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Abstract: The main challenge of scene classification is to understand the semantic context information
of high-resolution remote sensing images. Although vision transformer (ViT)-based methods have
been explored to boost the long-range dependencies of high-resolution remote sensing images,
the connectivity between neighboring windows is still limited. Meanwhile, ViT-based methods
commonly contain a large number of parameters, resulting in a huge computational consumption. In
this paper, a novel lightweight dual-branch swin transformer (LDBST) method for remote sensing
scene classification is proposed, and the discriminative ability of scene features is increased through
combining a ViT branch and convolutional neural network (CNN) branch. First, based on the
hierarchical swin transformer model, LDBST divides the input features of each stage into two parts,
which are then separately fed into the two branches. For the ViT branch, a dual multilayer perceptron
structure with a depthwise convolutional layer, termed Conv-MLP, is integrated into the branch
to boost the connections with neighboring windows. Then, a simple-structured CNN branch with
maximum pooling preserves the strong features of the scene feature map. Specifically, the CNN
branch lightens the LDBST, by avoiding complex multi-head attention and multilayer perceptron
computations. To obtain better feature representation, LDBST was pretrained on the large-scale
remote scene classification images of the MLRSN and RSD46-WHU datasets. These two pretrained
weights were fine-tuned on target scene classification datasets. The experimental results showed that
the proposed LDBST method was more effective than some other advanced remote sensing scene
classification methods.

Keywords: remote sensing scene classification; convolutional neural networks (CNNs); transfer
learning; vision transformer (ViT)

1. Introduction

With the massive amount of remote sensing data acquired through advanced satellite
systems, many image interpretation challenges have arisen in the past few decades [1].
Among them, efficiently mining the information in high-resolution remote sensing (HRRS)
images is a cutting-edge issue, which can increase the value of some applications, such as
instance segmentation [2], image retrieval [3], target detection [4], and change detection [5].
Based on HRRS images, the classification of scenes is a hot topic in the remote sensing
community and aims to build a connection between the image and the functional area of
the scene [6].

Traditional scene classification methods can be classified into two categories: low-level
and middle-level feature based methods [7]. However, these methods mainly focus on
handcrafted features (e.g., spectral, texture, and structural features) and their encoded
features [8,9], thus ignoring the deep semantic information in HRRS images. In recent
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years, many deep learning-based methods have been proposed, to meet the challenge of
remote sensing scene classification. Deep learning-based methods have gained extensive
attention due to their ability to leverage both low-level textural features and high-level
semantic information in images, while also being skillfully integrated with other advanced
theoretical methodologies. Compared to traditional methods of scene classification, the
methods based on deep learning techniques have distinct advantages in extracting relevant
local and global features from images in large-scale datasets. These techniques can be
broadly categorized into transfer learning-based methods, convolutional neural network
(CNN)-based methods, and vision transformer (ViT)-based methods.

To some extent, deep learning-based remote sensing scene classification is a technique
developed from natural image classification. Therefore, exploring the transfer of prior
knowledge directly from natural images to HRRS images is an important way to quickly
build a high-performance scene classification method. There have been several attempts to
use transfer learning models pretrained on ImageNet to remote scene classification [10–12].
Sun et al. [10] proposed a gated bidirectional network (GBNet) that can remove interference
information and aggregate interdependent information between different CNN layers for
remote sensing scene classification. Bazi et al. [11] introduced a simple and effective fine-
tuning method to reduce the loss of the image feature gradient using auxiliary classification
loss. Wang et al. [12] proposed an adaptive transfer model from generic knowledge, to au-
tomatically determine which knowledge should be transferred to the remote sensing scene
classification model. However, due to the great difference between remote sensing images
and natural images, models pretrained on natural images have difficulties describing HRRS
scenes [13].

Convolutional neural networks (CNNs) have been considered for combination with
other advanced techniques to improve scene discrimination ability. Ref. [14] designed an
improved bilinear pooling method, to build a compact model with higher discriminative
power but lower dimensionality. Wang et al. [15] proposed an enhanced feature pyramid
network for remote sensing scene classification, which applied multi-level and multi-
scale features, for their complementary advantages and to introduce multi-level feature
fusion modules. Xu et al. [16] proposed a deep feature aggregation framework for remote
sensing scene classification, which utilized pretrained CNNs as feature extractors and
integrated graph convolutions to aggregate multi-level features. Wang et al. [17] designed
an adaptive high-dimensional feature channel dimensionality reduction method for the
inherent clutter and small objects in HRRS images, and introduced an multilevel feature
fusion module for efficient feature fusion. Recently, many scholars have focused on the
theory of combining CNNs with attention mechanisms. Shen et al. [18] developed a dual-
model deep feature fusion method that utilizes a spatial attention mechanism to filter
low-level features and fuse local features with high-level features in a global–local cascaded
network, addressing the drawbacks of neglecting the combination of global and local
features in current single-CNN models. In [19], the scholars discussed merging general
semantic feature information with clustered semantic feature information by rearranging
the weights of the corresponding information. Cao et al. [20] proposed a spatial-level
and channel-level weighted fusion multilayer feature map for CNN models using a self-
attentive mechanism, where the aggregated features are fed into a support vector machine
(SVM) for classification. Zhang et al. [21] proposed a method that integrates a multiscale
module and a channel position attention module, which guides the network to select
and concentrate on the most relevant regions, thereby improving the performance of
remote sensing scene classification. Wang et al. [22] introduced a TMGMA method, which
leverages a multi-scale attention module guided by a triplet metric, to enhance task-specific
salient features, while avoiding the confusion stemming from relying solely on either an
attention mechanism or metric learning. In [23,24], an attention mechanism was proven
to be an effective method for exploiting the shallow and intermediate features of CNNs.
Although CNN-based methods have notably boosted classification accuracy by modeling
local features, the long-range dependencies in HRRS images are ignored [25].
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With the tremendous success of the transformer model in the field of natural language
processing (NLP), scholars have focused on exploring the application of transformer on
natural image classification. Dosovitskiy et al. [26] pioneered vision transformer, which
demonstrated the outstanding performance of transformer for natural image classification.
A swin transformer [27] employed a multi-stage hierarchical architecture for natural image
classification, to compute attention within a local window. Based on ViT, a number of
different models have been investigated for scene classification, to mine the features of
HRRS images. In [28], scholars explored the use of a data enhancement strategy to improve
the transfer learning performance of a ViT model. Zhang et al. [29] proposed a new
bottleneck based on multi-head self-attention (MHSA), which improved the performance
of the ViT-based scene classification method by making full use of image embedding.
Sha et al. [30] proposed a new multi-instance visual converter (MITformer) to solve the
problem of the ViT ignoring key local features. MITformer combined a ViT and classic
multiple instance learning (MIL) formula to highlight key image patches, and explored
the positive contribution of an attention-based multilayer perceptron (MLP) and semantic
consistency loss function to the scene. Bi et al. [31] proposed a method based on a ViT
model combined with supervised contrast learning, to fully leverage the advantages of
both and further improve the accuracy of scene classification.

