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Abstract: Internal multiple prediction remains a high-priority problem in seismic data processing,
such as subsurface imaging and quantitative amplitude analysis and inversion, particularly in
the common-midpoint (CMP) gathers, which contain multicoverage reflection information of the
subsurface. Internal multiples, generated by unknown reflectors in complex environments, can be
reconstructed with certain combinations of seismic reflection events using the inverse scattering series
internal multiple prediction algorithm, which is usually applied to shot records in source–receiver
coordinates. The computational overhead is one of the major challenges limiting the strength of
the multidimensional implementation of the prediction algorithm, even in the coupled plane-wave
domain. In this paper, we first comprehensively review the plane-wave domain inverse scattering
series internal multiple prediction algorithm, and we propose a new scheme of achieving 2D multiple
attenuation using a 1.5D prediction algorithm in the CMP domain, which significantly reduces the
computational burden. Moreover, we quantify the difference in behavior of the 1.5D prediction
algorithm for the shot/receiver and the CMP gathers on tilted strata. Numerical analysis of prediction
errors shows that the 1.5D algorithm is more capable of handling dipping generators in the CMP
domain than in the shot/receiver gathers, and it is able to predict the accredited traveltimes of
internal multiples caused by dipping reflectors with small inclinations. For more complex cases
with large inclination, using the 1.5D prediction algorithm, internal multiple predictions fail both in
the CMP domain and in the shot/receiver gathers, which require the full 2D prediction algorithm.
To attenuate internal multiples in the CMP gathers generated by large-dipping strata, a modified
version is proposed based on the full 2D plane-wave domain internal multiple prediction algorithm.
The results show that the traveltimes of internal multiples caused by dipping generators seen in
the simple benchmark example are correctly predicted in the CMP domain using the modified 2D
prediction algorithm.

Keywords: multiple attenuation; common-midpoint gather; inverse scattering series; seismic data
analysis

1. Introduction

One of the main objectives of reflection seismic is to derive an image of the subsurface
from multifold coverage reflection seismic data. To enhance quality and resolution, the
source–receiver coordinated seismic records are usually sorted into the common-midpoint
(CMP) gathers because of the redundancy source–receiver pairs share. Multiple attenuation
in the CMP domain is still a key component, as their occurrence may mislead reflector
relocating in migration and destroy seismic quantitative amplitude analysis and interpreta-
tion [1,2]. Most of the multiple attenuation methods presented in the CMP domain are based
on their periodicity or the difference of velocity stacking between multiples and primaries,
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such as predictive deconvolution, Radon transform [3–5] and velocity stacking [6–8], which
works at near- or far-offsets, respectively, for surface-related or layer-interbed multiples. In
addition, Ref. [9] proposed a modification of the inverse data space method, which was first
introduced by [10], for internal multiple attenuation in the CMP gathers with dramatically
reduced computational overhead in comparison with the shot gathers. However, internal
multiple attenuation in the inverse data space requires an explicit subsurface velocity
model, which is not applicable for some cases. Therefore, in complex land data, internal
multiple prediction encounters significant challenges due to the lack of periodicity and
unambiguous velocity discrimination.

Recently, the Marchenko-based internal multiple attenuation methods have attracted
much attention and have achieved some success in some complex cases [11–15]. However,
different sets of features or prior knowledge are required by various Marchenko-based
approaches. For examples, the Marchenko-based multiple elimination approach proposed
by [14] requires a smooth subsurface velocity model and a re-datuming process of source
and receivers. The approach introduced by [16] involves defining a virtual multiple
generator that needs to reside under a known, well-positioned reflector. Detailed features
and assumptions required by various Marchenko-based multiple attenuation approaches
can be found in [17].

In addition to the Marchenko portfolio, Refs. [18,19] indicated that, with the inverse
scattering series scheme, internal multiples can be reconstructed by combining reflection
events satisfying a lower–higher–lower relationship in pseudo-depth with no subsurface
information required, whose predictions are usually achieved using shot records in source–
receiver coordinates. Many features and difficulties need to be addressed for successfully
proceeding internal multiple predictions in complex environments, even through this full
data-driven method [20]. Refs. [21,22] proposed modifications to address the approximate
nature of the predicted amplitudes, which were first discussed by [23]. In addition, ref. [24]
proposed an extended prediction algorithm to enhance the fidelity of the predicted ampli-
tude and phase by accommodating the source wavelet.

Another key component of implementing the inverse scattering series internal multiple
prediction practically is the selection of the searching parameter ε, which limits the proximity
of events combined to generate the prediction and increases the computational complexity
of its full multidimensional implementation. Ref. [25] introduced the 1.5D time- and offset-
time domain versions of the algorithm, which allows a non-stationary ε and can be properly
extended to 2D and 3D with a plane-wave formulation. Some key positive characteristics,
the relative stationarity of optimum parameter and less computational costs, are found in
implementation of the algorithm in the coupled plane-wave domain [26]. Moreover, by
taking advantage of the plane-wave domain formulation, ref. [27] also reformulated the
elastic multicomponent prediction algorithm into the plane-wave domain and introduced an
analytically determined vertical traveltime stretching formula to accommodate disordering
reflecting interfaces caused by the wave-mode conversion in elastic cases.

