However, the ecological interpretation of remote sensing observations of
forests is challenging, and in many cases still in development.

One way to obtain information from remote sensing measurements concerning target
vegetation variables (e.g., Leaf Area Index (LAI), species composition, productivity) is
to use models that link the measured remote sensing measurements to the vegetation.
Vegetation models have been successfully applied to study change in forests for nearly
four decades, many of which differ in their applications. As one example, dynamic global
vegetation models (e.g., ED by [10] and CLM4 by [11]), were initially developed to represent
the interaction between vegetation and the global carbon cycle as stand-alone simulation
models, but also to represent vegetation dynamics in the context of Earth system models,
or alongside atmospheric (general circulation models), oceanic and cryospheric modeling
frameworks [12]. These models focus on large-scale applications and they rely on simplifi-
cations to reduce complexity and computational demand (e.g., individual species simplified
to plant functional types). They do not offer information at the individual tree level. For
the analysis of forests in forestry and ecology, there has been a long tradition [13] of using
individual forest models (e.g., FORMIND by [14] and LPJ-GUESS by [15]). FORMIND is
able to represent the ecosystem dynamics of the forest by simulating each individual tree in
a forest (forest gap model). FORMIND allows for the simulation of species-rich forests and
also considers the size and age structure of the simulated tree community. At the same time,
with increasing computing capacity, there is an opportunity to use these models to simulate
large forest areas. Due to the simulation of single trees, they are also able to consider the
heterogeneity of forest structure and dynamics.

An important component in vegetation models is solar irradiance and the competition
for light between plants. One simple way to calculate the light climate is based on Lambert–
Beer’s law, which is often used by forest models. It describes the decreasing intensity of
radiation as it passes through a medium (e.g., tree crowns), depending on the composition
of the medium and the height of the layer. Radiative transfer models (RTMs) calculate
the light climate in the forests in a more detailed way. They simulate the reflectance,
interception, absorption and transmission of light through a canopy. Radiative transfer is
influenced, e.g., by the amount of leaves, their characteristics (i.e., amount of chlorophyll
and carotenoids, water content), the angle of the leaves struck by light and the angle
between the leaves and the Sun. All these parameters are combined by coupled differential
equations and allow for the calculation of reflectance of a forest for light of different
wavelengths (between 300 nm and 2500 nm, depending on the model) including the
reflectance, absorption and transmission of the leaves. Some RTMs are able to provide
results for multiple canopy layers, whereas others assume a homogeneous canopy. RTMs
are able to simulate the reflectance of the canopy, as it is measured by satellites. Canopy
radiative transfer is one of the primary and long-relied-upon mechanisms by which models
relate vegetation properties to surface reflectance as captured by remote sensing [16],
as radiative transfer in combination with vegetation can be modeled at different levels
of complexity. The representation of the vegetation for which the radiative transfer is
calculated can range from a simple homogeneous to a detailed and heterogeneous 3D
representation of the vegetation structure. The complexity of the solution of radiative
transfer problems also varies [17,18] from numerical Monte Carlo ray tracing approaches
(e.g., [19,20]) to analytical solutions using, e.g., four stream technology (e.g., [21]).

Some of the global vegetation models are coupled with simple RTMs to calculate
reflectance for a wavelength from 300 to 2500 nm. The two-stream approximation is used
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to calculate radiative transfer in CLM4.5 [22], ED2 [23] and CLM(SPA) [24]. Mostly, these
models only use a few plant functional types and a low number of canopy layers.

With the new generation of RTMs (such as DART by [25] and mScope by [26]), it is
possible to consider heterogeneous vegetation. The more complex the structure of the
vegetation, the more computationally intensive the simulation of light reflectance and the
interaction with the vegetation. The same applies to the simulation of vegetation on a
global level. As mentioned, global vegetation models must make strong simplifications in
order to be able to simulate large areas in appropriate timespans. Individual-based models
describe forest structure in a more detailed way, but they are difficult to apply on a global
scale due to the computational requirements. Nevertheless, they endorse the fundamental
premise that the structure of forests represents an important factor for ecosystem dynamics
that is lost in more aggregated modeling approaches [13].

Individual-based forest models in combination with the new generation of RTMs
are therefore a promising approach to consider the complexity of forest structure and
species. Their combination will aid in the development of a mechanistic understanding of
the linkage between forest reflectance and forest properties such as structure and species
diversity. The challenge is to develop an approach which is sensitive to forest structure and
species diversity within the current, but ever-increasing, computational constraints both
in simulating vegetation and radiative transfer, in order to allow for the analysis of huge
forest simulations. Such a tool can also be used to gain a more general understanding of
the relationships between reflectance and vegetation properties.

Here, we present an approach by coupling the new-generation RTM mScope with the
individual-based forest model FORMIND. We enlarge the application field of mScope and
investigate the calculated reflectance spectra of Boreal forests using forests in Finland as
an example. Comparing the simulation output with Sentinel-2 data allows us to answer
the following questions: How does the concept of forest representation (homogeneous or
heterogeneous structure) influence the reflectance spectrum? Can the approach reproduce
the variety of reflectance spectra in Finland? Furthermore, how well can we calculate the
vegetation indices of the forests with this approach?

2. Materials and Methods

For coupling the individual-based forest model FORMIND and the radiative transfer
model RTM mScope, we implemented mScope (in an adapted version of [26]) as an ad-
ditional process in the forest model FORMIND. By using inventories for forest stands in
Finland and the forest model, we were able to reconstruct these forests. In combination with
the RTM, it was possible to calculate reflectance spectra for the visible and near-infrared
range. We then compared the simulated reflectance with measured reflectance spectra from
remote sensing observations (Sentinel-2).

To analyze possible applications, different levels of the forest complexity were ana-
lyzed and their influence on the reflection spectra was investigated. In addition, several
vegetation indices were calculated and analyzed.

2.1. Study Site

For this study, we investigated 28 Boreal forest stands in Finland in the region of
North Karelia, which are located in an area of about 150 km × 150 km (see Figure A1). The
inventory data were collected for the FunDivEUROPE project (http://project.fundiveurope.
eu, accessed on 23 April 2023) [27] in summer (August) in 2012 and again in 2017. Each of
the 28 inventory plots had a size of 30 m × 30 m (Figure 1). The forest inventory contains
information on species type, tree positions (x- and y-coordinates) and stem diameters
at breast height from all trees. Information about the understory (e.g., shrubs, grasses,
mosses) is not provided by the inventory. Based on stem diameter and tree species, other
important forest attributes, such as tree height, crown diameter and leaf area index (LAI)
are calculated by the forest model FORMIND. The investigated forest stands include as
main species Picea Abies (Norway spruce), Pinus Sylvestris (Baltic pine), Betula Pendula

http://project.fundiveurope.eu
http://project.fundiveurope.eu
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(silver birch) and Betula Pubescens (downy birch). Information about species richness and
evenness, biomass, basal area and LAI can be found in Table A2 and Figure A5.

Figure 1. Visualization of the forest inventory of the 28 forest stands in Finland (reconstruction of
2015). Each circle represents a tree and its location in the plot (x and y coordinates). The color of the
circles represents the species of a tree and the size of the circle represents its crown diameter. The
number in the squares indicates the number of the forest stand and corresponds to the numbering in
the FORMIND simulation. The forest stands are shown side by side but are originally distributed
over an area of 150 km × 150 km (a map is shown in Appendix Figure A1).