Recently, combining CNNs and a ViT to develop methods that simultaneously mine
local features and long-range dependencies in HRRS images has become a trend in remote
sensing communities. Deng et al. [13] proposed a high-performance joint framework con-
taining ViT streams and CNN streams, and established a joint loss function to increase
intraclass aggregation, to mine semantic features in HRRS images. Zhao et al. [32] in-
troduced a local and long-range collaborative framework (L2RCF) with a dual-stream
structure, to extract local and remote features. L2RCF designed a cross-feature calibration
(CFC) module and a new joint loss function, to improve the representation of fused fea-
tures. Referring to the aforementioned analysis, enhancing the performance of ViT-based
methods in scene classification has become a mainstream research direction. Neverthe-
less, the current ViT-based approaches tend to solely address issues by compensating
for ViT’s limitations or by merging the benefits of CNNs and a ViT. Compared to the
shared weights employed in CNNs, which serve to decrease the parameter count and
computational complexity of the model, a ViT utilizes a fully connected layer alongside
a multi-head self-attention mechanism at many positions. The multi-head self-attention
mechanism effectively establishes extensive interdependencies between different positions,
thus allowing for more accurate capturing of global information. However, in a multi-head
self-attention mechanism, attention weights need to be calculated between queries, keys,
and values. For each query, it is necessary to calculate the similarity between it and all
keys, resulting in increased computational complexity. Furthermore, the fully connected
layer necessitates computation of feature vectors for each position with all other feature
vectors across all positions, rendering the computational workload substantially greater.
Consequently, developing an efficient and lightweight model carries crucial significance
for remote sensing scene classification.

To solve the above-mentioned issues, a lightweight dual-branch swin transformer
(LDBST) is proposed for remote sensing scene classification, which combines the advantages
of vision transformers and CNNs. The main contributions of this paper are summarized below:

(1) In the dual branches of the LDBST model, the CNNs branch with max pooling
not only preserves the original feature maps’ strong features but also lightens the LDBST
through avoiding complex multi-head attention and MLP computation;

(2) The ViT branch integrated with the Conv-MLP is designed to enhance the long-
range dependencies of local features, though boosting the connectivity between neighbor-
ing windows;

(3) The performance of the LDBST model pretrained on large-scale remote sensing
datasets was validated experimentally on the AID, UC-Merced, and NWPU-RESISC45
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datasets. Extensive experimental results demonstrated that LDBST exhibited consistent
superiority over CNNs pretrained on ImageNet.

2. Proposed LDBST Method

In this section, we will present a comprehensive theoretical explanation of the proposed
LDBST architecture and its modules, starting with an overview of the overall network
structure, followed by the proposed Dual-branch “CNNs + Swin Transformer” Module.

2.1. Overall Architecture of LDBST

The LDBST model is proposed as a novel lightweight scene classifier, for effectively
obtaining semantic context information in HRRS images, and the framework of LDBST is
provided in Figure 1. In our LDBST structure, the hierarchical ViT method (Swin-Tiny [27])
is used as the baseline for the LDBST method to explore long-range dependencies in HRRS
images. Then, Conv-MLP [33] is integrated into each stage of the LDBST, which enhances
the model’s ability to mine long-range dependencies in HRRS images, by strengthening
the ViT neighboring window connections. Finally, and most importantly, a dual-branch
structure called “CNNs + Swin Transformers” is designed, to split each stage feature in the
original Swin-Tiny into two branches, which not only integrates the advantages of a CNN
branch for local information and a ViT branch for global information, but also achieves a
lightweight model by avoiding the computation of a portion of the fully connected layers
and the multi-headed attention mechanism in ViT.
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Figure 1. Framework of the proposed LDBST method. LDBST consists of S cascading stages, where
the “swin transformer branch” is repeated B times before a concatenation is utilized to express the
stage S. More specifically, we set S to 4, and B in each stage is set to 2, 2, 6, and 2, respectively.

In the LDBST method, a hierarchical vision transformer is constructed using four
cascaded stages. The four stages consist of 2, 2, 6, and 2 stacks of swin transformer blocks,
respectively. Furthermore, a patch merging method based on linear layers is used to
downsample feature maps between each stage, except the last stage.