Researchers have made positive progress in the inverse scattering series prediction
algorithm; however, implementations are all performed in the domain of source–receiver
coordinates with the common shot/receiver records. In this paper, we proposed a mod-
ification of the algorithm, which has the same characteristics of the pristine formula, to
accommodate the CMP domain input. Considering the expensive computational overhead
of its multidimensional implementation, for some cases, internal multiples may be pre-
dicted using the 1.5D prediction algorithm with acceptable tolerances of the prediction
errors [28]. The numerical simulated examples allow us to exemplify the error analysis of
implementing the 1.5D prediction algorithm on tilted strata and examine the differences in
internal multiple prediction in the CMP gathers and shot/receiver records.
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2. Plane-Wave Domain Inverse Scattering Series Internal Multiple Prediction
Algorithm (2D): Review

Refs. [18,19] first demonstrated that, with the knowledge of the source signature,
internal multiples can be predicted by summing over triplets of events whose pseudo-
depths satisfy a lower–higher–lower relationship, wherein the phases of the lower (or
deeper) two events are added and the phase of the higher (or shallower) event is subtracted.
The algorithm was initially proposed in the wavenumber/pseudo-depth (kg, ks, z̃) domain.
Considering the adjacent relationship of wavenumber and horizontal slowness (k = ωp),
refs. [26,29] showed the prediction algorithm based on the inverse scattering series can be
rewritten in the horizontal-slowness/pseudo-depth (pg, ps, z̃). Ref. [26] initially performed
internal multiple predictions in the coupled plane-wave domain (pg, ps, τ) and summarized
significant advantages of the plane-wave domain algorithm, such as much more sparse
inputs, less computational overhead, and a relatively stationary searching parameter.

One of the key obstacles of implementing the inverse scattering series internal multiple
prediction algorithm is the selection of the searching parameter ε, especially in the vanilla
domain, i.e., wavenumber/pseudo-depth (kg, ks, z̃) domain, due to the energy of input
b1(kg, ks, z̃) being significantly spread out with increasing wavenumbers [25,26], which
results in a non-stationary searching parameter. However, ref. [26] indicated that the
input b1(pg, ps, τ) in the plane-wave domain allows a stationary searching parameter
while perserving the lower–higher–lower relationship. The value of the fixed optimal
searching parameter in the plane-wave domain is determined by the width of the wavelet.
Detailed comparions of implementing inverse scattering series internal multiple prediction
algorithms in variant domains can be found in [26]. Considering these advantages of
predictions using the plane-wave transformation, all implementations of internal multiple
attenuation will be carried out in the plane-wave domain in this paper.

Let d(xg, xs, t) represent a fully deghosted 2D seismic data set involving waves down-
going from the source and upgoing to the receiver, with xg being the inline receiver
coordinate, xs being the inline source coordinate, and t being the two-way traveltime. Let
D(pg, ps, τ) represent the data set after the coupled plane-wave transformation across all
three coordinates, with pg and ps being the horizontal slowness conjugate to xg and xs,
respectively, and τ being the vertical traveltime coupling with pg and ps. The plane-wave
domain inverse scattering series internal multiple prediction algorithm is written as [26,29].

bIM(pg, ps, ω) =
−1

(2π)2

∫∫ +∞

−∞
dp1dp2eiω(τ1s−τ1g)eiω(τ1g−τ1s)

×
∫ +∞

−∞
dτ1eiωτ1b1(pg, p1, τ1)

∫ τ1−ε

−∞
dτ2e−iωτ2b1(p1, p2, τ2)

×
∫ +∞

τ2+ε
dτ3eiωτ3b1(p2, ps, τ3),

(1)

where

qX =

√
1
c2

0
− p2

X , (2)

with qX being the vertical slowness associated with the horizontal slowness pX and the
reference velocity c0. The input is a 3D data volume (not a 3D seismic acquisition be-
ing treated) calculated by scaling the data after the coupled τ–ps–pg transformation:
b1(pg, ps, τ) = −i2qsD(pg, ps, τ). These three events combined to reconstruct the ray-
path of internal multiples are interrelated through their horizontal slowness on the source
and receiver sides. Figure 1 shows the relationship scheme between primaries and pre-
dicted internal multiple according to their contributing slownesses, i.e., pg, ps, p1, and p2 in
Equation (1). The quantities p1 and p2 represent horizontal slownesses at both source and
receiver locations within the algorithm. This will be of practical computational importance,
as it requires that matching the source and receiver sides slownesses must be available
either naturally through acquisition or through data reconstruction. As shown in Figure 1,
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the exact traveltime of internal multiples can be calculated by summing over two primaries
from the lower reflector and then subtracting the one from the upper interface.