For all forest stands, tree size was measured in 2012 and 2017. Here, we took the
mean stem diameter (at breast height) of the measured stem diameter values of 2012
and 2017 as a proxy for the stem diameter in the year 2015 (same year as the analysis of
Sentinel-2 data [28]) and used these values for the forest reconstruction with FORMIND.
We then compared the calculated reflectance spectra with remote sensing observation using
atmosphere-corrected Sentinel-2 measurements [28] from August 2015. For the simulation
of the reflectance spectra, information on observation geometries (Sun and observer, in
terms of zenith and azimuth) for each forest stand was provided by [28].

2.2. The Individual-Based Forest Model FORMIND

For the simulation of the 28 forest stands, we used the individual- and process-based
forest model FORMIND, which belongs to the model family of individual-based forest gap
models. This means that the growth of every single tree is simulated and that individual
trees interact with each other. Additionally, FORMIND allows for the simulation of forests
with different tree species and also considers the size structure of the tree community.
FORMIND can be used for small-scale simulations as well as large-scale simulations [29,30],
e.g., in the Amazon.

The model includes four main process groups: recruitment, mortality, competition
(e.g., for light and space) and growth of each individual tree (increment of tree biomass,
stem diameter and height). For our investigations, we implemented the RTM mScope as an
additional process in FORMIND (in an adapted version in C++).

The stem position (x- and y-coordinate), species information and the diameter at breast
height were used as input information in FORMIND. Via different allometry formulas,
FORMIND calculates tree height, crown diameter and LAI. This also depends on a set
of species-specific parameters and allometry equations. FORMIND has been extensively
tested and applied to tropical forests [30–38], temperate forests [39–41], grasslands [42] and
Boreal forests [43]. The parameterization of [39] includes all tree species of the investigated
forest stands (North Karelia, Finland) and is used for our simulations on a 30 m × 30 m
scale.

2.3. Coupling mScope with FORMIND

MScope is an RTM which, on the one hand, can handle several canopy layers, and on
the other hand, has a short computation time. For this study, we [26] coupled mScope with
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FORMIND (as a part of the FORMIND code). It is based on Scope (Soil Canopy Observation
of Photochemistry and Energy fluxes, [44]). The Scope model is a vertical, one-dimensional,
integrated radiative transfer and energy balance model, which simulates short-wave re-
flectance spectra (400–2500 nm) and the fluorescence of homogeneous vegetation. In its
original version, it combines two basic RTMs: Fluspect [45] (on the base of PROSPECT, [46])
for calculations of reflectance, transmittance and fluorescence at leaf level and SAIL-based
models (Scattering by Arbitrary Inclined Leaves, Verhoef [47]) for calculating the radiative
transfer in the canopy. Compared to Scope, mScope has multiple layers to include the
variation in the distribution of leaves, which enables the representation and simulation of
heterogeneous vegetation.

We use mScope [26] to simulate the reflectance spectra of forest stands. For calculations
at leaf level (reflectance, transmittance and fluorescence), our mScope version uses the
model PROSPECT-D [46]. At canopy level (radiative transfer), a modified version of Scope
is used.

For the parameterization of the leaf model, the following attributes are used:

• Leaf structure (number of internal leaf layers [layer]);
• The amount of pigments in the leaf (chlorophyll a and b [µg cm−2], carotenoids

[µg cm−2], anthocyanins [µg cm−2], senescent pigments [fraction]);
• Dry matter [g cm−2] and leaf water content [g cm−2];
• Traits describing vegetation structure as the mean and bi-modality of the leaf inclina-

tion distribution function, LAI [m2 m−2], canopy height [m].

The parameters for the different species were taken from the “CABO 2018-2019 Leaf-
Level Spectra Data set” by [48] and can be found in Table A1. These values are generalized
values (measurements from Finland were not available). Due to physiological similarities,
the species Betula Pendula and Betula Pubescens are combined to one species group
called Betula (birches). Additional information that is used is soil reflectance spectra (see
Figure A2) and atmospheric constants, which are taken from [26].

2.4. Representations of Different Levels of Forest Complexity (Heterogeneous Structure)

Using the individual-based approach in forest modeling, it is possible to simulate and
describe forest structure at fine scales, which allows for the heterogeneity of a forest to be
considered. Individual-based forest models (here, FORMIND) make it possible to gain tree-
and forest-specific properties for each forest patch (e.g., 30 m × 30 m) in different height
layers (each height layer has a thickness/size ∆h) from the bottom/soil up to the top of the
canopy.

One important property to calculate radiative transfer is the LAI. FORMIND enables
the calculation of LAI distributions for each tree over height (the above-described height
layers). In order to determine the species composition, we used the LAI fraction of a species
as a measure of its abundance. MScope uses a fixed number of height layers (in the version
of [28]: 60 layers). In our modified version, we use a fixed layer height ∆h = 10 m for a low
height resolution and later ∆h = 0.5 m for a high resolution (see Figure A4). We analyze
forests up to forest heights of 50 m. Thus, we use 5 or 100 height layers, respectively, for
our calculations. Depending on the structure of the forest, the leaves are located in different
height layers. Height layers without leaves do not contribute to the reflectance spectra.

To calculate leaf reflectance and transmittance (using the leaf model PROSPECT-D),
the RTM utilized information from the forest model for each layer, which included a leaf pa-
rameterization containing leaf properties for each layer. Additionally, the distribution of the
orientation of leaves was considered—-it was assumed to be spherical for all species—but
it is also possible to choose other distributions. MScope also includes observation geometry
(Sun and satellite, azimuth and zenith). Vegetation information from the reconstructed
simulated forest, which is provided by the forest model, could be processed in different
ways and then be transferred to the radiative transfer model. In this paper, we analyze
three cases, each resulting in a different representation of the vegetation. The processing
differs according to the LAI and according to the species composition (Figure 2).
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Figure 2. Different concepts of forest representation. Visualization of the different representations of
a sample forest during the simulation (first column: simple forest representation, second column:
detailed forest representation, third column: spectra-averaged forest representation). We see how,
under the given concept, the forest is represented in FORMIND (first row), how it is simulated in
mScope (second row) and how the output is built (third row). The sample forest has 3 different
species (represented by the different colors). The concepts of representation are described in detail in
the text below.

1. Simple forest representation
The simplified forest representation only uses reduced information of the forest. It
assumes the same mixture of species and the same LAI for each height layer of the
forest stand. The leaf parameterization is calculated by averaging the leaf attributes
of the occurring species (weighted by LAI, as a measure of abundance). The LAI of
the forest stand is equally distributed among all layers.

2. Detailed forest representation
The detailed representation of the forest assigns to each height layer different mixtures
of species and different LAIs. The leaf parameterization for each layer is calculated by
averaging the leaf attributes of the occurring species weighted by LAI in the height
layer, as a measure of abundance. For each layer of the forest, the calculated LAI of
the reconstructed forest stand will be used.

3. Spectra-averaged representation
In this case, the forest is divided into different "sub-forests". In each sub-forest stand,
we maintain the total number of trees and the structure of the main forest stand.
However, we assume that all trees in a sub-forest stand are of only one species. Thus,
there are as many sub-forests as there are tree species. For each layer, the calculated
LAI of the reconstructed forest stand is used. For each of these single-species sub-
forests, the reflectance spectra are calculated using the species-specific leaf parameters.
The final reflectance spectrum is determined by averaging the species-specific spectra
weighted by LAI fraction, as a measure of abundance.