Given an HRRS image x ∈ RH×W×C, where H represents the image height, W denotes
image width, and C indicates the number of image channels. LDBST first masks a n× n
window on the input x of the convolution layer to downsample the input HRRS image to
the first stage, and it obtains a set of patches P = {p1, p2, . . . , pn2}. Then, each patch in P is
tokenized using linear embedding. In addition, relative position embeddings are added
to these tokens, to represent the positional information. Finally, the embedding vector
sequence is fed into the four cascaded stages of the LDBST, and the output dimensions
downsampled at each stage are H

n ×
W
n × C, H

2n ×
W
2n × 2C, H

4n ×
W
4n × 4C, and H

8n ×
W
8n × 8C.

Specially, we set n to 4 and C to 96.
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2.2. Dual-Branch “CNNs + Swin Transformer” Module

For simplicity, assume that the input for a certain stage of the hierarchical LDBST
method is zl−1, the dual-branch structure of LDBST splits it into a zl−1

1 part and zl−1
2 part

by a 1× 1 convolutional layer, and the number of channels of the two features is set to be
half of zl−1. The calculating process can be expressed as follows:

zl−1
1 = Conv1×1(zl−1)

zl−1
2 = Conv1×1(zl−1).

(1)

For zl−1
1 , the window partitioning approach is adopted to compute the output zl

1 of
l_layer in the transformer encoder. First, to enhance the capability of the ViT branch in
capturing long-range dependency information, additional multilayer perceptrons (MLP) are
incorporated into the transformer encoder. Simultaneously, due to the potential drawbacks
of increased MLP layers in the ViT branch, which has a limitation on the spatial interaction
information, we introduce a depthwise convolution between two MLP blocks, to strengthen
the connectivity among neighboring windows, drawing inspiration from Conv-MLP. The
calculating process can be defined as

żl
1 = W_MSA(LN(zl−1

1 )) + zl−1
1

z̈l
1 = MLP(LN(żl

1)) + żl
1

...
z l

1 = DW_Conv((LN(z̈l
1))

T
)

zl
1 = MLP(LN((

...
z l

1)
T
)) +

...
z l

1

(2)

where W_MSA represents the window-based multi-head self-attention, LN is the Layer-
Norm, MLP denotes the multilayer perceptron, DW_Conv indicates depthwise convolu-
tion, and T denotes the transpose matrix. DW_Conv is added between two MLPs, which is
a 3× 3 convolution layer with the same channel as the two channels of the MLPs, thereby
increasing the neighbor window connections.

Then, the shifted window partitioning approach is adopted to compute the output
zl+1

1 of the l+1_layer in the transformer encoder, and the corresponding output of the swin
transformer branch is formed by

żl+1
1 = SW_MSA(LN(zl

1)) + zl
1

z̈l+1
1 = MLP(LN(żl+1

1 )) + żl+1
1

...
z l+1

1 = DW_Conv((LN(z̈l+1
1 ))

T
)

zl+1
1 = MLP(LN((

...
z l+1

1 )
T
)) +

...
z l+1

1

(3)

where SW_MSA denotes the shifted window-based multi-head self-attention. All MLP
extension layers in the ViT branches are set to 2, to reduce the number of parameters.
Although Formulas (2) and (3) contain many complex computational processes in the ViT
branch, the initial input zl−1

1 of Formulas (2) and (3) is only half the size of the original
input feature zl−1 of each stage of the LDBST. This means that the proposed dual-branch
structure not only enables the model to obtain good feature representation, but also achieves
a lightweight model by avoiding certain complex calculations.

Next, for the output zl−1
2 of Formula (1), the CNN branch first takes a 3× 3 convolution

layer to extract features, then max pooling is adopted to retain strong features and accelerate
the model convergence, finally obtaining the result zl+1

2 . Thus, zl+1
2 can be calculated using

zl+1
2 = Maxpool(Conv3×3(zl−1

2 )). (4)
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Finally, the output zl+1 of the dual-branch “CNNs + Swin Transformer” module is
obtained by stacking zl+1

1 and zl+1
2 in the channel dimension, and this can be formulated as

zl+1 = Concat(zl+1
1 , zl+1

2 ). (5)

In summary, the dual-branch module first divides the input feature zl−1 into two parts
zl−1

1 and zl−1
2 from the channel dimension, then the zl−1

1 part is input to the ViT branch
of the integrated Conv_MLP, to enhance the connections among neighboring windows
and improve the model’s ability to understand global information. To lighten the model
and strengthen the ability to understand global information, a convolution layer and a
max pooling layer are applied to the zl−1

2 part. Since the zl−1
2 part only applies a simple

convolutional layer and a max pooling layer, this avoids complex multi-head self-attention
and MLP computation. Therefore, the computation and parameter number of the LDBST
method are significantly reduced when comparing to the baseline Swin-Tiny method.

3. Experiments
3.1. Dataset Description

(1) Aerial Image DataSet (AID DataSet) [34]: The AID dataset contains 30 semantic
categories and a total of 10,000 images, and was extracted from Google Earth by Wuhan
University. The images are fixed at 600 × 600 pixels, with resolutions ranging from 0.5 to
8 m. The number of images per category varies from 220 to 420.

(2) UC-Merced Land Use DataSet [35]: The UC-Merced Land Use dataset was devel-
oped by the University of California, Merced, and contains 21 different land use categories.
The dataset contains 2100 color remote sensing images with 256 × 256 pixels, and each
category contains 100 images with a resolution of 0.3 m.