Figure 1. Ray-path schematic of primaries (dashed line) and internal multiple (solid line) with
corresponding source and receiver locations. See also [29].

3. Theory

Even though the multidimensional inverse scattering series internal multiple pre-
diction algorithm is powerful for predicting the exact traveltime of internal multiples
generated by any subsurface reflector, its implementation has not been widely applied
to practical seismic records due to the complexity of the search parameter selection and
expensive computational cost. One feasible way to reduce the computational burden of
implementing the multidimensional inverse scattering series internal multiple prediction
is, for approximately layered media, to use a simplified algorithm that makes tolerable
errors under certain assumptions.

3.1. 1.5D Plane-Wave Domain Prediction Algorithm

The prediction algorithm in the coupled plane-wave domain (pg, ps, τ) can be simpli-
fied to reflect the fact that pg ≡ p2 ≡ p1 ≡ ps ≡ p if the layered Earth is assumed. With
an additional assumption that all sources and receivers are located at the same depth, the
plane-wave domain prediction algorithm in Equation (1) reduces to

bIM(p, ω) =
−1

(2π)2

∫ +∞

−∞
dτ1eiωτ1b1(p, τ1)

∫ τ1−ε

−∞
dτ2e−iωτ2 b1(p, τ2)

×
∫ +∞

τ2+ε
dτ3eiωτ3b1(p, τ3),

(3)

where p is the horizontal slowness whose physical meaning is related to the type of
input. τ is the vertical traveltime coupling with the horizontal slowness p. As indicated
before, the input is a transformed and scaled version of the originally recorded data:
b1(p, τ) = −i2qsD(p, τ). The transformed data D(p, τ) are in this case computed from a
standard τ-p or a slant-stack transformation of the shot/receiver gather or the CMP gather.

Equation (3) shows that for layered media, all possibly existing internal multiples
from a common shot/receiver or a CMP gather can be precisely reconstructed by itself.
Compared to Equation (1), the 1.5D prediction algorithm is much more efficient since
the prediction is computed by looping trace-by-trace due to the independence of the
variant horizontal slowness p. However, for dipping strata, the accuracy of predicting
internal multiples using the 1.5D algorithm is reduced due to violations of the underlying
assumption, i.e., pg 6≡ p2 6≡ p1 6≡ ps. It is worth noting that the prediction error of using the
1.5D algorithm in the 2D case is determined not only by the inclination of the subsurface
reflector but also by the type of input wherein the horizontal slowness plays a different role
after the standard τ − p transformation.

3.2. 1.5D Prediction Scheme with the Common Shot Gathers

Implementing the 1.5D internal multiple prediction requires a traditional slant-stack
seismic record multiplied by a weighting factor as an input. Refs. [30,31] demonstrated that
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the traditional τ − p mapping can be performed by considering traveltimes with varying
offsets in a common shot gather,

t = pgx + ∑
i

zsi(qsi + qgi), (4)

or, in a common receiver gather,

t = psx + ∑
i

zgi(qsi + qgi), (5)

where t is the two-way traveltime of the event being described, and x is the offset. The
variables qsi and qgi are the vertical components of the slowness in the ith layer for the
source and receiver, respectively. The depths zsi and zgi are the thicknesses of the ith layer
below the source and receiver locations, respectively.

Equations (4) and (5) indicate that the horizontal slowness represents the receiver-side
component (pg =

sinθg
c0

) when the τ − p transformation is performed on a shot gather; the

horizontal slowness is related to the source side (ps =
sinθs

c0
) when the transformation is

applied to a receiver gather with varying offsets. Therefore, instead of the scheme illustrated
in Figure 1, using the 1.5D prediction algorithm in Equation (3), internal multiples are
reconstructed by combining lower–higher–lower events with the same receiver-/source-
side horizontal slowness (i.e., pg/ps) in a common shot/receiver gather. For example,
Figure 2 illustrates a satisfied combination for a common shot gather internal multiple
prediction using the 1.5D prediction algorithm; i.e., the traveltime of internal multiple
indicated in black is predicted by twice over the traveltime of the red primary reflection
and then subtracting the traveltime of the green one. Note that all primaries and multiples
in Figure 2 share the same receiver-side horizontal slowness pg.

Figure 2. Combinations of events in a common shot gather for internal multiple prediction using
the 1.5D algorithm. Both primaries and internal multiples shared the same horizontal slowness
corresponding to the receiver side, i.e., pg.