The processed Sentinel-2 observations [28] include reflectance values for only 10 wave-
bands. MScope calculates radiative transfer for wavelengths in the range from 400 nm
to 2500 nm (with a resolution of 1 nm). For better comparability with the simulated re-
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flectance profiles, we averaged the simulated reflectance values for the different Sentinel-2A
bands (e.g., Sentinel Band 704 nm has a range of 15 nm, so we averaged 15 reflectance
values; for more information on bands see Appendix Table A3). This averaged values are
shown as dots in Figures 3, 4 and A13 and are the basis of the comparisons with Sentinel-2
measurements.

Vegetation indices derived from canopy reflectance are widely used in remote sensing,
as they represent proxies for vegetation attributes (e.g., LAI, productivity). We calcu-
lated several vegetation indices (NDVI, EVI, MSI, in appendix: NDMI, kNDVI). NDVI is
chlorophyll-sensitive. EVI [49] is responsive to canopy structural variations, including LAI,
canopy type and plant physiognomy [50]. We also analyzed kNDVI [51] as a modification
of the NDVI. The NDMI is partly correlated with the water content of the canopy [52].
Ref. [53] introduced the moisture stress index (MSI, [54]), which utilizes reflectance wave-
bands in the SWIR (1550–1750 nm) and NIRS (760–900 nm). Additionally to the vegetation
indices, we analyzed the similarity index SAD [55] (spectral angle distance see Appendix
Figure A12 and Table A4).

In the mScope model, some code adjustments were made to account for the structure
of the forest models and forests from the inventory. In forest models, it is possible that there
are layers without leaves (vertical gaps). Adjustments were necessary to ensure that these
layers had no influence on the reflectance spectrum. MScope calculates the probability
of viewing a leaf in solar (PS) and observer direction (PO) by assuming a homogeneously
distributed LAI in the forest.

PS = ek·xl·LAI (1)

PO = eK·xl·LAI (2)

with xl as negative cumulative layer thickness, k as extinction coefficient in direction of the
Sun, LAI as leaf area index of forest stand and K as extinction coefficient in the direction of
the observer.

This leads to the situation that the probability is also influenced by layers with an LAI
of 0. We have changed the calculation equivalently, allowing for different LAI values for
the height layers.

PS = e−k·LAI(i) (3)

PO = e−K·LAI(i) (4)

with LAI(i) as leaf area index in height layer i of forest stand, k as extinction coefficient in
the direction of the Sun and with K as extinction coefficient in the direction of the observer.

The mScope code also includes a correction of PS and PO, which we also considered.

3. Results

First, to reduce the complexity of the analysis, we analyzed the reflectance of even-
aged forests, where the RTM uses a low resolution (height layer size ∆h = 10 m, Figure 3).
In each layer a homogeneous leaf distribution is assumed. The even-aged forest stand
number 17, which was dominated by one species, and stand number 5, which contained
three species, were used as examples for this analysis. Reflectance was then calculated for
simplified, detailed and spectra-averaged forest representations.

There were differences (up to 140%) in reflectance between the detailed (blue) and
the simplified (orange) forest representation. The simplified representation consistently
produced higher reflectance (especially in comparison to spectra-averaged representation).
Both the modeling and satellite measurements show different reflectance spectra for the
two forests. We found a higher similarity of reflectance for the detailed representation.

In the next part of the investigation, we increased the represented complexity of the
forest by assuming a layer height of 0.5 m (Figure 4). Here, the forest model (here FOR-
MIND) provided mScope with a higher resolution distribution of LAI and species-specific
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information over height. As in Figure 3, the results are again shown for the simplified,
detailed and the spectra-averaged representation of the forests for both example sites.

Figure 3. Reflectance spectra for detailed and simplified forest representation by using layers with a
size of 10 m. Visualization of the calculated reflectance profiles for two forest stands (numbers 5 and
17) in Finland. Forest stand number 17 (left, mainly one species) and forest stand number 5 (right,
three species). Both forest stands are even-aged (small standard deviation of tree heights: 4.6 m and
4.5 m). Each point represents the reflectance value averaged over the specific bands (corresponding
to the bands of Sentinel-2). Sentinel measurements are shown in black and simulated reflectance is
shown in orange/blue/pink from coupling a forest model (FORMIND) with mScope. We used 10 m
height layers. The reflection of all other forest stands is shown in the Appendix (Figure A6).

Figure 4. Reflectance spectra for detailed and simplified forest representation by using standard layers
with a size of 0.5 m. Visualization of the calculated reflectance profiles for two forest stands (numbers
5 and 17) in Finland according to Figure 2 is shown. Each point represents the averaged reflectance
value over the specific bands (corresponding to the bands of Sentinel-2). Sentinel measurements
are shown in black and simulated reflectance is shown in orange/blue/pink from coupling a forest
model (FORMIND) with mScope. We use here 0.5 m height layers. The reflection of all other forest
stands is shown in the Appendix (Figure A10) Additionally, the reflection for the complete spectra
of all other forest stands is shown in the Appendix (Figure A11). Additionally, we calculated the
spectral angle distance for all comparisons (see Appendix Figure A12).

All three versions produced comparable reflectance spectra (especially for forest stand
number 17). The lowest reflectances were produced with the spectra-averaged forest
representation (in particular for forest stand number 5 with underestimating the NIR
values). For forest stand 17, the spectra-averaged forest representation produces the same
reflectance values as the detailed forest representation version. As the forest stand contains
only one species, there is no averaging in the leaf parameters and spectra, and we obtained
the same results for these versions. The results for all bands were in agreement with the
Sentinel measurements.

The simulated reflectance spectra also enabled the calculation of vegetation indices
(see Section 2.3). We analyzed NDVI, EVI and MSI (kNDVI and NDMI in Appendix
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Figure A19) for each forest stand and for each forest representation (Figure 5). Each were
then compared with indices calculated using the satellite observations.

Figure 5. Comparison of vegetation indices. The vegetation indices (NDVI left, EVI middle, MSI
right) are calculated from the reflectance values in the different wavebands once for the simulated
reflectance spectra and for the satellite measurements. In each row, a different forest representation is
used to calculate the results of the indices from the simulated spectra (1. detailed forest representation,
2. simple forest representation, 3. spectra-averaged forest representation; more information about the
cases in Section 2.3). Each point represents a forest stand in Finland (gray points indicate birch forest
stands that are not used to calculate the RMSE and R2—see Appendix Figures A14–A17). Results for
the calculation of the NDMI and the kNDVI can be found in the Appendix (Figure A19). We excluded
five forest stands from our analysis due to inconsistencies in Sentinel-2 measurements (see Appendix
Figures A14–A17).

We obtained different results for all three forest representations when analyzing
NDVI, EVI and MSI. Lower R2 and higher RMSE values are obtained for MSI. Measured
Sentinel-2 values were close to each other. NDVI values from simulated reflectance spectra
were within small ranges. We found an R2 of 0.63 (detailed forest representation) when
comparing simulated and measured NDVI values. For the EVI, there is a larger range of
values. EVI led to a lower R2 (about 0.45) and higher RMSE (0.08) compared to NDVI. The
MSI of birch forest stands was overestimated (gray points). Detailed and simple forest
representation show similar results for all three indices.