(3) NWPU-RESISC45 DataSet [36]: The NWPU-RESISC45 dataset is a scene classifica-
tion dataset that exhibits rich image diversity and variations. It comprises 31,500 images
that are classified into 45 semantic categories. Each class includes 700 images of fixed size
(256 × 256 pixels), with a spatial resolution ranging from about 0.2 to 30 m.

(4) RSD46-WHU Dataset [37]: The RSD46-WHU dataset is a public dataset devel-
oped by researchers from the School of Remote Sensing Information Engineering, Wuhan
University, China, for remote sensing scene classification. The main characteristics of
this dataset are being multi-source, high-resolution, large-scale, and highly diverse. The
RSD46-WHU dataset contains a total of 117,000 images with a resolution of 0.5 to 2 m, and
these images are divided into 46 categories, each with a resolution of 256 × 256 pixels. In
the RSD46-WHU Dataset, the number of images per category varies from 500 to 3000.

(5) MLRSN Dataset [38]: The MLRSN dataset consists of 109,161 high-resolution im-
ages collected globally by China University of Geosciences. It is divided into 46 categories,
with the number sample images ranging from 1500 to 3000 for each category. In addition,
the MLRSN dataset provides a wide range of resolutions, from 0.1 m to 10 m. Each image is
consistently sized at 256 × 256 pixels, enabling coverage of scenes at different resolutions.

Table 1 shows the specifics of the datasets. The AID, UC-Merced, and NWPU-
RESISC45 datasets mentioned above are currently the most widely used datasets for
validating model performance. Table 1 indicates that both the MLRSN and RSD46-WHU
datasets have a large array of scene categories, with 46 categories each, and a total of 109,161
and 117,000 images, respectively. Meanwhile, the RSD46-WHU dataset and MLRSN dataset
are approximately 11-times larger than the AID dataset, approximately 52-times larger than
the UC-Merced dataset, and approximately 3.5-times larger than the NWPU-RESISC45
dataset. Therefore, we decided to use the MLRSN and RSD46-WHU datasets as source
domains and the AID, UC-Merced, and NWPU-RESISC45 datasets as target domains to
explore the transfer learning performance of the LDBST pretrained on these two large-scale
remote sensing datasets.
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Table 1. Details of the datasets.

Dataset Categories Images per Cat. Instances Image Size Resolution (m)

AID 30 220–420 10,000 600 × 600 0.5–8
UC-Merced 21 100 2100 256 × 256 0.3

NWPU-RESISC45 45 700 31,500 256 × 256 0.2–30
RSD46-WHU 46 500–3000 117,000 256 × 256 0.5–2

MLRSN 46 1500–3000 109,161 256 × 256 0.1–10

3.2. Experimental Setup

In this paper, the LDBST method was implemented using the Pytorch deep learning
framework, and trained on the Ubuntu 20.04 operating system. In addition, all experiments
were carried out on a computer equipped with an AMD Ryzen 7 3700X CPU, 16GB RAM,
and an NVIDIA GeForce RTX 3060 12GB GPU. We adopted the LDBST method with
settings from Swin-Tiny [27]. Specially, the AdamW optimizer was adopted as a cosine
decay learning rate scheduler, with an initial learning rate of 0.0005 and a weight decay of
0.05. The data augmentation in [27] was adopted in the LDBST to improve the accuracy.
To make full use of the GPU memory, the batch size of the training stage was configured
to 100 and the size of the input image was adjusted to 224 × 224 pixels. To gain reliable
results, all experiments were repeated five times.

Considering models pretrained on natural image archives, such as ImageNet, have less
prior knowledge of aerial scenes [39], we first trained the LDBST model from scratch for
300 epochs using all images in the MLRSN [38] and RSD46-WHU [37] datasets. Based on
the data presented in Figure 2, it can be observed that the validation accuracy of the LDBST
method was nearly perfect for both datasets. This can be attributed to our utilization of all
images as a training set, which also demonstrated that LDBST has an excellent learning
ability. Then, two pretrained weights with remote sensing prior information of LDBST
were then fine-tuned on the three most commonly used scene classification datasets, i.e.,
AID [34], UC-Merced [35], and NWPU-RESISC45 [36], for 300 epochs. To ensure a fair
comparison of our proposed LDBST method with the existing methods, we adopted the
same training set proportions as those used in prior research when dividing the AID,
UC-Merced, and NWPU-RESISC45 datasets. Specifically, the AID dataset was partitioned
with a 20% and 50% training ratio, the UC-Merced dataset was split with a 50% and an
80% training ratio, and the NWPU-RESISC45 dataset was divided with a 10% and a 20%
training ratio.