3.3. 1.5D Prediction Scheme with the CMP Gathers

To perform the traditional τ − p transform on the CMP gathers, Ref. [31] introduced a
reference point, M, located between the source and the receiver, where M is the location
of the midpoint in the CMP gather. Based on this reference point location, the traditional
τ − p transform on the CMP gather can be written as

t = pHx + ∑
i

zMi(qsi + qgi), (6)

where pH is the average horizontal slowness, i.e., pH =
pg+ps

2 , with respect to varying
offsets x. The quantity zMi represents the thicknesses of the ith layer below the midpoint
M. This implies that with the weighted traditional τ − p transformed CMP gather as an
input, implementing internal multiple prediction using the 1.5D algorithm is performed by
looping the common average horizontal slowness pH traces. For instance, for a common
CMP gather, the internal multiple shown in Figure 3 is predicted by doubling the traveltime
of the red primary event and then subtracting the traveltime of the green one. All these
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events in Figure 3 are sorted in the CMP gather and have the equivalent average horizontal
slowness pH .

Figure 3. Combinations of events in a CMP gather for internal multiple prediction using the
1.5D algorithm. All events in the combination share the same average horizontal slowness, i.e.,
pH =

pg+ps
2 =

pg1+ps1
2 =

pg2+ps2
2 .

3.4. Two-Dimensional (2D) Plane-Wave Domain Prediction Algorithm in the CMP Domain

With the definition of the τ − p transformation on the CMP gathers, the plane-wave
domain multidimensional internal multiple prediction algorithm for the CMP gathers
can also be achieved by replacing the source–receiver-related horizontal slownesses in
Equation (1) with the horizontal slownesses conjuate to the common midpoint and the
offset. Let d̃(xm, xh, t) represent the sorted CMP gathers of data d(xs, xg, t), with varying
offsets and CMP locations, and its coupled τ − pm − ph transformation across three vari-
ables is delineated as D̃(pm, ph, τM) with pm and ph representing the horizontal slowness
conjugate to the CMP location xm and the half-offset xh/2, respectively, and τM being
the vertical traveltime coupling with pm and ph. A reference point must be introduced
to perform the coupled plane-wave trasnformation [31]. As in [26], we set the origin of
source–receiver coordinates as the reference point, and then we have

t = psxs + pgxg + ∑
i

z0i(qsi + qgi)

= pmxm + phxh + ∑
i

z0i(qsi + qgi)
(7)

where ps and pg are the source- and receiver-related horizontal slownesses, and xs and xg
are the source and receiver coordinates, respectively. z0i represents the thickness of the
i−th layer below the origin. ps and pg denote the horizontal slowness conjugate to the
CMP coordinate and the half-offset, respectively.

With the relationships xm =
xg+xs

2 , xh =
xg−xs

2 and Equation (7), the transformation
from (ps, pg) to (pm, ph) can be delineated as{

pm = pg + ps
ph = pg − ps

(8)

Here, we emphasize that both pm and ph in Equation (8) are different from pH in
Equation (6), where the former ones are associated with the reference point setting as
the origin, and the later one is the averaged source–receiver horizontal slowness based
on the common-midpoint reference. Substituting Equation (8) into Equation (1), the 2D
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plane-wave inverse scattering series internal multiple prediction algorithm on the CMP
gathers can be achieved, and its mathematical formulation is written as

bIM(pm0, ph0, ω) =
−1

(2π)2

∫∫∫∫ +∞

−∞
dph1dph2dph3dpm3eiω(τ1s−τ1g)eiω(τ1g−τ1s)

×
∫ +∞

−∞
dτ1eiωτ1b1(pm1, ph1, τ1)

∫ τ1−ε

−∞
dτ2e−iωτ2b1(pm2, ph2, τ2)

×
∫ +∞

τ2+ε
dτ3eiωτ3b1(pm3, ph3, τ3),

(9)

where the relationships of pm0, pm1, pm2, pm3, ph0, ph1, ph2, and ph3 are delineated as
pm2 = ph2 + ph3 + pm3
pm1 = ph1 + 2ph2 + ph3 + pm3
pm0 = ph1 + ph2 + pm3
ph0 = ph1 + ph2 + ph3

(10)

and the input b1 is computed by b1(pm, ph, τ) = −i2qsD(pm, ph, τ). Here, qs is the vertical
slowness with respect to the source side, and it can be calculated as

qs =

√
1
c2

0
− (pm − ph)

2

4
(11)

The implementation of Equation (9) can be achieved by iterating all possible ph1, ph2,
ph3, and pm3 while pmX and phX (X = 0, 1, 2, 3) are in a reasonable range of [pmin

m , pmax
m ]

and [pmin
h , pmax

h ], respectively. Equation (9) has the intact capabilities of predicting all
possible internal multiples following the same criteria as Equation (1) does, but it requires
the input as a weighted version of the data sorted in the CMP domain instead of the
shot/receiver gathers.

4. Numerical Analysis of the 1.5D Prediction Algorithm on the 2D Cases

Before implementing internal multiple prediction using the 1.5D algorithm with dip-
ping strata, it is necessary to investigate the inclination dependency of the 1.5D algorithm
and to discuss the performance differences using different input types. To do this, while
ensuring the simplicity of calculation, we create a two-interface model, where the shallower
reflector is slant with a dipping angle α (here, α > 0 if the depth of the interface increases
from left to right and vice versa), while the deeper one is flat. In addition, we numerically
simulate all ray-paths of primaries and the first-order internal multiples on a two-interface
model, as shown in Figures 2 or 3.