4. Discussion

In this work, we developed a new approach to study forest reflectance for radiation in
the visible and near-infrared spectrum. For this, we coupled the individual-based forest
model FORMIND with an adapted version of the radiative transfer model mScope. We
then used the coupled models to reconstruct 28 forest stands in Finland and to calculate
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reflectance spectra for each. We analyzed three different concepts of forest representation:
simple, detailed and spectra-averaged.

When we compared the simulated reflectance spectra with the Sentinel measurements,
the best results where achieved for the detailed forest representation. However, the mea-
sured reflectance of forests stands with similar forest structure and species mixture shows
large differences in five cases (Appendix Figures A14–A17). The analysis of these cases
(outliers) suggests that factors other than LAI distribution and species composition are
here responsible for the differences such as limitations in the atmospheric correction or
overlapping of tree crowns in the neighborhood of the forest stands. In addition to this,
the approach shows potential for improvement in the sensitivity of simulated reflectance
for Sentinel-2 bands B01, B03 and B04. The quality of the simulated reflectance spectrum
does not depend on certain species or forest structures (we did not find general relations).
This study provides a baseline for further research. The coupling of individual-based forest
models and multi-layer RTMs opens up the opportunity to analyze a vast range of forests
with various structure and species mixtures and to gain a deeper understanding of the
reflectance spectra of complex forests (e.g., influence of tree allometries, leaf parameters or
role of understory).

An important aspect of our study is the representation of the forest in the the RTM.
The simple and detailed forest representations use an averaged leaf parameterization for
each height layer (using the LAI of the occurring species as weighting factor). In the
spectrum-averaged version, we simulated each occurring species as a monoculture forest
and afterwards averaged the resulting reflectance spectra (using the LAI of the occurring
species as weighting factor). Despite the non-linear nature of the RTM, the best results were
obtained when the input leaf parameters were averaged (simple and detailed concept).
Less satisfactory results were obtained when the output reflectance (reflectance spectra for
each species) was averaged (spectra-averaged concept). We obtained similar results for
simple and detailed forest representation. The NDVI values were all within a smaller range.
As only a few of the analyzed stands had an LAI below 2.5, we also observed a saturation
of the NDVI values [56]. Forest stands covering a broader spectrum of LAI values will
allow for a more general comparison of satellite-based and modeled indices and should be
conducted in future studies. For the EVI values, a lower correlation and a higher RMSE
compared to the NDVI analysis was observed.

A challenge for the parameterization of radiative transfer models is the selection of
suitable parameters (e.g., for leaf attributes, soil and leaf angle distribution). There are a
large number of measurements available that include different leaf parameters. However,
the leaf parameters of each species can vary depending on the site, the position of the leaf
within the canopy, the day of the year of the measurement and environmental factors [57].
Therefore, leaf parameterizations from sites with the most comparable environmental
conditions should be used. A sensitivity analysis [58–61] was used to analyze the influence
of leaf parameters on the reflectance spectrum. In particular, higher sensitivity [48] is
observed for those parameters that influence the visible light spectrum (e.g., pigments).
Using hyperspectral data, this approach can also be used to fit species parameters.

For soil reflectance, often a wet soil type is assumed (due to a lack of data) and, in
this study, we followed this approach. Nevertheless, it is also be possible to model the soil
reflectance spectrum with an additional model (e.g., the BSM model by [62]).

In this study, we developed a forward modeling tool for connecting forest reflection
with forest properties. There are further interesting analyses possible based on this ap-
proach. One example may be to analyze more complex forests, such as tropical forests. The
information about reflectance can be used as an addition to, e.g., LIDAR measurements, to
analyze forest structure and functions. It is useful to point out here that the forest model is
not only able to investigate structural information but is also able to calculate characteristics
of forest dynamics such as productivity. The combination of height-dependent information
about forest structure with the information about light reflection spectra may give sufficient
information about structure and species composition, resulting in the capability to derive,
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e.g., estimates of current carbon pools. In addition to the work by [63], the presented
approach makes it possible to improve the matching of satellite measurements (e.g., LI-
DAR profiles) to forest simulations considering spatially heterogeneous environmental and
ecological conditions. As a result, it can improve the carbon estimates for large regions.
Please note that the presented approach could be used to derive simulated LIDAR profiles
(and thus may improve the LIDAR model used in the mentioned study).

Importantly, this approach can also be used to generate a large number of reflectance
spectra for forests by simulating forests over time and tracking reflectance spectra. This
may allow us to understand the dynamics of reflectance spectra during forest succession.
Disturbed forests show similar characteristics as forests in the early and mid-successional
phases. We can use this knowledge to characterize disturbed forests based on reflectance.
This may help us to distinguish better between natural and disturbed forests.

However, forest simulations also include path dependencies. Not all types of forest
may be covered in simulations, which might occur due to management or disturbances. To
overcome this, the Forest Factory approach [64,65] generates a broad range of forest states
covering various types of forest structures and species compositions. This approach can
also be used to identify which forests or forest states provide the same reflectance spectrum,
opening up the possibility of the inversion of reflectance spectra. On the one hand, we can
relate a reflectance spectrum to a set of different forest structures. On the other hand, we
could also attribute a reflectance spectrum to different leaf parameters [66].

These types of studies could also be conducted for different climate scenarios, for
different management strategies and regions/biomes (e.g., using the large set of available
forest parameterizations for FORMIND [64,67]). Lookup tables and artificial intelligence
can help us analyze such large sets of forests and their reflectance spectra and, if desired,
even offer the possibility to incorporate additional information about the forests using the
forest model.

5. Conclusions

In this work, we have applied an adapted version of the radiative transfer model
mScope to a complex vegetation structure modeled by the individual-based forest model
FORMIND. We showed that the weighted averaging of leaf parameters could be a useful
approach to simulate reflectance of forests with different species mixtures (simple/detailed
representation). The investigated types of forest representation provide good simulated
reflectance spectra (for optical and NIR-range) compared to satellite measurements. How-
ever, which type of forest representation provides the best results is influenced by forest
structure. In respect to vegetation indices, the best results were obtained assuming the
simple or detailed forest representation. Good correlations were found between simulated
and measured vegetation indices (especially NDVI). For future studies, we intend to take
advantage of the detailed representation of the forest, and plan to study more heteroge-
neous forest stands, such as tropical forests. In combination with the forest model, many
new perspectives emerge that provide the opportunity to better understand the relationship
between forest reflectance and forest properties.
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Abbreviations
The following abbreviations are used in this manuscript:

RTM Radiative Transfer Model
mScope multilayer Soil Canopy Observation of Photochemistry and Energy fluxes
LAI Leaf Area Index
SWIR Short-Wave Infrared
NIRS Near-Infrared Spectrum
RMSE Root Mean Square Error
MAE Mean Absolute Error
NDVI Normalized Difference Vegetation Index
EVI Enhanced Vegetation Index
MSI Moisture Stress Index
NDMI Normalized Difference Moisture Index
kNDVI kernel NDVI
SAD Spectral Angle Distance

Appendix A. Additional Information on the Method Section

Figure A1. Study map of the 28 forest stands in the region North Karelia (blue area), Finland. The
forest stands are distributed over an area of 150 km × 150 km.

https://formind.org
https://formind.org
https://github.com/peiqiyang/mSCOPE
https://data.caboscience.org/leaf
michael.scherer@biologie.unifreiburg.de
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Figure A2. Soil reflection. Shown is assumed the reflection of wet soil. We assume for all forest stands
the same soil reflectance.