As shown in Table 2, to comprehensively evaluate the performance of the proposed
LDBST method, the transfer learning accuracy of the LDBST method on the AID, UC-
Merced, and NWPU-RESISC45 datasets is given. Moreover, the accuracies of two classic
networks (e.g., VGG16 and ResNet50) trained with the above-mentioned LDBST hyperpa-
rameters is also provided, to verify the effectiveness of the training method. Due to the
size of the above HRRS datasets being different, we used different training ratios for each
dataset, as seen in Table 2, to understand the adaptability of the LDBST model to different
data volumes. Among the three methods in Table 2, although the VGG16 and ResNet50
had been pretrained on two large-scale remote sensing datasets, since these two methods
only rely on CNNs to extract local information, their transfer learning performance on
the three most commonly used remote sensing datasets was limited when compared with
the LDBST under the same training hyperparameter conditions. This was because the
LDBST combines a CNN branch to mine local information and a ViT branch to mine long-
range dependency information, which improves its performance. According to Table 2,
the LDBST method achieved the best classification performance on the NWPU-RESISC45
dataset and UC-Merced dataset when the LDBST method was pretrained using the MLRSN
dataset. On the one hand, the LDBST method pretrained using the MLRSN dataset out-
performed the LDBST method pretrained using the RSD46-WHU dataset by 0.09% on
the UC-Merced dataset (50% training ratio). On the other hand, the LDBST method pre-
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trained using the MLRSN dataset outperformed the LDBST method pretrained using the
RSD46-WHU dataset by 3.1% and 0.85%, respectively, on the NWPU-RESISC45 dataset
(with training ratios of 10% and 20%). However, when performing transfer learning on the
AID dataset, the pretrained model of the LDBST on the MLRSN dataset exhibited a lower
transfer performance compared to that on the RSD46-WHU dataset. To be specific, when
the training ratio was 20% and 50%, the precision pretrained on the MLRSN dataset was
0.86% and 0.22% lower than that for the RSD46-WHU dataset, respectively. Overall, LDBST
achieved satisfactory accuracies on the three most commonly used public datasets after
being pretrained on the MLRSN and RSD46-WHU datasets and then transferred. This is
because the images in RSD46-WHU are similar in features to those in AID, thus the LDBST
pretrained on RSD46-WHU achieved the highest accuracy on the AID dataset. However,
MLRSN’s spatial resolution distribution is wider than that of RSD46-WHU, implying that
LDBST pretrained on MLRSN may be better transferred to the NWPU-RESISC45 and
UC-Merced datasets.
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Figure 2. The training curves of LDBST for all images in the RSD46-WHU and MLRSN datasets.

Table 2. Performance comparison of the proposed method on different pretrained datasets.

Pretrained
Dataset Method AID (20%) AID (50%) UC-Merced

(50%)
UC-Merced

(80%)

NWPU-
RESISC45

(10%)

NWPU-
RESISC45

(20%)

MLRSN
ResNet50 [40] 73.95 ± 0.17 80.32 ± 0.36 86.19 ± 0.29 93.57 ± 0.24 67.46 ± 0.15 73.54 ± 0.17
VGG16 [41] 77.60 ± 0.11 82.30 ± 0.26 87.43 ± 0.10 94.52 ± 0.23 73.42 ± 0.10 77.90 ± 0.14

LDBST (ours) 94.20 ± 0.13 96.56 ± 0.26 98.76 ± 0.38 99.52 ± 0.24 93.86 ± 0.18 94.36 ± 0.12

RSD46-WHU
ResNet50 [40] 74.35 ± 0.11 80.12 ± 0.26 87.14 ± 0.28 94.76 ± 0.24 65.65 ± 0.12 72.03 ± 0.12
VGG16 [41] 74.42 ± 0.22 80.17 ± 0.18 90.86 ± 0.19 96.67 ± 0.28 72.11 ± 0.14 77.10 ± 0.13

LDBST (ours) 95.10 ± 0.09 96.84 ± 0.20 98.76 ± 0.29 99.52 ± 0.24 90.83 ± 0.11 93.56 ± 0.07

3.3. Comparison with Some State-of-the-Art Methods on the AID Dataset

Table 3 shows an accuracy comparison of the proposed LDBST method with other
advanced methods on the AID dataset. We chose to pretrain the LDBST model on the
RSD46-WHU dataset as the knowledge transfer benchmark, and then transferred it to
the AID dataset. According to Table 3, it is evident that the proposed LDBST method
achieved the best accuracy with training ratios of 20% and 50%. In the methods based
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on transfer learning, T-CNN showed the adaptability of knowledge transfer, having the
highest accuracy compared with VGG_VD16+SAFF and EfficientNet-B3-aux methods. In
contrast, the proposed LDBST method outperformed the T-CNN by leveraging knowledge
from large-scale remote sensing scene classification datasets, which are more reliable than
the general image prior knowledge used by T-CNN. According to Table 3, the methods
that integrated CNNs with other advanced technologies also achieved good performance
in the field of scene classification, such as ACGLNet, CSDS, MSA-Network, EFPN-DSE-
TDFF, ACR-MLFF, and other methods. Nevertheless, when compared to the ViT-based
methods (e.g., Swin-Tiny and V16_21K), their performance lagged behind. This is because
the ViT-based methods use a self-attention mechanism to capture long-range dependencies
between different positions in the input sequence. This allows these models to process
global information in the image more effectively compared to the aforementioned meth-
ods. For a fair comparison, we also compared the performance of the proposed LDBST
method with other ViT-based methods. Although the LDBST method had no significant
accuracy improvement (maximum 0.21%) compared with the ViT-based V16_21K method,
the phenomenon causing this problem was that the LDBST method obtained a superior
lightweight performance by reducing the computational effort of the baseline model Swin-T,
and thus had less performance advantages in data fitting when compared to the heavy-
weight V16_21K method with a much greater computational effort. In addition, the LDBST
method had a maximum accuracy improvement of 0.24% and 0.22% compared to the
Swin-T baseline method at training ratios of 20% and 50%, respectively.

Table 3. Overall classification accuracy (%) comparison with the AID dataset.