4.1. Error Analysis with the Shot Gathers

For a common shot gather, under a fixed source location and a fixed thickness of the
top interface below the source point (zs = 400 m), the ray-paths of the three related events
shown in Figure 2 are simulated with varying offsets x and dipping angles α. In addition to
the traveltimes of all ray-paths, the receiver-side horizontal slowness is also calculated for
a certain offset x with a receiving angle θg, i.e., pg =

sinθg
c0

. Therefore, using Equation (4),
the vertical traveltime (to distinguish with the one in the CMP gather, here, it is indicated
as τs) coherent to a fixed pg can be achieved as τs = t− pgx.

The vertical traveltimes of three events extracted from the common shot gathers in
Figure 2 are plotted in Figure 4a. The top one represents the vertical traveltimes of the
first primary reflections, which are indicated in green in Figure 2, with varying dipping
angles and receiver-side horizontal slownesses pg. The middle one delineates the vertical
traveltimes of the second primary events, which are indicated in red in Figure 2. The
bottom one represents the vertical traveltimes of internal multiples shown as the black
event in Figure 2.



Remote Sens. 2023, 15, 3002 8 of 18

Figure 4. Error analysis of implementing the 1.5D algorithm on the 2D cases with the common
shot gathers. (a) Vertical traveltimes of three events, shown in Figure 2, extracted from a common
shot gather with varying dipping angles α and horizontal slownesses pg, i.e., the top one represents
the vertical traveltimes of the 1st primary reflection, indicated in green in Figure 2; the middle one
shows the vertical traveltimes of the 2nd primary event, indicated in red in Figure 2; the bottom one
delineates the vertical traveltimes of the internal multiples shown in Figure 2. (b) Prediction errors
with shot gathers using the 1.5D prediction algorithm.

With the 1.5D prediction algorithm, the vertical traveltimes of the internal multiples
are predicted by doubling the vertical traveltimes of the second primary events and then
subtracting the vertical traveltimes of the first primaries, i.e., τblack = 2τred − τgreen. Com-
pared to the recorded internal multiples, the predicted errors with varying dipping angles
α and horizontal slowness pg are plotted in Figure 4b. Figure 4b demonstrates that for a
common shot gather internal multiple prediction on dipping strata using the 1.5D algo-
rithm, the absolute values of prediction errors dramatically raised (up to 0.2 s) along the
increasing dipping angles and horizontal slownesses.

4.2. Error Analysis with the CMP Gathers

To analyze the behaviors of the 1.5D prediction algorithm with the CMP gathers
on dipping strata, we also simulate all ray-paths and compute the traveltimes of three
reflection events in Figure 3 with varying offsets and dipping angles. With a fixed CMP
location and a fixed thickness of the top interface below the CMP (zM = 400 m), the
obtained traveltimes are sorted into the common average horizontal slowness pH manner,
i.e., τM = t− pHx. Here, τM represents the relative vertical traveltimes related to the CMP
location and the average horizontal slowness pH .

Figure 5a shows the vertical traveltimes τM of primaries and internal multiples ex-
tracted from the CMP gathers, whose relationships are shown in Figure 3. The top one
corresponds to the first primary indicated in green in Figure 3; the middle one represents
the second primary indicated in red in Figure 3; and the bottom one delineates the vertical
traveltimes of the first-order internal multiples with varying dipping angles α and average
horizontal slownesses pH , respectively. Based on Equation (3), the vertical traveltimes of
internal multiples can be predicted by a lower–higher–lower combination over a fixed
average horizontal slowness pH . The prediction errors using the CMP gather along varying
dipping angles and average horizontal slownesses are plotted in Figure 5b. As indicated in
Figure 5b, except for the condition of around α = −20◦ and pH = 0.2 s/km, the predicted
errors remains in the range of [−0.05, 0.06], which are much smaller than the prediction
errors of using the common shot gathers.
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Figure 5. Error analysis of implementing the 1.5D algorithm on 2D cases with the CMP gathers.
(a) Vertical traveltimes of three events, shown in Figure 3, extracted from the CMP gather with
varying dipping angles α and average horizontal slownesses pH , i.e., the top one represents the
vertical traveltimes of the 1st primary reflection, which are indicated in green in Figure 3; the
middle one shows the vertical traveltimes of the 2nd primary event, which are indicated in red in
Figure 3; the bottom one delineates the vertical traveltimes of the internal multiple shown in Figure 3.
(b) Prediction errors with the CMP gathers using the 1.5D prediction algorithm.

The comparisons of the predicted errors using the shot gathers and the CMP gathers,
to be analyzed instinctively, are extracted at fixed dipping angles and at fixed horizontal
slownesses, respectively. Figure 6a–c show the predicted errors of using the shot and the
CMP gathers at the fixed dipping angle α = (−25◦, 0◦, 25◦), separately, where the errors of
the shot domain predictions are indicated in orange, and the errors of the CMP domain
predictions are illustrated in dark blue.