Figure A3. Analysis of allometries in FORMIND. Shown are the relationships between stem diameter
and tree height, crown diameter as well as the total leaf area of a tree for the tree species simulated in
FORMIND.

Figure A4. Concept of height layers. Shown is the same forest with a different resolution of height
layers (∆h = 10 m and ∆h = 0.5 m). Each layer includes different species mixtures (indicated by color).
We use 5 height layers in the case ∆h = 10 m and 100 height layers in the case ∆h = 0.5 m. All layers
which contain leaves contribute to the resulting reflectance spectrum. Empty height layers (no leaves
are in the layer) do not influence the reflectance spectrum (details see Section 2.4).

Table A1. Leaf parameters.

Leaf Parameter Picea Abies Pinus Silvestrys Betula (Pendula and Pubescens)

Cab [µg cm−2] 21.94 23.92 36.71
Cdm [g cm−2] 0.024 0.025 0.006
Cw [g cm−2] 0.03 0.03 0.0117

Cs [−] 0.01 0.01 0.01
Car [µg cm−2] 4.40 4.50 8.62

N [−] 1.25 1.24 1.77
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Table A2. Attributes of the forest stands from Finland used for this study (28 plots, 30 m × 30 m).

Plot Number Basal Area Maximum
Height

Height Het-
erogeneity

Species
Richness

Species
Evenness Biomass LAI

[−] [m2 ha−1] [m] [m] [−] [−] [todm ha−1] [−]

1 28.78 30.09 5.31 3 0.49 148.30 3.93
2 19.63 28.63 3.47 2 0.35 106.83 3.23
3 16.31 26.38 2.88 2 0.26 90.74 2.69
4 22.25 29.21 4.54 2 0.41 118.74 3.46
5 19.87 29.71 4.64 5 0.74 109.47 2.26
6 32.84 30.80 4.04 2 0.04 170.06 4.84
7 17.60 23.84 3.36 4 0.16 94.34 3.13
8 17.33 24.59 2.37 3 0.17 95.09 2.94
9 25.66 26.10 3.69 5 0.25 133.24 2.39

10 27.03 30.01 4.59 2 0.05 139.91 3.98
11 17.02 22.70 2.92 3 0.27 85.02 3.15
12 27.35 23.32 3.39 3 0.65 114.86 4.07
13 20.38 21.67 3.28 3 0.59 88.96 2.64
14 18.37 23.34 2.77 1 0.00 86.37 1.67
15 21.37 26.22 3.38 3 0.44 105.38 2.37
16 27.37 26.44 4.08 3 0.10 139.98 2.52
17 24.54 28.80 4.52 2 0.38 125.61 2.58
18 30.99 28.45 4.24 2 0.07 152.92 4.71
19 30.12 28.74 3.61 3 0.47 162.74 3.56
20 30.42 30.30 3.92 2 0.35 164.55 4.52
21 17.60 23.34 2.45 2 0.06 84.49 1.60
22 27.16 25.85 3.96 2 0.43 120.19 3.54
23 29.31 27.40 4.08 2 0.16 139.35 4.44
24 25.45 21.70 2.63 3 0.38 89.55 5.04
25 30.72 27.96 4.61 3 0.62 145.02 4.58
26 26.66 34.41 5.57 4 0.69 138.13 3.67
27 22.03 22.77 2.95 3 0.55 95.38 2.64
28 22.10 25.73 3.21 3 0.50 114.78 2.97

Basal area is defined by the cross-sectional area of trees at breast height. Maximum height describes the highest
tree height in the forest stand. Height heterogeneity describes the standard deviation of tree height. Richness
describes the number of species in the forest. Evenness is defined by the normalized Shannon index. Biomass
describes the sum of all tree biomass.

Table A3. Spectral configuration of the 10 Sentinel-2A bands used in this study [28].

Spectral Band
Center

Wavelength
[nm]

Band Name Band Width
[nm]

Spatial
Resolution [m]

B02 490 blue 65 10
B03 560 green 35 10
B04 665 red 30 10
B05 705 red-edge 1 15 20
B06 740 red-edge 2 15 20
B07 783 red-edge 3 20 20
B08 842 NIR 1 115 10
B08a 865 NIR 2 20 20
B11 1610 SWIR 1 90 20
B12 2190 SWIR 2 180 20
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Figure A5. LAI Profiles for each forest stand. Shown are the LAI values (x-axis) in each height layer
(y-axis) per species (red—Betula, green—Picea Abies, blue—Pinus Sylvestris). The colored lines show
the LAI for a particular species (sum of all trees of the species in the plot). Therefore, the sum of all
the lines gives the LAI profile of all trees in the plot.

Appendix B. Additional Information on the Result Section

Figure A6. Comparison of simulated reflectance spectra with Sentinel measurements assuming a
simple forest representation using different descriptions of the vertical forest structure (0.5 m or 10 m
height layers). The Sentinel 2 spectrum of plot 25 is not provided by [28].
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Figure A7. Comparison of simulated reflectance spectra with Sentinel measurements assuming a
detailed forest representation using different descriptions of the vertical forest structure (0.5 m or
10 m height layers).

Figure A8. Comparison of simulated reflectance spectra with Sentinel measurements assuming a
spectra-averaged forest representation using different descriptions of the vertical forest structure
(0.5 m or 10 m height layers).
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Figure A9. Comparison of simulated reflectance spectra with Sentinel measurements assuming
different types of forest representations (simple, detailed and specta-averaged) and using 10 m height
layers for the description of vertical forest structure.

Figure A10. Comparison of simulated reflectance spectra with Sentinel measurements assuming
different types of forest representations (simple, detailed, spectra-averaged) and using 0.5 m height
layers for the description of vertical forest structure.



Remote Sens. 2023, 15, 3078 18 of 25

Figure A11. Comparison of simulated reflectance spectra assuming different types of forest repre-
sentations (simple, detailed, spectra averaged) and using 0.5 m height layers for the description of
vertical forest structure. The resolution of the simulated reflectance wavelengths is 1 nm.

Figure A12. Comparison of simulated reflectance spectra and measured reflectance spectra using
a distance index (Spectral Angle Distance, 0 rad: identical, π

2 rad: different). Results are shown
for 28 forest plots (dots) and different forest representations. Comparison has been conducted for
10 wavebands of Sentinel-2.
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Figure A13. Comparison of simulated and measured reflectance of 28 forest stands (dots) and different
forest representations (indicated by colors). Please note that the scales used for the illustration
of measured and simulated reflectance differs for each band. Reflectance has been averaged for
10 wavebands (described by centered wavelengths; for more information on wavebands see Table A3).

Appendix C. Analysis of Selected Forest Stands (Outliers)

Figure A14. Comparison of reflectance spectra and additional information of forest stand 15 (classified
as outlier) with forest stand 5. We compare forest properties of an outlier (left side) with forest
properties of a forest with similar attributes, which is not an outlier (right side). Therefore, we
compare the LAI profile (outer sides top), the reflectance spectra (in the middle) and the species
composition (outer sides bottom). Despite the similar LAI distribution and species composition we
obtained different Sentinel-measurements for reflectance, but similar simulated reflectance.
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Figure A15. Comparison of reflectance spectra and additional information of forest stands 7 and 8
(classified as outliers) with forest stand 11. We compare forest properties of two outliers (left side)
with forest properties of a forest with similar attributes, which is not an outlier (right side). Therefore,
we compare the LAI profile (outer sides top), the reflectance spectra (in the middle) and the species
composition (outer sides bottom). Despite the similar LAI distribution and species composition, we
obtained different Sentinel measurements for reflectance, but similar simulated reflectance.