Method 20% Training Ratio 50% Training Ratio

Fine-tuning VGG16 [10] 89.49 ± 0.34 93.60 ± 0.64
GBNet [10] 90.16 ± 0.24 93.72 ± 0.34

VGG_VD16+SAFF [20] 90.25 ± 0.29 93.83 ± 0.28
DFAGCN [16] - 94.88 ± 0.22

RANet [23] 92.71 ± 0.14 95.31 ± 0.37
ACR-MLFF [17] 92.73 ± 0.12 95.06 ± 0.33

GoogLeNet-aux [11] 93.25 ± 0.33 95.54 ± 0.12
MSA-Network [21] 93.53 ± 0.21 96.01 ± 0.43

EFPN-DSE-TDFF [15] 94.02 ± 0.21 94.50 ± 0.30
EfficientNet-B0-aux [11] 93.69 ± 0.11 96.17 ± 0.16
EfficientNet-B3-aux [11] 94.19 ± 0.15 96.56 ± 0.14

CSDS [24] 94.29 ± 0.35 96.70 ± 0.14
ACGLNet [18] 94.44 ± 0.09 96.10 ± 0.10

T-CNN [12] 94.55 ± 0.27 96.72 ± 0.23
Swin-Tiny [27] 94.80 ± 0.15 96.70 ± 0.12

V16_21K[224 × 224] [28] 94.97 ± 0.01 -
LDBST (ours) 95.10 ± 0.09 96.84 ± 0.20

In this paper, we show a confusion matrix of the LDBST method on each dataset. We
specify the true labels and predicted labels of the LDBST method as the horizontal and
vertical coordinates of the confusion matrix, respectively. For each true label category,
the accuracy of the LDBST classification for any category in the dataset is presented as a
percentage in the confusion matrix.

The confusion matrix presented in Figure 3 depicts the performance of the LDBST
method when trained on the AID dataset with a 50% training ratio. The LDBST method
achieved an excellent performance on the AID dataset, where the correct recognition rate
exceeded 90% for almost all scenes. Nonetheless, the accuracy for School and Resort was
only 89%. The reason for this was that School and Commercial, as well as Resort and Park,
share numerous common features, making it challenging for the model to differentiate
between them. It was satisfying that LDBST achieved a 100% correct recognition rate for all
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instances of Desert, River, and Viaduct, which indicates that the LDBST method has a strong
scene discrimination capability and robustness.
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Figure 3. Confusion matrix of AID dataset using the proposed LDBST method at a training rate
of 50%. It is worth noting that the values in the confusion matrix have been rounded to show two
decimal places, thus smaller values are ignored.

3.4. Comparison with Some State-of-the-Art Methods on the UC-Merced Dataset

Table 4 shows the experimental results of the LDBST method pretrained on the MLRSN
dataset and transferred to the UC-Merced dataset with training rates of 50% and 80%.
Specifically, the LDBST method achieved up to 99.14% and 99.76% on the UC-Merced
dataset with a training ratio of 50% and 80%, respectively. Among all the methods based on
transfer learning, although the T-CNN method achieved the highest accuracy on the UC-
Merced dataset, the T-CNN method only achieved a highest accuracy of 99.44% when facing
the challenge of the UC-Merced dataset (80% of the training ratio), which was behind the
highest accuracy of 99.65% achieved by the CSDS method. However, the proposed LDBST
method based on ViT maintained a comprehensive leading advantage compared to both
the T-CNN and CSDS methods, achieving the highest accuracies of 99.14% and 99.76% with
the two different training ratios, respectively. The proposed lightweight LDBST method
had a maximum accuracy improvement of 0.53% compared to the heavyweight V16_21K
method at a training ratio of 50%, while the LDBST method had a maximum accuracy
improvement of 1.33% and 0.95% compared to the Swin-T baseline method at training
ratios of 50% and 80%, respectively. Based on the above analysis, it can be concluded that
the LDBST method achieved significant breakthroughs, by combining the advantages of a
CNN and enhancing the connection of neighboring windows.

Figure 4 shows the confusion matrix of the LDBST method for the UC-Merced dataset,
with a training ratio of 80%. The LDBST method exhibited excellent performance and could
accurately and comprehensively identify almost all scenarios in the UC-Merced dataset. It
is worth noting that the LDBST method only achieved a maximum classification accuracy
of 95% for the scenario building and scenario river. This was because, on the one hand, some
storagetanks scenes contain building information; on the other hand, golfcourse scenes and



Remote Sens. 2023, 15, 2865 11 of 19

river scenes often contain a lot of green plant information, leading to the network having
difficulty distinguishing between the two.

Table 4. Overall classification accuracy (%) comparison with the UC-Merced dataset.

Method 50% Training Ratio 80% Training Ratio

GBNet [10] 95.71 ± 0.19 96.90 ± 0.23
VGG_VD16+SAFF [20] - 97.02 ± 0.78

DFAGCN [16] - 98.48 ± 0.42
EFPN-DSE-TDFF [15] 96.19 ± 0.13 99.14 ± 0.22

Fine-tuning VGG16 [10] 96.57 ± 0.38 97.14 ± 0.48
RANet [23] 97.80 ± 0.19 99.27 ± 0.24

MSA-Network [21] 97.80 ± 0.33 98.96 ± 0.21
GoogLeNet-aux [11] 97.90 ± 0.34 99.00 ± 0.46

T-CNN [12] - 99.33 ± 0.11
ACR-MLFF [17] 97.99 ± 0.26 99.37 ± 0.15
MLFCNet50 [19] 98.06 ± 0.41 99.37 ± 0.22
ACGLNet [18] 98.14 ± 0.25 99.46 ± 0.12

EfficientNet-B0-aux [11] 98.01 ± 0.45 99.04 ± 0.33
EfficientNet-B3-aux [11] 98.22 ± 0.49 99.09 ± 0.17

CSDS [24] 98.48 ± 0.21 99.52 ± 0.13
Swin-Tiny [27] 97.52 ± 0.29 98.57 ± 0.24

V16_21K[224 × 224] [28] 98.14 ± 0.47 -
LDBST (ours) 98.76 ± 0.38 99.52 ± 0.24
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Figure 4. Confusion matrix of UC-Merced dataset using the proposed LDBST method at a training
rate of 80%.