Figure 6. Comparisons of the predicted errors using the shot and the CMP gathers at the fixed
dipping angle α = (−25◦, 0◦, 25◦) and at the fixed horizontal slowness p = (−0.1, 0.0, 0.1) s/km,
respectively. The prediction errors of using shot gathers are indicated in orange, and those of using
the CMP gathers are illustrated in dark blue. (a) Comparisons of prediction errors at α = −25◦

with varying p. (b) Comparisons of prediction errors at α = 0◦ with varying p. (c) Comparisons of
prediction errors at α = 25◦ with varying p. (d) Prediction errors at p = −0.1 s/km with varying α.
(e) Prediction errors at p = −0.0 s/km with varying α. (f) Prediction errors at p = 0.1 s/km with
varying α. Note, for the shot gathers, p represents pg; for the CMP gathers, p represents pH .
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In Figure 6a, with the fixed dipping angle α = −25◦, the errors of the shot domain
internal multiple predictions approximate linearly rise, while the predicted errors in the
CMP domain remain in a relatively smaller range. Figure 6b shows the prediction errors in
the shot and CMP domain with α = 0◦, i.e., a layered case. As indicated previously, under
assumptions of layered media, the 1.5D prediction algorithm is able to predict accurate
traveltimes of internal multiples on both the shot and the CMP gathers. In Figure 6c, the
predicted errors are calculated with α = 25◦. Similar to Figure 6a, comparing with the
prediction errors of using the shot gathers, implementing the 1.5D prediction algorithm
in the CMP domain produces much more stable and independent results with varying
horizontal slownesses, even under a large dipping angle condition.

The prediction errors of using the shot and CMP gathers at the fixed horizontal
slowness p = (−0.1, 0.0, 0.1) s/km are also extracted and plotted in Figure 6d–f, respectively.
All predicted errors both in the shot and the CMP domain are zeros at dipping angle α = 0◦

in Figure 6d–f, which agrees with the fact in Equation (3). However, at the fixed horizontal
slowness, the prediction errors of using the shot and the CMP gathers do not show the
linear relationship with varying dipping angles, and limited advantages may be found in
the CMP domain.

5. Numerical Examples

The inverse scattering series internal multiple prediction algorithm indicates that
the prediction process is model independent, which means no prior model information
is required during prediction. In other words, for acoustic cases, the complexity of the
model does not affect the performance of the prediction algorithm; for elastic cases, a
detailed discussion can be found in [27]. Therefore, in order to simplify the calculation
and facilitate the analysis, we choose layered models with a tiltled reflector for numerical
analysis and verification.

5.1. Two-Dimensional (2D) Prediction Using the 1.5D Algorithm

In this subsection, we numerically evaluate the performance of implementing the
1.5D prediction algorithm on the 2D cases. To do so, a three-layer model with one dipping
reflector and one flat reflector is created and plotted in Figure 7. The velocities from top
to bottom are (2200, 3500, 2200) m/s, and the dipping angle of the top interface is 10◦.
A total of 640 shot gathers are generated with source locations moving from left to right
and occupying each receiver location. All sources and receivers with a fixed interval of
2.5 m are located at the top surface of the model. The internal multiples generated by three
reflectors in Figure 7 are reconstructed using the 1.5D prediction algorithm with the shot
gathers and the CMP gathers, respectively, for comparison.

Figure 7. A two-interface model with one dipping reflectors and one flat reflector. The dipping angle
of the top interface is 10◦. Here, the red dot indicates the source location for the common shot gather,
and it represents the CMP location for the CMP gather.
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We first perform the 2D internal multiple predictions using the 1.5D algorithm with
the common shot gathers, where the source location is placed in the middle of the top
surface of the model, which is shown as the red dot in Figure 7. The selected shot gather
and the predicted internal multiple are plotted in Figure 8a,b, respectively. A non-stationary
least-square subtraction is applied to remove the multiples from shot records, as shown in
Figure 8c. We observe that the 2D internal multiples prediction using the 1.5D algorithm
in the shot domain loses accuracy, especially at large offsets. For example, in Figure 8b,
the predicted traveltime of the first-order internal multiple at the largest negative offset
(h = −800 m) is less than 0.7 s, which is inconsistent with the 0.7 s in the original shot
record shown in Figure 8a. At the largest positive offset (h = 800 m), the traveltime of first-
order internal multiple in the original shot gather is about 0.65 s; however, the predicted
traveltime is at about 0.7 s. In Figure 8c, after the adaptive subtraction, the first-order
internal multiples are removed at the near offset, but there are still residuals at the far
offset. The numerical example in Figure 8 shows that the 2D internal multiples cannot be
accurately predicted using the 1.5D algorithm in the shot domain due to the independence
of horizontal slowness caused by the tilted reflector, which is consistent with our previous
prediction error analysis.