Figure A16. Comparison of reflectance spectra and additional information of forest stand 19 (classified
as outlier) with forest stand 22. We compare forest properties of an outlier (left side) with forest
properties of a forest with similar attributes, which is not an outlier (right side). Therefore, we
compare the LAI profile (outer sides top), the reflectance spectra (in the middle) and the species
composition (outer sides bottom). Despite the similar LAI distribution and species composition, we
obtained different Sentinel measurements for reflectance, but similar simulated reflectance.

Figure A17. Comparison of reflectance spectra and additional information of forest stand 18 (classified
as outlier) with forest stand 23. We compare forest properties of an outlier (left side) with forest
properties of a forest with similar attributes, which is not an outlier (right side). Therefore, we
compare the LAI profile (outer sides top), the reflectance spectra (in the middle) and the species
composition (outer sides bottom). Despite the similar LAI distribution and species composition, we
obtained different Sentinel measurements for reflectance, but similar simulated reflectance.
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Appendix D. Analysis of LAI and Additional Indices

Figure A18. Relationship between LAI (x-axis, field data) and NDVI (y-axis, Sentinel-2 measurements)
of 28 Finland forest stands.

Figure A19. Comparison of vegetation indices for 28 forest stands in Finland. The vegetation
indices (NDMI left, kNDVI right) for the measured reflectance spectra in the different wavebands
for the simulated reflectance spectra (x-axis) and for the satellite measurements (y-axis). In each
row, a different forest representation is assumed (1. detailed forest representation, 2. simple forest
representation, 3. spectra-averaged forest representation; more information about the cases in
Section 2.3). Each point represents a forest stand in Finland (gray points indicate outliers that are not
used to calculate the RMSE and R2—see Appendix Figures A14–A17).
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Table A4. Analysis of vegetation indices for different forest representations. The mean spectral angle
distance is calculated as average of the SAD of 28 forest stands for each forest representation (height
layer size = 0.5 m). More details about the vegetation indices and spectral angle distance can be found
in Section 2.4, Figures 5 and A19.

Simple Forest Detailed Forest Spectra Averaged Forest

NDVI
R2 0.63 0.63 0.59

bias R2 −0.086 −0.097 −0.177
RMSE 0.04 0.04 0.033
MAE 0.033 0.034 0.027

EVI
R2 0.43 0.45 0.25

bias R2 0.086 0.059 0.116
RMSE 0.107 0.081 0.074
MAE 0.092 0.069 0.062

MSI
R2 0.49 0.49 0.47

bias R2 0.141 0.162 0.164
RMSE 0.051 0.059 0.054
MAE 0.041 0.05 0.043

NDMI
R2 0.49 0.5 0.49

bias R2 0.133 0.15 0.156
RMSE 0.057 0.066 0.060
MAE 0.046 0.056 0.049

kNDVI
R2 0.63 0.62 0.59

bias R2 −0.089 −0.098 −0.15
RMSE 0.041 0.042 0.036
MAE 0.034 0.035 0.029

mean SAD 0.101 0.103 0.113

References
1. Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al.

A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [CrossRef] [PubMed]
2. Malhi, Y. The carbon balance of tropical forest regions, 1990–2005. Curr. Opin. Environ. Sustain. 2010, 2, 237–244. [CrossRef]
3. Ciais, P.; Sabine, C.L.; Bala, G.; Bopp, L.; Brovkin, V.A.; Canadell, J.G.; Chhabra, A.; DeFries, R.S.; Galloway, J.N.; Heimann, M.;

et al. Carbon and Other Biogeochemical Cycles. In Climate Change 2013—The Physical Science Basis: Working Group I Contribution to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014;
pp. 465–570. [CrossRef]

4. FAO. The State of the World’s Forests 2022. Forest Pathways for Green Recovery and Building Inclusive, Resilient and Sustainable
Economies; FAO: Rome, Italy, 2022. [CrossRef]

5. Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.; Laurance, W.F.; Lovejoy, T.E.;
et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [CrossRef] [PubMed]

6. Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities.
Nature 2000, 403, 853–858. [CrossRef]

7. Pimm, S.L.; Jenkins, C.N.; Abell, R.; Brooks, T.M.; Gittleman, J.L.; Joppa, L.N.; Raven, P.H.; Roberts, C.M.; Sexton, J.O. The
biodiversity of species and their rates of extinction, distribution, and protection. Science 2014, 344, 1246752. [CrossRef]

8. Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol.
Evol. Syst. 2013, 44, 593–622. [CrossRef]

9. Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al.
The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830–8857. [CrossRef]

10. Moorcroft, P.R.; Hurtt, G.C.; Pacala, S.W. A method for scaling vegetation dynamics: The ecosystem demography model (ED).
Ecol. Monogr. 2001, 71, 557–586. [CrossRef]

http://doi.org/10.1126/science.1201609
http://www.ncbi.nlm.nih.gov/pubmed/21764754
http://dx.doi.org/10.1016/j.cosust.2010.08.002
http://dx.doi.org/10.1017/CBO9781107415324.015
http://dx.doi.org/10.4060/cb9360en
http://dx.doi.org/10.1038/nature10425
http://www.ncbi.nlm.nih.gov/pubmed/21918513
http://dx.doi.org/10.1038/35002501
http://dx.doi.org/10.1126/science.1246752
http://dx.doi.org/10.1146/annurev-ecolsys-110512-135914
http://dx.doi.org/10.3390/rs70708830
http://dx.doi.org/10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2


Remote Sens. 2023, 15, 3078 23 of 25

11. Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Zeng, X.; Yang, Z.L.; Levis, S.;
Sakaguchi, K.; et al. Parameterization improvements and functional and structural advances in version 4 of the Community
Land Model. J. Adv. Model. Earth Syst. 2011, 3, 1–25.

12. Maréchaux, I.; Langerwisch, F.; Huth, A.; Bugmann, H.; Morin, X.; Reyer, C.P.; Seidl, R.; Collalti, A.; Dantas de Paula, M.; Fischer,
R.; et al. Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecol. Evol. 2021,
11, 3746–3770. [CrossRef]

13. Shugart, H.H.; Wang, B.; Fischer, R.; Ma, J.; Fang, J.; Yan, X.; Huth, A.; Armstrong, A.H. Gap models and their individual-based
relatives in the assessment of the consequences of global change. Environ. Res. Lett. 2018, 13, 033001. [CrossRef]

14. Köhler, P.; Huth, A. The effects of tree species grouping in tropical rainforest modelling: Simulations with the individual-based
model Formind. Ecol. Model. 1998, 109, 301–321. [CrossRef]

15. Smith, B. LPJ-GUESS-An Ecosystem Modelling Framework; Department of Physical Geography and Ecosystems Analysis, INES,
Sölvegatan: Lund, Sweden, 2001; Volume 12, p. 22362.

16. Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [CrossRef]
17. Kokhanovsky, A.A.; Kuusk, A.; Lang, M.; Kuusk, J. Database of optical and structural data for the validation of forest radiative

transfer models. In Light Scattering Reviews 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 109–148.