3.5. Comparison with Some State-of-the-Art Methods on the NWPU-RESISC45 Dataset

It can be seen that our proposed LDBST method achieved the best classification perfor-
mance with both training ratios on the NWPU-RESISC45 dataset, see Table 5. We selected
the LDBST model pretrained on the MLRSN dataset as our benchmark for knowledge
transfer, and subsequently applied it to the NWPU-RESISC45 dataset.
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Table 5. Overall classification accuracy (%) comparison with the NWPU-RESISC45 dataset.

Method 10% Training Ratio 20% Training Ratio

VGG_VD16+SAFF [20] 84.38±0.19 87.86±0.14
DFAGCN [16] - 89.29±0.28

GoogLeNet-aux [11] 89.22±0.25 91.63±0.11
ACR-MLFF [17] 90.01±0.33 92.45±0.20

EfficientNet-B0-aux [11] 89.96±0.27 92.89±0.16
EfficientNet-B3-aux [11] 91.08±0.14 93.81±0.07

T-CNN [12] 90.25±0.14 93.05±0.12
MSA-Network [21] 90.38±0.17 93.52±0.21

CSDS [24] 91.64±0.16 93.59±0.21
MLFCNet50 [19] 91.66±0.30 94.32±0.04
Swin-Tiny [27] 89.54±0.14 92.64±0.07

V16_21K[224 × 224] [28] 92.60±0.10 -
LDBST(ours) 93.86±0.18 94.36±0.12

According to Table 1, the NWPU-RESISC45 dataset was the most challenging of the
three target domain datasets, with the number of scenes it contains reaching 46. Moreover,
the instances of the NWPU-RESISC45 dataset are nearly 3-times and nearly 14-times larger
than that of the AID dataset and UC-Merced dataset, respectively. However, when faced
with the challenge of the NWPU-RESISC45 dataset, the performance of the LDBST method
still stood out compared to the other state-of-the-art methods. It is worth noting that the
MLFCNet50 method benefited from combining general semantic feature information with
clustering semantic feature information, achieving the best accuracy among all methods,
except for the ViT-based methods. However, the V16_21K method based on ViT had a 0.74%
higher accuracy than the MLFCNet50 method under a training ratio of 10%. In comparison
with V16_21K, our method improved on it by 1.34%, which demonstrates that our method
can effectively improve the scene classification accuracy of remote sensing images.

Shown in Figure 5 is a confusion matrix of the LDBST method when the training ratio
was 20% on the NWPU-RESISC45 dataset. Due to the strong scene discrimination ability
of LDBST, 38 out of 45 scenes in the NWPU-RESISC45 dataset achieved a more than 90%
classification accuracy, and 30 out of 45 scenes achieved a more than 95% classification
accuracy. However, the accuracies of the scenarios Palace and Church were only 74% and
80%, which greatly affected the overall classification accuracy. The reason for this was that
the structure of the Palace is similar to the Church, and there are few internal differences
between them.

3.6. Ablation Study and Analysis

In this paper, some ablation experiments are carried out to further validate the ef-
fectiveness of the LDBST method. All experimental models were trained from scratch
for a fair comparison, and the AID, UC-Merced, and NWPU-RESISC45 dataset training
ratios were set to 50%, 80%, and 20%, respectively. In Figure 6, we present the training
accuracy curves for the four models Swin-T, Swin-DMLP, Swin-DB, and LDBST on the
AID validation set. The accuracy of each model exhibited a rapid improvement during the
first 140 epochs, followed by a slower improvement between epochs 140 and 260, before
ultimately converging smoothly between epochs 260 and 300. In addition, in Figure 7 the
training curves of the four models on the NWPU-RESISC45 dataset are also presented.
The accuracy of each model exhibited a rapid improvement during the first 180 epochs,
followed by a slower improvement between epochs 140 and 260, and finally a smooth
convergence between epochs 180 and 260.
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Figure 5. Confusion matrix of the NWPU-RESISC45 dataset using the proposed LDBST method at a
training rate of 20%.
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Figure 6. Ablation experiment training curve of the AID dataset.
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Figure 7. Ablation experiment training curve for the NWPU-RESISC45 Dataset.

Ablation studies were validated on the AID, UC-Merced, and NWPU-RESISC45
datasets to further reveal the performance contribution of each part of the LDBST, and
the results are reported in Figures 8–10. Compared with the baseline Swin-T, both Swin-
T_DMLP and Swin-T_DB showed a positive performance impact on the three datasets. This
is because Swin-T_DMLP improved the ability of scene identification through strengthening
the connections of neighboring window using Conv-MLP, and Swin-T_DB improved the
ability of scene identification by combining the benefits of ViT and CNNs. Specifically, Swin-
T_DMLP improved the accuracies of Swin-T on the AID, UC-Merced, and NWPU-RESISC45
datasets by 0.54%, 0.48%, and 2.97%, respectively. Moreover, compared to Swin-T, Swin-
T_DB improved the accuracies for the AID, UC-Merced, and NWPU-RESISC45 datasets
by 1.86%, 3.34%, and 4.18%, respectively. When compared with the baseline, the LDBST
method, after integrating Conv-MLP and a dual-branch structure, obtained better results,
with overall accuracies of 3.22%, 4.29%, and 6.11% higher than the baseline on the AID,
UC-Merced, and NWPU-RESISC45 datasets.
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Figure 8. Ablation study on the AID Dataset.
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Figure 9. Ablation study on the UC-Merced Dataset.
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Figure 10. Ablation study on the NWPU-RESISC45 Dataset.