Figure 8. The 2D internal multiple prediction with the common shot gather using the 1.5D algorithm.
(a) The shot gather created using the velocity model shown in Figure 7 with the source location
indicated as the red dot. (b) The internal multiple prediction using Equation (3). (c) The shot gather
after the least-square matching subtraction, i.e., c = a-factor*b.

Next, we implement the 2D internal multiple predictions using the 1.5D algorithm in
the CMP domain. All 640 shot gathers are sorted into the CMP domain. The CMP gather
with the midpoint located at the same location as the previous sot-domain experiment,
i.e., the red dot in Figure 7, is extracted as an example and plotted in Figure 9a. Figure 9b
shows the predicted results of the 2D internal multiples with the CMP gather using the
1.5D algorithm. In Figure 9b, the predicted traveltime of the first-order internal multiple
is about 0.6 s at zero-offset and is around 0.69 s at the largest offsets (h = ±800 m), which
are consistent with the original shot record. Figure 9c shows the primary events after the
non-stationary least square subtraction.
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Figure 9. The 2D internal multiple prediction using the CMP gather using the 1.5D algorithm. (a) The
CMP gather created using the velocity model shown in Figure 7 with the CMP location indicated as
the red dot. (b) The internal multiple prediction using Equation (3). (c) The CMP gather after the
least-square matching subtraction, i.e., c = a-factor*b.

Compared to the predictions using the shot gather, the 2D internal multiples generated
by the tilted reflectors are well predicted using the 1.5D algorithm in the CMP domain at
both near and far-offsets. The underlying reason is that due to the averaged horizontal
slowness, the internal multiples in the CMP gathers exhibit better symmetry characteristics
than in the shot gathers. Therefore, we may summarize that in the 2D cases of strata with
nearly layered or small tilt angles, internal multiples can be efficiently reconstructed using
the 1.5D prediction algorithm in the CMP domain with acceptable errors. Furthermore,
the 2D internal multiples prediction using the 1.5D algorithm in the CMP domain is
implemented on a trace-by-trace basis, which means that it can be easily performed using
high-performance parallel computing. For reference, the runtime for implementing internal
multiple predictions for a seismic trace with 901 time samples using Matlab is approximately
0.072 s on the i9 processor.

5.2. Two-Dimensional (2D) Prediction Using the 2D Algorithm

Our numerical analysis and implementation indicate that for internal multiple predic-
tions with tilted strata, the CMP domain implementation of the 1.5D algorithm is relatively
more tolerant than its shot–receiver domain implementation, benefiting from the averaged
horizontal slowness. However, as indicated in the numerical analysis, the accuracy of
the traveltime prediction for internal multiples using the 1.5D algorithm, even with the
CMP gathers, is greatly reduced when the inclination of the reflector is very large. The 2D
algorithm is suggested for a better 2D prediction of internal multiples caused by the large
dip strata in the CMP gathers.

In this subsection, the use of Equation (9) with the CMP gathers in the coupled plane-
wave domain for the full 2D internal multiples prediction is considered. The velocity model
contains three layers and two reflectors, one flat interface and one dipping in 30 degrees, as
shown in Figure 10. From the top to bottom, velocities are (2200 m/s, 2800 m/s, 4200 m/s).
A total of 160 geophones with 2.5 m intervals are embedded 10 m below the surface, and
shot records are generated with a 25 Hz Ricker wavelet for source locations moving from
left to right and occupying each geophone location. A benchmark 2D synthetic reflection
dataset is created using a fourth-order finite-difference forward modeling with acoustic
constant density and four absorbing boundaries. The source–receiver–time volume of
multishot records, after removing direct waves, is shown in Figure 11.
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Figure 10. The geological model with two interfaces, including one flat reflector and one dipping
reflector. The dipping angle of the second interface is 30◦. From the top to bottom, velocities are
(2200 m/s, 2800 m/s, 4200 m/s). Locations of sources and receivers are delineated as stars and
triangles, respectively.

Figure 11. Multishot records sorted in the source–receiver–time coordinate with the velocity model
shown in Figure 10.

The multishot records are resorted in the CMP domain with the CMP-offset-time
coordinate and illustrated in Figure 12. To observe the 2D character of the data in the CMP
domain, we extract three CMP gathers from the resorted CMP volume, and they are plotted
in Figure 13. As shown in Figure 13, two primaries and the first-order internal multiples
are clearly visible in the three CMP gathers. Moreover, we also extract three shot gathers
from the data volume in Figure 11, where the sources are in the same locations as the
three CMPs shown in Figure 13. The three extracted shot gathers are plotted in Figure 14.
Compared to the shot gathers in Figure 14, the reflection events in the CMP gathers with
the large inclination strata show strong symmetry with respect to the offset, as shown in
Figure 13. However, we will next show that this property of symmetry does not improve
the accuracy of the traveltime predictions of internal multiples in the CMP domain using
the 1.5D algorithm.
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Figure 12. Multishot records sorted in the CMP-offset-time coordinate.