18. Kuusk, A. Canopy Radiative Transfer Modeling. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018;
pp. 9–22. [CrossRef]

19. Brazhnik, K.; Shugart, H. Model sensitivity to spatial resolution and explicit light representation for simulation of boreal forests
in complex terrain. Ecol. Model. 2017, 352, 90–107. [CrossRef]

20. Deutschmann, T.; Beirle, S.; Frieß, U.; Grzegorski, M.; Kern, C.; Kritten, L.; Platt, U.; Prados-Román, C.; Puk, ı, J.; Wagner, T.; et al.
The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features. J.
Quant. Spectrosc. Radiat. Transf. 2011, 112, 1119–1137. [CrossRef]

21. Verhoef, W.; Jia, L.; Xiao, Q.; Su, Z. Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation
canopies. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1808–1822. [CrossRef]

22. Bonan, G.B.; Lawrence, P.J.; Oleson, K.W.; Levis, S.; Jung, M.; Reichstein, M.; Lawrence, D.M.; Swenson, S.C. Improving canopy
processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J.
Geophys. Res. Biogeosci. 2011, 116, G02014. [CrossRef]

23. Medvigy, D.; Wofsy, S.; Munger, J.; Hollinger, D.; Moorcroft, P. Mechanistic scaling of ecosystem function and dynamics in space
and time: Ecosystem Demography model version 2. J. Geophys. Res. Biogeosci. 2009, 114, G01002. [CrossRef]

24. Bonan, G.; Williams, M.; Fisher, R.; Oleson, K. Modeling stomatal conductance in the earth system: Linking leaf water-use
efficiency and water transport along the soil–plant–atmosphere continuum. Geosci. Model Dev. 2014, 7, 2193–2222. [CrossRef]

25. Gastellu-Etchegorry, J.P.; Lauret, N.; Yin, T.; Landier, L.; Kallel, A.; Malenovský, Z.; Bitar, A.A.; Aval, J.; Benhmida, S.; Qi, J.; et al.
DART: Recent Advances in Remote Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll Fluorescence. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2640–2649. [CrossRef]

26. Yang, P.; Verhoef, W.; van der Tol, C. The mSCOPE model: A simple adaption to the SCOPE model to describe reflectance,
fluorescence and photosynthesis of vertically heterogeneous canopies. Remote Control. Environ. 2017, 201, 1–11. [CrossRef]

27. Baeten, L.; Verheyen, K.; Wirth, C.; Bruelheide, H.; Bussotti, F.; Finér, L.; Jaroszewicz, B.; Selvi, F.; Valladares, F.; Allan, E.; et al.
A novel comparative research platform designed to determine the functional significance of tree species diversity in European
forests. Perspect. Plant Ecol. Evol. Syst. 2013, 15, 281–291. [CrossRef]

28. Ma, X.; Mahecha, M.D.; Migliavacca, M.; van der Plas, F.; Benavides, R.; Ratcliffe, S.; Kattge, J.; Richter, R.; Musavi, T.; Baeten,
L.; et al. Inferring plant functional diversity from space: The potential of Sentinel-2. Remote Sens. Environ. 2019, 233, 111368.
[CrossRef]

29. Paulick, S.; Dislich, C.; Homeier, J.; Fischer, R.; Huth, A. The carbon fluxes in different successional stages: Modelling the
dynamics of tropical montane forests in South Ecuador. For. Ecosyst. 2017, 4, 1–11. [CrossRef]

30. Rödig, E.; Cuntz, M.; Rammig, A.; Fischer, R.; Taubert, F.; Huth, A. The importance of forest structure for carbon fluxes of the
Amazon rainforest. Environ. Res. Lett. 2018, 13, 054013. [CrossRef]

31. Köhler, P.; Huth, A. Simulating growth dynamics in a South-East Asian rainforest threatened by recruitment shortage and tree
harvesting. Clim. Chang. 2004, 67, 95–117. [CrossRef]

32. Gutiérrez, A.G.; Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspect. Plant Ecol. Evol.
Syst. 2012, 14, 243–256. [CrossRef]

33. Huth, A.; Ditzer, T. Long-term impacts of logging in a tropical rain forest—A simulation study. For. Ecol. Manag. 2001, 142, 33–51.
[CrossRef]

34. Kammesheidt, L.; Köhler, P.; Huth, A. Sustainable timber harvesting in Venezuela: A modelling approach. J. Appl. Ecol. 2001,
38, 756–770. [CrossRef]

35. Köhler, P.; Chave, J.; Riéra, B.; Huth, A. Simulating the long-term response of tropical wet forests to fragmentation. Ecosystems
2003, 6, 114–128. [CrossRef]

36. Köhler, P.; Huth, A. Impacts of recruitment limitation and canopy disturbance on tropical tree species richness. Ecol. Model. 2007,
203, 511–517. [CrossRef]

http://dx.doi.org/10.1002/ece3.7391
http://dx.doi.org/10.1088/1748-9326/aaaacc
http://dx.doi.org/10.1016/S0304-3800(98)00066-0
http://dx.doi.org/10.1080/01431168508948283
http://dx.doi.org/10.1016/B978-0-12-409548-9.10534-2
http://dx.doi.org/10.1016/j.ecolmodel.2017.02.026
http://dx.doi.org/10.1016/j.jqsrt.2010.12.009
http://dx.doi.org/10.1109/TGRS.2007.895844
http://dx.doi.org/10.1029/2010JG001593
http://dx.doi.org/10.1029/2008JG000812
http://dx.doi.org/10.5194/gmd-7-2193-2014
http://dx.doi.org/10.1109/JSTARS.2017.2685528
http://dx.doi.org/10.1016/j.rse.2017.08.029
http://dx.doi.org/10.1016/j.ppees.2013.07.002
http://dx.doi.org/10.1016/j.rse.2019.111368
http://dx.doi.org/10.1186/s40663-017-0092-0
http://dx.doi.org/10.1088/1748-9326/aabc61
http://dx.doi.org/10.1007/s10584-004-0713-9
http://dx.doi.org/10.1016/j.ppees.2012.01.004
http://dx.doi.org/10.1016/S0378-1127(00)00338-8
http://dx.doi.org/10.1046/j.1365-2664.2001.00629.x
http://dx.doi.org/10.1007/s10021-002-0121-9
http://dx.doi.org/10.1016/j.ecolmodel.2006.11.023


Remote Sens. 2023, 15, 3078 24 of 25

37. Rüger, N.; Williams-Linera, G.; Kissling, W.D.; Huth, A. Long-term impacts of fuelwood extraction on a tropical montane cloud
forest. Ecosystems 2008, 11, 868–881. [CrossRef]

38. Fischer, R.; Armstrong, A.; Shugart, H.H.; Huth, A. Simulating the impacts of reduced rainfall on carbon stocks and net ecosystem
exchange in a tropical forest. Environ. Model. Softw. 2014, 52, 200–206. [CrossRef]

39. Bohn, F.J.; Frank, K.; Huth, A. Of climate and its resulting tree growth: Simulating the productivity of temperate forests. Ecol.
Model. 2014, 278, 9–17. [CrossRef]

40. Bruening, J.M.; Fischer, R.; Bohn, F.J.; Armston, J.; Armstrong, A.H.; Knapp, N.; Tang, H.; Huth, A.; Dubayah, R. Challenges to
aboveground biomass prediction from waveform lidar. Environ. Res. Lett. 2021, 16, 125013. [CrossRef]

41. Rüger, N.; Gutiérrez, A.G.; Kissling, W.D.; Armesto, J.J.; Huth, A. Ecological impacts of different harvesting scenarios for
temperate evergreen rain forest in southern Chile—A simulation experiment. For. Ecol. Manag. 2007, 252, 52–66. [CrossRef]