3.7. Model Weight Analysis

In order to demonstrate the advantages of LDBST in terms of its light weight, more
evidence is given in Table 6. We analyzed the proposed methods using multiple metrics
(Parameters, GFLOPs, and Size) at the same input image resolution (224× 224). According to
Table 6, compared with the other state-of-the-art methods (VGG16, Inception V3, ResNet34,
and Swin-Tiny), the proposed LDBST method had obvious weight advantages in multiple
metrics with the same input size. Especially for the Parameters and Size metrics, LDBST was
lower by 66.8% and 66.4% compared with the baseline method Swin-Tiny. This is because
the LDBST method adopts a dual-branch structure to split the features in the channel
dimension, and only half of the features are used to compute the complex multi-head
self-attention and MLP, and the other half of the features are used for a simple convolution
layer and a max pooling layer computation.
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Table 6. Comparison of the parameters, GFLOPs, and size with other models.

Method Image Size Params (M) GFLOPs Size (MB)

VGG16 [41] 224 × 224 138.4 15.5 528.0
Inception V3 [42] 224 × 224 23.8 2.9 104.0

ResNet34 [40] 224 × 224 21.8 3.7 83.3
Swin-Tiny [27] 224 × 224 28.0 4.5 114.3
LDBST (Ours) 224 × 224 9.3 2.6 38.4

Table 7 provides a comparison of the inference speed (frames per second, FPS) of
the baseline and proposed methods. The improved Swin-T_DB method with dual-branch
structure had an inference speed 45% faster than Swin-T. Due to the integration of the
Conv-MLP structure in the Swin-T_DMLP method, its inference speed was 19% slower
than that of the Swin-T method, but the LDBST method combined with the Conv-MLP and
dual-branch structure had an inference speed that was 14.5% faster than that of the Swin-T.

Table 7. The inference speed of the proposed methods.

Swin-T Swin-T_DMLP Swin-T_DB LDBST

FPS 427 346 619 489

3.8. Visualization Experiment

While deep learning methods have demonstrated superior performance compared to
machine learning methods in remote sensing scene classification, one limitation of deep
learning is its “feature black box” characteristic. This means that the intermediate processes
of the network cannot be intuitively explained. In order to intuitively demonstrate the
advantages of LDBST from the perspective of human vision, we used Grad-ACM [43]
to interpret the LDBST method in depth network vision, based on gradient localization.
Grad-ACM displays the positioning of key area information in an image by generating a
het map.

As shown in Figure 11, we display the het maps of the LDBST method and the Swin-T
(baseline) method on five sets of images, with data samples from the categories Airport,
Center, River, Playground, and Storage Tanks of the AID dataset. In Figure 11, the first line is
the original images, the second line is the het maps of the Swin-T method, and the third line
is the het maps of the LDBST method. A redder location in the het map indicates that the
network is more focused, while a bluer location indicates that the network is less focused.
It is obvious that in the column (a) experiments, the Swin-T method did not mainly focus
on the aircraft in the airport images, and its focus area was relatively scattered. However,
LDBST was able to focus on both the runway and aircraft parts of the airport images. In the
column (b) experiments, while both methods focused on the central area of the image, it is
evident that the LDBST method concentrated on more reasonable areas and also included
the auxiliary information area of the road surface around the building. The column (c)
experiment depicted a Y-shaped river, and the LDBST method gave greater emphasis to
the middle part of the scene compared to the Swin-T method. During the experiments
conducted in columns (d) and (e), the Swin-T method displayed inadequate attention to
the focus areas of both image columns. Furthermore, the LDBST method exhibited a more
targeted focus than the Swin-T method, and it provided comprehensive coverage of the
focus areas for both image columns. Capturing long-range dependencies between features
in an image is necessary for global understanding of a visual scene [44]. In the experiments
in columns (b) and (d), the LDBST method combined the strong sensitivity advantage of
CNNs for local features and the advantage of ViT in capturing long-range dependencies,
resulting in the model’s accurate attention to the key regions in the context scenarios of
center and playground having a larger span advantage in spatial scale compared to the
Swin-Tiny method.
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Figure 11. Heat map of five scenarios in the AID dataset presented using the Grad-ACM technique.
(a) Airport. (b) Center. (c) River. (d) Playground. (e) Storage Tanks.

4. Conclusions

In this paper, a novel lightweight dual-branch swin transformer network (LDBST) inte-
grating a CNN and ViT is proposed for remote scene classification. The dual-branch LDBST,
not only improves the scene discrimination ability, but also reduces the computation com-
plexity. First, the LDBST improved the performance by integrating Conv-MLP to enhance
the connections between the neighboring windows of the ViT branch. Then, to obtain better
feature representation, LDBST was pretrained on the remote scene classification images of
the MLRSN and RSD46-WHU datasets. The two pretrained weights were transferred on
the target remote sensing scene classification datasets. Compared with existing ViT-based
methods, LDBST had a huge weight advantage. Finally, the experimental results revealed
that the proposed LDBST method outperformed some state-of-the-art pretrained Imagenet
methods on the UC-Merced, AID, and NWPU-RESISC45 datasets.

In the future, given the success of the dual-branch structure proposed in this paper
for creating high-performance and lightweight scene classification methods, we aim to
examine the potential of this dual-branch structure in object detection of HRRS images and
to develop sophisticated, real-time models for advanced industrial applications.
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