Figure 13. Three CMP gathers extracted from the CMP data volume shown in Figure 12. (a) The 40th
CMP gather, (b) the 80th CMP gather, (c) the 120th CMP gather.

Figure 14. Three common shot gathers extracted from the data volume in Figure 12, where the
sources are in the same locations as the CMPs in Figure 13. (a) The 40th shot gather, (b) the 80th shot
gather, (c) the 120th shot gather.

Before implementing the full 2D internal multiples predictions using the 2D algorithm,
we first perform the predictions using the 1.5D algorithm with the three CMP gathers and
the three extracted shot gathers, respectively. The final predictions for internal multiples
in the CMP gathers and in the shot gathers are plotted in Figures 15 and 16, respectively.
Figures 15 and 16 show that in the case of large dip strata, the 1.5D algorithm does not
accurately predict the traveltimes of internal multiples neither in the CMP domain nor in
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the shot domain. Therefore, for the cases of large dip strata, the full 2D internal multiples
prediction using the 2D algorithm is suggested.

Figure 15. Internal multiple predictions using the 1.5D algorithm with the three CMP gathers shown
in Figure 13. (a) The 40th CMP gather, (b) the 80th CMP gather, (c) the 120th CMP gather.

Figure 16. Internal multiple predictions using the 1.5D algorithm with the three shot gathers shown
in Figure 13. (a) The 40th shot gather, (b) the 80th shot gather, (c) the 120th shot gather.

Similar to the 2D plane-wave predictions in source–receiver coordinates, the coupled
plane-wave transform is applied to the CMP data volume, which results in a 3D data
volume with respect to the horizontal slownesses (i.e., pm and ph, related to the CMP
locations and half-offsets, respectively) and the vertical traveltime. Next, the transformed
data volume is weighted by the factor −i2qs to generate the final form of the input for the
2D prediction algorithm. Three common pm gathers extracted from this volume are plotted
in Figure 17. Compared to the “butterfly” artifacts in the input related to source–receiver
coordinates [26], the input of using the CMP gathers for internal multiples prediction has
a similar aperture effects delineated as the cross-hyperbolic events in Figure 13, which
can be eliminated by applying an attenuation taper on the limited aperture. Details of
attenuating these butterfly effects caused by the finite aperture of the offset in the plane
wave transformation can be found in [26].
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Figure 17. Three common pm gathers extracted from the τ − pm − ph transformed CMP volume.
(a) pm = −0.2 s/km. (b) pm = −0 s/km. (c) pm = 0.2 s/km.

The full 2D internal multiple predictions for all the 160 CMP gathers are implemented
in the coupled plane-wave domain τ − pm − ph using Equation (9). The inverse coupled
plane-wave transformation is applied to achieve the final predictions of internal multiples
in the CMP-offset-time coordinates. The 2D predictions of internal multiples for the three
CMP gathers shown in Figure 13 are extracted from the predicted volume and plotted in
Figure 18. Comparing Figures 13 and 18, we conclude that the multidimensional predictions
can also be carried out in the CMP domain, which is able to capture the accurate arrival
times of all possible internal multiples generated by large dip strata.

Figure 18. The 2D internal multiples predictions using the 2D algorithm for the three CMP gathers
shown in Figure 13. (a) The 40th CMP gather, (b) the 80th CMP gather, (c) the 120th CMP gather.

6. Conclusions

Internal multiples caused by the unknown generators can be predicted by the inverse
scattering series internal multiple prediction algorithm in an automatic manner, which is
usually performed on shot records with the source–receiver-related coordinates. For tilted
strata, the algorithm requires multishot records occupying each receiver location, which
greatly enhances the difficulty of input preparation and increases the computational cost.
In this paper, we investigate the behavior of the 1.5D prediction algorithm in the cases
of titled strata using the shot records and the CMP gathers, respectively. The numerical
analysis of the prediction errors shows that the traveltimes of internal multiples generated
by the titled reflector with small inclination can be predicted in the CMP domain using the
1.5D algorithm with acceptable errors compared to the predictions with the shot gathers.
This is later verified by numerical examples of internal multiple predictions using the 1.5D
algorithm with synthetic datasets. However, both numerical analysis and examples show
that the 1.5D algorithm is not suitable for internal multiple predictions in the cases of large
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dip strata either with the shot records or in the CMP domain. To accommodate internal
multiple predictions with the CMP gathers in complex environments, we also propose a
modification of the multidimensional inverse scattering series internal multiple prediction
algorithm that can be performed with the CMP gathers in the coupled plane-wave domain.
The capacity of the modified multidimensional internal multiple prediction algorithm with
the CMP gathers is validated by the benchmark synthetic example. We summarize that the
implementation of internal multiple attenuation in the CMP domain may achieve better
efficiency at approximate resolution, especially for cases with small inclination; however,
its behavior in the elastic cases must be further investigated.
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