42. Taubert, F.; Frank, K.; Huth, A. A review of grassland models in the biofuel context. Ecol. Model. 2012, 245, 84–93. [CrossRef]
43. Reyer, C.P.O.; Silveyra Gonzalez, R.; Dolos, K.; Hartig, F.; Hauf, Y.; Noack, M.; Lasch-Born, P.; Rötzer, T.; Pretzsch, H.; Meesenburg,

H.; et al. The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests. Earth
Syst. Sci. Data 2020, 12, 1295–1320. [CrossRef]

44. van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances,
photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [CrossRef]

45. Vilfan, N.; van der Tol, C.; Muller, O.; Rascher, U.; Verhoef, W. Fluspect-B: A model for leaf fluorescence, reflectance and
transmittance spectra. Remote Sens. Environ. 2016, 186, 596–615. [CrossRef]

46. Féret, J.B.; Gitelson, A.; Noble, S.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete
lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [CrossRef]

47. Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens.
Environ. 1984, 16, 125–141. [CrossRef]

48. Kothari, S.; Beauchamp-Rioux, R.; Blanchard, F.; Crofts, A.L.; Girard, A.; Guilbeault-Mayers, X.; Hacker, P.W.; Pardo, J.; Schweiger,
A.K.; Demers-Thibeault, S.; et al. Predicting leaf traits across functional groups using reflectance spectroscopy. New Phytol. 2023,
238, 549–566. [CrossRef] [PubMed]

49. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

50. Gao, X.; Huete, A.R.; Ni, W.; Miura, T. Optical–biophysical relationships of vegetation spectra without background contamination.
Remote Sens. Environ. 2000, 74, 609–620. [CrossRef]

51. Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí,
J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021,
7, eabc7447. [CrossRef]

52. Hardisky, M.H.; Klemas, V.; Smart, R. The influence of soil salinity, growth form, and leaf moisture on-the spectral radiance of
Spartina alterniflora Canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83.

53. Hunt Jr, E.R.; Rock, B.N. Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sens.
Environ. 1989, 30, 43–54. [CrossRef]

54. Vogelmann, J.; Rock, B. Assessing forest decline in coniferous forests of Vermont using NS-001 Thematic Mapper Simulator data.
Int. J. Remote Sens. 1986, 7, 1303–1321. [CrossRef]

55. Kruse, F.A.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system
(SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [CrossRef]

56. Huete, A.R.; Liu, H.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for
EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [CrossRef]

57. Bussotti, F.; Pollastrini, M. Evaluation of leaf features in forest trees: Methods, techniques, obtainable information and limits.
Ecol. Indic. 2015, 52, 219–230. [CrossRef]

58. Jacquemoud, S.; Ustin, S. Leaf Optical Properties; Cambridge University Press: Cambridge, UK, 2019.
59. Kattenborn, T.; Fassnacht, F.E.; Schmidtlein, S. Differentiating plant functional types using reflectance: Which traits make the

difference? Remote Sens. Ecol. Conserv. 2019, 5, 5–19. [CrossRef]
60. Kattenborn, T.; Richter, R.; Guimarães-Steinicke, C.; Feilhauer, H.; Wirth, C. AngleCam: Predicting the temporal variation of leaf

angle distributions from image series with deep learning. Methods Ecol. Evol. 2022, 13, 2531–2545. [CrossRef]
61. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL

models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [CrossRef]
62. Verhoef, W.; Van Der Tol, C.; Middleton, E.M. Hyperspectral radiative transfer modeling to explore the combined retrieval of

biophysical parameters and canopy fluorescence from FLEX–Sentinel-3 tandem mission multi-sensor data. Remote Sens. Environ.
2018, 204, 942–963. [CrossRef]

63. Rödig, E.; Knapp, N.; Fischer, R.; Bohn, F.J.; Dubayah, R.; Tang, H.; Huth, A. From small-scale forest structure to Amazon-wide
carbon estimates. Nat. Commun. 2019, 10, 5088. [CrossRef]

64. Henniger, H.; Huth, A.; Frank, K.; Bohn, F. Creating virtual forest around the globe: Forest Factory 2.0 and analysing the state
space of forests. Ecol. Model. 2023. [CrossRef]

http://dx.doi.org/10.1007/s10021-008-9166-8
http://dx.doi.org/10.1016/j.envsoft.2013.10.026
http://dx.doi.org/10.1016/j.ecolmodel.2014.01.021
http://dx.doi.org/10.1088/1748-9326/ac3cec
http://dx.doi.org/10.1016/j.foreco.2007.06.020
http://dx.doi.org/10.1016/j.ecolmodel.2012.04.007
http://dx.doi.org/10.5194/essd-12-1295-2020
http://dx.doi.org/10.5194/bg-6-3109-2009
http://dx.doi.org/10.1016/j.rse.2016.09.017
http://dx.doi.org/10.1016/j.rse.2017.03.004
http://dx.doi.org/10.1016/0034-4257(84)90057-9
http://dx.doi.org/10.1111/nph.18713
http://www.ncbi.nlm.nih.gov/pubmed/36746189
http://dx.doi.org/10.1016/S0034-4257(02)00096-2
http://dx.doi.org/10.1016/S0034-4257(00)00150-4
http://dx.doi.org/10.1126/sciadv.abc7447
http://dx.doi.org/10.1016/0034-4257(89)90046-1
http://dx.doi.org/10.1080/01431168608948932
http://dx.doi.org/10.1016/0034-4257(93)90013-N
http://dx.doi.org/10.1016/S0034-4257(96)00112-5
http://dx.doi.org/10.1016/j.ecolind.2014.12.010
http://dx.doi.org/10.1002/rse2.86
http://dx.doi.org/10.1111/2041-210X.13968
http://dx.doi.org/10.1016/j.rse.2008.01.026
http://dx.doi.org/10.1016/j.rse.2017.08.006
http://dx.doi.org/10.1038/s41467-019-13063-y
http://dx.doi.org/10.1016/j.ecolmodel.2023.110404


Remote Sens. 2023, 15, 3078 25 of 25

65. Bohn, F.J.; Huth, A. The importance of forest structure to biodiversity–productivity relationships. R. Soc. Open Sci. 2017, 4, 160521.
[CrossRef]

66. Pacheco-Labrador, J.; Perez-Priego, O.; El-Madany, T.S.; Julitta, T.; Rossini, M.; Guan, J.; Moreno, G.; Carvalhais, N.; Martín, M.P.;
Gonzalez-Cascon, R.; et al. Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of
plant functional traits. Remote Sens. Environ. 2019, 234, 111362. [CrossRef]

67. Fischer, R.; Bohn, F.; Dantas de Paula, M.; Dislich, C.; Groeneveld, J.; Gutiérrez, A.G.; Kazmierczak, M.; Knapp, N.; Lehmann, S.;
Paulick, S.; et al. Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex
tropical forests. Ecol. Model. 2016, 326, 124–133. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1098/rsos.160521
http://dx.doi.org/10.1016/j.rse.2019.111362
http://dx.doi.org/10.1016/j.ecolmodel.2015.11.018

	Introduction
	Materials and Methods
	Study Site
	The Individual-Based Forest Model FORMIND
	Coupling mScope with FORMIND
	Representations of Different Levels of Forest Complexity (Heterogeneous Structure)

	Results
	Discussion
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

